| L(s) = 1 | − 1.73i·3-s + 1.73i·7-s − 2.99·9-s + 3.46i·11-s + 11·13-s − 6·17-s − 19.0i·19-s + 2.99·21-s + 17.3i·23-s + 5.19i·27-s + 30·29-s + 5.19i·31-s + 5.99·33-s − 14·37-s − 19.0i·39-s + ⋯ |
| L(s) = 1 | − 0.577i·3-s + 0.247i·7-s − 0.333·9-s + 0.314i·11-s + 0.846·13-s − 0.352·17-s − 1.00i·19-s + 0.142·21-s + 0.753i·23-s + 0.192i·27-s + 1.03·29-s + 0.167i·31-s + 0.181·33-s − 0.378·37-s − 0.488i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 + 0.5i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.866 + 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(1.939818782\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.939818782\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + 1.73iT \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 - 1.73iT - 49T^{2} \) |
| 11 | \( 1 - 3.46iT - 121T^{2} \) |
| 13 | \( 1 - 11T + 169T^{2} \) |
| 17 | \( 1 + 6T + 289T^{2} \) |
| 19 | \( 1 + 19.0iT - 361T^{2} \) |
| 23 | \( 1 - 17.3iT - 529T^{2} \) |
| 29 | \( 1 - 30T + 841T^{2} \) |
| 31 | \( 1 - 5.19iT - 961T^{2} \) |
| 37 | \( 1 + 14T + 1.36e3T^{2} \) |
| 41 | \( 1 - 36T + 1.68e3T^{2} \) |
| 43 | \( 1 + 5.19iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 45.0iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 72T + 2.80e3T^{2} \) |
| 59 | \( 1 + 38.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 35T + 3.72e3T^{2} \) |
| 67 | \( 1 - 29.4iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 90.0iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 62T + 5.32e3T^{2} \) |
| 79 | \( 1 + 76.2iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 72.7iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 144T + 7.92e3T^{2} \) |
| 97 | \( 1 + 181T + 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.277024016972769991418258806634, −8.721907400478187345439096459074, −7.81626809656344545384298737569, −6.98199608166026379897140855602, −6.24678899701115415248065522447, −5.33450687367150228854356641634, −4.30198377991673396797119295691, −3.11819967364854970658911582103, −2.06762422047041553387467850162, −0.813850784254123610333572575816,
0.881064909224726689362284050604, 2.41461185538525208639719387484, 3.62600218124160869113241599090, 4.28471151223432583439968806334, 5.41334602129417190832324176100, 6.19446713217774802696492460360, 7.09648619318535740963081717066, 8.284616755113088247610197274733, 8.673899084712703896135718132040, 9.727561090335730315227702430514