Properties

Label 1200.3.j.c.799.1
Level $1200$
Weight $3$
Character 1200.799
Analytic conductor $32.698$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1200,3,Mod(799,1200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1200.799"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,-120] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.6976317232\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1200.799
Dual form 1200.3.j.c.799.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} -1.73205 q^{7} +3.00000 q^{9} -3.46410i q^{11} +11.0000i q^{13} +6.00000i q^{17} -19.0526i q^{19} +3.00000 q^{21} +17.3205 q^{23} -5.19615 q^{27} -30.0000 q^{29} -5.19615i q^{31} +6.00000i q^{33} +14.0000i q^{37} -19.0526i q^{39} +36.0000 q^{41} -5.19615 q^{43} -45.0333 q^{47} -46.0000 q^{49} -10.3923i q^{51} +72.0000i q^{53} +33.0000i q^{57} -38.1051i q^{59} +35.0000 q^{61} -5.19615 q^{63} -29.4449 q^{67} -30.0000 q^{69} +90.0666i q^{71} +62.0000i q^{73} +6.00000i q^{77} -76.2102i q^{79} +9.00000 q^{81} -72.7461 q^{83} +51.9615 q^{87} -144.000 q^{89} -19.0526i q^{91} +9.00000i q^{93} +181.000i q^{97} -10.3923i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{9} + 12 q^{21} - 120 q^{29} + 144 q^{41} - 184 q^{49} + 140 q^{61} - 120 q^{69} + 36 q^{81} - 576 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.73205 −0.247436 −0.123718 0.992317i \(-0.539482\pi\)
−0.123718 + 0.992317i \(0.539482\pi\)
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) − 3.46410i − 0.314918i −0.987525 0.157459i \(-0.949670\pi\)
0.987525 0.157459i \(-0.0503303\pi\)
\(12\) 0 0
\(13\) 11.0000i 0.846154i 0.906094 + 0.423077i \(0.139050\pi\)
−0.906094 + 0.423077i \(0.860950\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000i 0.352941i 0.984306 + 0.176471i \(0.0564680\pi\)
−0.984306 + 0.176471i \(0.943532\pi\)
\(18\) 0 0
\(19\) − 19.0526i − 1.00277i −0.865225 0.501383i \(-0.832825\pi\)
0.865225 0.501383i \(-0.167175\pi\)
\(20\) 0 0
\(21\) 3.00000 0.142857
\(22\) 0 0
\(23\) 17.3205 0.753066 0.376533 0.926403i \(-0.377116\pi\)
0.376533 + 0.926403i \(0.377116\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −5.19615 −0.192450
\(28\) 0 0
\(29\) −30.0000 −1.03448 −0.517241 0.855840i \(-0.673041\pi\)
−0.517241 + 0.855840i \(0.673041\pi\)
\(30\) 0 0
\(31\) − 5.19615i − 0.167618i −0.996482 0.0838089i \(-0.973291\pi\)
0.996482 0.0838089i \(-0.0267085\pi\)
\(32\) 0 0
\(33\) 6.00000i 0.181818i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 14.0000i 0.378378i 0.981941 + 0.189189i \(0.0605859\pi\)
−0.981941 + 0.189189i \(0.939414\pi\)
\(38\) 0 0
\(39\) − 19.0526i − 0.488527i
\(40\) 0 0
\(41\) 36.0000 0.878049 0.439024 0.898475i \(-0.355324\pi\)
0.439024 + 0.898475i \(0.355324\pi\)
\(42\) 0 0
\(43\) −5.19615 −0.120841 −0.0604204 0.998173i \(-0.519244\pi\)
−0.0604204 + 0.998173i \(0.519244\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −45.0333 −0.958156 −0.479078 0.877772i \(-0.659029\pi\)
−0.479078 + 0.877772i \(0.659029\pi\)
\(48\) 0 0
\(49\) −46.0000 −0.938776
\(50\) 0 0
\(51\) − 10.3923i − 0.203771i
\(52\) 0 0
\(53\) 72.0000i 1.35849i 0.733911 + 0.679245i \(0.237693\pi\)
−0.733911 + 0.679245i \(0.762307\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 33.0000i 0.578947i
\(58\) 0 0
\(59\) − 38.1051i − 0.645849i −0.946425 0.322925i \(-0.895334\pi\)
0.946425 0.322925i \(-0.104666\pi\)
\(60\) 0 0
\(61\) 35.0000 0.573770 0.286885 0.957965i \(-0.407380\pi\)
0.286885 + 0.957965i \(0.407380\pi\)
\(62\) 0 0
\(63\) −5.19615 −0.0824786
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −29.4449 −0.439476 −0.219738 0.975559i \(-0.570520\pi\)
−0.219738 + 0.975559i \(0.570520\pi\)
\(68\) 0 0
\(69\) −30.0000 −0.434783
\(70\) 0 0
\(71\) 90.0666i 1.26854i 0.773110 + 0.634272i \(0.218700\pi\)
−0.773110 + 0.634272i \(0.781300\pi\)
\(72\) 0 0
\(73\) 62.0000i 0.849315i 0.905354 + 0.424658i \(0.139605\pi\)
−0.905354 + 0.424658i \(0.860395\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.00000i 0.0779221i
\(78\) 0 0
\(79\) − 76.2102i − 0.964687i −0.875982 0.482343i \(-0.839786\pi\)
0.875982 0.482343i \(-0.160214\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) −72.7461 −0.876459 −0.438230 0.898863i \(-0.644394\pi\)
−0.438230 + 0.898863i \(0.644394\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 51.9615 0.597259
\(88\) 0 0
\(89\) −144.000 −1.61798 −0.808989 0.587824i \(-0.799985\pi\)
−0.808989 + 0.587824i \(0.799985\pi\)
\(90\) 0 0
\(91\) − 19.0526i − 0.209369i
\(92\) 0 0
\(93\) 9.00000i 0.0967742i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 181.000i 1.86598i 0.359903 + 0.932990i \(0.382810\pi\)
−0.359903 + 0.932990i \(0.617190\pi\)
\(98\) 0 0
\(99\) − 10.3923i − 0.104973i
\(100\) 0 0
\(101\) −48.0000 −0.475248 −0.237624 0.971357i \(-0.576369\pi\)
−0.237624 + 0.971357i \(0.576369\pi\)
\(102\) 0 0
\(103\) −96.9948 −0.941698 −0.470849 0.882214i \(-0.656052\pi\)
−0.470849 + 0.882214i \(0.656052\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −180.133 −1.68349 −0.841744 0.539876i \(-0.818471\pi\)
−0.841744 + 0.539876i \(0.818471\pi\)
\(108\) 0 0
\(109\) −169.000 −1.55046 −0.775229 0.631680i \(-0.782366\pi\)
−0.775229 + 0.631680i \(0.782366\pi\)
\(110\) 0 0
\(111\) − 24.2487i − 0.218457i
\(112\) 0 0
\(113\) 12.0000i 0.106195i 0.998589 + 0.0530973i \(0.0169094\pi\)
−0.998589 + 0.0530973i \(0.983091\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 33.0000i 0.282051i
\(118\) 0 0
\(119\) − 10.3923i − 0.0873303i
\(120\) 0 0
\(121\) 109.000 0.900826
\(122\) 0 0
\(123\) −62.3538 −0.506942
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 103.923 0.818292 0.409146 0.912469i \(-0.365827\pi\)
0.409146 + 0.912469i \(0.365827\pi\)
\(128\) 0 0
\(129\) 9.00000 0.0697674
\(130\) 0 0
\(131\) 69.2820i 0.528870i 0.964403 + 0.264435i \(0.0851855\pi\)
−0.964403 + 0.264435i \(0.914814\pi\)
\(132\) 0 0
\(133\) 33.0000i 0.248120i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 54.0000i 0.394161i 0.980387 + 0.197080i \(0.0631460\pi\)
−0.980387 + 0.197080i \(0.936854\pi\)
\(138\) 0 0
\(139\) − 48.4974i − 0.348902i −0.984666 0.174451i \(-0.944185\pi\)
0.984666 0.174451i \(-0.0558151\pi\)
\(140\) 0 0
\(141\) 78.0000 0.553191
\(142\) 0 0
\(143\) 38.1051 0.266469
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 79.6743 0.542002
\(148\) 0 0
\(149\) −234.000 −1.57047 −0.785235 0.619198i \(-0.787458\pi\)
−0.785235 + 0.619198i \(0.787458\pi\)
\(150\) 0 0
\(151\) 164.545i 1.08970i 0.838533 + 0.544850i \(0.183414\pi\)
−0.838533 + 0.544850i \(0.816586\pi\)
\(152\) 0 0
\(153\) 18.0000i 0.117647i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 35.0000i 0.222930i 0.993768 + 0.111465i \(0.0355543\pi\)
−0.993768 + 0.111465i \(0.964446\pi\)
\(158\) 0 0
\(159\) − 124.708i − 0.784325i
\(160\) 0 0
\(161\) −30.0000 −0.186335
\(162\) 0 0
\(163\) −174.937 −1.07323 −0.536617 0.843826i \(-0.680298\pi\)
−0.536617 + 0.843826i \(0.680298\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −138.564 −0.829725 −0.414862 0.909884i \(-0.636170\pi\)
−0.414862 + 0.909884i \(0.636170\pi\)
\(168\) 0 0
\(169\) 48.0000 0.284024
\(170\) 0 0
\(171\) − 57.1577i − 0.334255i
\(172\) 0 0
\(173\) 198.000i 1.14451i 0.820076 + 0.572254i \(0.193931\pi\)
−0.820076 + 0.572254i \(0.806069\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 66.0000i 0.372881i
\(178\) 0 0
\(179\) 252.879i 1.41273i 0.707846 + 0.706367i \(0.249667\pi\)
−0.707846 + 0.706367i \(0.750333\pi\)
\(180\) 0 0
\(181\) −23.0000 −0.127072 −0.0635359 0.997980i \(-0.520238\pi\)
−0.0635359 + 0.997980i \(0.520238\pi\)
\(182\) 0 0
\(183\) −60.6218 −0.331267
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 20.7846 0.111148
\(188\) 0 0
\(189\) 9.00000 0.0476190
\(190\) 0 0
\(191\) 239.023i 1.25143i 0.780052 + 0.625715i \(0.215193\pi\)
−0.780052 + 0.625715i \(0.784807\pi\)
\(192\) 0 0
\(193\) − 59.0000i − 0.305699i −0.988249 0.152850i \(-0.951155\pi\)
0.988249 0.152850i \(-0.0488451\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 162.000i − 0.822335i −0.911560 0.411168i \(-0.865121\pi\)
0.911560 0.411168i \(-0.134879\pi\)
\(198\) 0 0
\(199\) − 219.970i − 1.10538i −0.833387 0.552690i \(-0.813602\pi\)
0.833387 0.552690i \(-0.186398\pi\)
\(200\) 0 0
\(201\) 51.0000 0.253731
\(202\) 0 0
\(203\) 51.9615 0.255968
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 51.9615 0.251022
\(208\) 0 0
\(209\) −66.0000 −0.315789
\(210\) 0 0
\(211\) − 403.568i − 1.91264i −0.292316 0.956322i \(-0.594426\pi\)
0.292316 0.956322i \(-0.405574\pi\)
\(212\) 0 0
\(213\) − 156.000i − 0.732394i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.00000i 0.0414747i
\(218\) 0 0
\(219\) − 107.387i − 0.490352i
\(220\) 0 0
\(221\) −66.0000 −0.298643
\(222\) 0 0
\(223\) 223.435 1.00195 0.500974 0.865462i \(-0.332975\pi\)
0.500974 + 0.865462i \(0.332975\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −422.620 −1.86176 −0.930882 0.365320i \(-0.880960\pi\)
−0.930882 + 0.365320i \(0.880960\pi\)
\(228\) 0 0
\(229\) 59.0000 0.257642 0.128821 0.991668i \(-0.458881\pi\)
0.128821 + 0.991668i \(0.458881\pi\)
\(230\) 0 0
\(231\) − 10.3923i − 0.0449883i
\(232\) 0 0
\(233\) 84.0000i 0.360515i 0.983619 + 0.180258i \(0.0576931\pi\)
−0.983619 + 0.180258i \(0.942307\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 132.000i 0.556962i
\(238\) 0 0
\(239\) 193.990i 0.811672i 0.913946 + 0.405836i \(0.133020\pi\)
−0.913946 + 0.405836i \(0.866980\pi\)
\(240\) 0 0
\(241\) 73.0000 0.302905 0.151452 0.988465i \(-0.451605\pi\)
0.151452 + 0.988465i \(0.451605\pi\)
\(242\) 0 0
\(243\) −15.5885 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 209.578 0.848495
\(248\) 0 0
\(249\) 126.000 0.506024
\(250\) 0 0
\(251\) − 34.6410i − 0.138012i −0.997616 0.0690060i \(-0.978017\pi\)
0.997616 0.0690060i \(-0.0219828\pi\)
\(252\) 0 0
\(253\) − 60.0000i − 0.237154i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 228.000i − 0.887160i −0.896235 0.443580i \(-0.853708\pi\)
0.896235 0.443580i \(-0.146292\pi\)
\(258\) 0 0
\(259\) − 24.2487i − 0.0936244i
\(260\) 0 0
\(261\) −90.0000 −0.344828
\(262\) 0 0
\(263\) 422.620 1.60692 0.803461 0.595358i \(-0.202990\pi\)
0.803461 + 0.595358i \(0.202990\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 249.415 0.934140
\(268\) 0 0
\(269\) 270.000 1.00372 0.501859 0.864950i \(-0.332650\pi\)
0.501859 + 0.864950i \(0.332650\pi\)
\(270\) 0 0
\(271\) 34.6410i 0.127827i 0.997955 + 0.0639133i \(0.0203581\pi\)
−0.997955 + 0.0639133i \(0.979642\pi\)
\(272\) 0 0
\(273\) 33.0000i 0.120879i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 49.0000i 0.176895i 0.996081 + 0.0884477i \(0.0281906\pi\)
−0.996081 + 0.0884477i \(0.971809\pi\)
\(278\) 0 0
\(279\) − 15.5885i − 0.0558726i
\(280\) 0 0
\(281\) −246.000 −0.875445 −0.437722 0.899110i \(-0.644215\pi\)
−0.437722 + 0.899110i \(0.644215\pi\)
\(282\) 0 0
\(283\) −140.296 −0.495746 −0.247873 0.968793i \(-0.579732\pi\)
−0.247873 + 0.968793i \(0.579732\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −62.3538 −0.217261
\(288\) 0 0
\(289\) 253.000 0.875433
\(290\) 0 0
\(291\) − 313.501i − 1.07732i
\(292\) 0 0
\(293\) − 78.0000i − 0.266212i −0.991102 0.133106i \(-0.957505\pi\)
0.991102 0.133106i \(-0.0424950\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 18.0000i 0.0606061i
\(298\) 0 0
\(299\) 190.526i 0.637209i
\(300\) 0 0
\(301\) 9.00000 0.0299003
\(302\) 0 0
\(303\) 83.1384 0.274384
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 202.650 0.660098 0.330049 0.943964i \(-0.392935\pi\)
0.330049 + 0.943964i \(0.392935\pi\)
\(308\) 0 0
\(309\) 168.000 0.543689
\(310\) 0 0
\(311\) 370.659i 1.19183i 0.803048 + 0.595915i \(0.203210\pi\)
−0.803048 + 0.595915i \(0.796790\pi\)
\(312\) 0 0
\(313\) 25.0000i 0.0798722i 0.999202 + 0.0399361i \(0.0127154\pi\)
−0.999202 + 0.0399361i \(0.987285\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 600.000i − 1.89274i −0.323078 0.946372i \(-0.604718\pi\)
0.323078 0.946372i \(-0.395282\pi\)
\(318\) 0 0
\(319\) 103.923i 0.325778i
\(320\) 0 0
\(321\) 312.000 0.971963
\(322\) 0 0
\(323\) 114.315 0.353918
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 292.717 0.895158
\(328\) 0 0
\(329\) 78.0000 0.237082
\(330\) 0 0
\(331\) − 408.764i − 1.23494i −0.786596 0.617468i \(-0.788158\pi\)
0.786596 0.617468i \(-0.211842\pi\)
\(332\) 0 0
\(333\) 42.0000i 0.126126i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 203.000i − 0.602374i −0.953565 0.301187i \(-0.902617\pi\)
0.953565 0.301187i \(-0.0973828\pi\)
\(338\) 0 0
\(339\) − 20.7846i − 0.0613115i
\(340\) 0 0
\(341\) −18.0000 −0.0527859
\(342\) 0 0
\(343\) 164.545 0.479723
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −613.146 −1.76699 −0.883496 0.468439i \(-0.844816\pi\)
−0.883496 + 0.468439i \(0.844816\pi\)
\(348\) 0 0
\(349\) 538.000 1.54155 0.770774 0.637109i \(-0.219870\pi\)
0.770774 + 0.637109i \(0.219870\pi\)
\(350\) 0 0
\(351\) − 57.1577i − 0.162842i
\(352\) 0 0
\(353\) − 498.000i − 1.41076i −0.708827 0.705382i \(-0.750775\pi\)
0.708827 0.705382i \(-0.249225\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 18.0000i 0.0504202i
\(358\) 0 0
\(359\) 90.0666i 0.250882i 0.992101 + 0.125441i \(0.0400346\pi\)
−0.992101 + 0.125441i \(0.959965\pi\)
\(360\) 0 0
\(361\) −2.00000 −0.00554017
\(362\) 0 0
\(363\) −188.794 −0.520092
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 569.845 1.55271 0.776355 0.630296i \(-0.217066\pi\)
0.776355 + 0.630296i \(0.217066\pi\)
\(368\) 0 0
\(369\) 108.000 0.292683
\(370\) 0 0
\(371\) − 124.708i − 0.336139i
\(372\) 0 0
\(373\) − 491.000i − 1.31635i −0.752863 0.658177i \(-0.771328\pi\)
0.752863 0.658177i \(-0.228672\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 330.000i − 0.875332i
\(378\) 0 0
\(379\) 323.894i 0.854600i 0.904110 + 0.427300i \(0.140535\pi\)
−0.904110 + 0.427300i \(0.859465\pi\)
\(380\) 0 0
\(381\) −180.000 −0.472441
\(382\) 0 0
\(383\) 367.195 0.958733 0.479367 0.877615i \(-0.340866\pi\)
0.479367 + 0.877615i \(0.340866\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −15.5885 −0.0402803
\(388\) 0 0
\(389\) 132.000 0.339332 0.169666 0.985502i \(-0.445731\pi\)
0.169666 + 0.985502i \(0.445731\pi\)
\(390\) 0 0
\(391\) 103.923i 0.265788i
\(392\) 0 0
\(393\) − 120.000i − 0.305344i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 251.000i 0.632242i 0.948719 + 0.316121i \(0.102381\pi\)
−0.948719 + 0.316121i \(0.897619\pi\)
\(398\) 0 0
\(399\) − 57.1577i − 0.143252i
\(400\) 0 0
\(401\) −720.000 −1.79551 −0.897756 0.440494i \(-0.854803\pi\)
−0.897756 + 0.440494i \(0.854803\pi\)
\(402\) 0 0
\(403\) 57.1577 0.141830
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 48.4974 0.119158
\(408\) 0 0
\(409\) 515.000 1.25917 0.629584 0.776932i \(-0.283225\pi\)
0.629584 + 0.776932i \(0.283225\pi\)
\(410\) 0 0
\(411\) − 93.5307i − 0.227569i
\(412\) 0 0
\(413\) 66.0000i 0.159806i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 84.0000i 0.201439i
\(418\) 0 0
\(419\) 789.815i 1.88500i 0.334206 + 0.942500i \(0.391532\pi\)
−0.334206 + 0.942500i \(0.608468\pi\)
\(420\) 0 0
\(421\) −278.000 −0.660333 −0.330166 0.943923i \(-0.607105\pi\)
−0.330166 + 0.943923i \(0.607105\pi\)
\(422\) 0 0
\(423\) −135.100 −0.319385
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −60.6218 −0.141971
\(428\) 0 0
\(429\) −66.0000 −0.153846
\(430\) 0 0
\(431\) 627.002i 1.45476i 0.686234 + 0.727381i \(0.259263\pi\)
−0.686234 + 0.727381i \(0.740737\pi\)
\(432\) 0 0
\(433\) − 287.000i − 0.662818i −0.943487 0.331409i \(-0.892476\pi\)
0.943487 0.331409i \(-0.107524\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 330.000i − 0.755149i
\(438\) 0 0
\(439\) − 244.219i − 0.556308i −0.960537 0.278154i \(-0.910277\pi\)
0.960537 0.278154i \(-0.0897225\pi\)
\(440\) 0 0
\(441\) −138.000 −0.312925
\(442\) 0 0
\(443\) −221.703 −0.500457 −0.250229 0.968187i \(-0.580506\pi\)
−0.250229 + 0.968187i \(0.580506\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 405.300 0.906711
\(448\) 0 0
\(449\) −132.000 −0.293987 −0.146993 0.989137i \(-0.546960\pi\)
−0.146993 + 0.989137i \(0.546960\pi\)
\(450\) 0 0
\(451\) − 124.708i − 0.276514i
\(452\) 0 0
\(453\) − 285.000i − 0.629139i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 434.000i − 0.949672i −0.880074 0.474836i \(-0.842507\pi\)
0.880074 0.474836i \(-0.157493\pi\)
\(458\) 0 0
\(459\) − 31.1769i − 0.0679236i
\(460\) 0 0
\(461\) 312.000 0.676790 0.338395 0.941004i \(-0.390116\pi\)
0.338395 + 0.941004i \(0.390116\pi\)
\(462\) 0 0
\(463\) 90.0666 0.194528 0.0972642 0.995259i \(-0.468991\pi\)
0.0972642 + 0.995259i \(0.468991\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.46410 0.00741778 0.00370889 0.999993i \(-0.498819\pi\)
0.00370889 + 0.999993i \(0.498819\pi\)
\(468\) 0 0
\(469\) 51.0000 0.108742
\(470\) 0 0
\(471\) − 60.6218i − 0.128709i
\(472\) 0 0
\(473\) 18.0000i 0.0380550i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 216.000i 0.452830i
\(478\) 0 0
\(479\) 737.854i 1.54040i 0.637800 + 0.770202i \(0.279845\pi\)
−0.637800 + 0.770202i \(0.720155\pi\)
\(480\) 0 0
\(481\) −154.000 −0.320166
\(482\) 0 0
\(483\) 51.9615 0.107581
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 258.076 0.529929 0.264965 0.964258i \(-0.414640\pi\)
0.264965 + 0.964258i \(0.414640\pi\)
\(488\) 0 0
\(489\) 303.000 0.619632
\(490\) 0 0
\(491\) − 332.554i − 0.677299i −0.940913 0.338649i \(-0.890030\pi\)
0.940913 0.338649i \(-0.109970\pi\)
\(492\) 0 0
\(493\) − 180.000i − 0.365112i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 156.000i − 0.313883i
\(498\) 0 0
\(499\) 306.573i 0.614375i 0.951649 + 0.307187i \(0.0993878\pi\)
−0.951649 + 0.307187i \(0.900612\pi\)
\(500\) 0 0
\(501\) 240.000 0.479042
\(502\) 0 0
\(503\) 187.061 0.371892 0.185946 0.982560i \(-0.440465\pi\)
0.185946 + 0.982560i \(0.440465\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −83.1384 −0.163981
\(508\) 0 0
\(509\) 546.000 1.07269 0.536346 0.843998i \(-0.319804\pi\)
0.536346 + 0.843998i \(0.319804\pi\)
\(510\) 0 0
\(511\) − 107.387i − 0.210151i
\(512\) 0 0
\(513\) 99.0000i 0.192982i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 156.000i 0.301741i
\(518\) 0 0
\(519\) − 342.946i − 0.660782i
\(520\) 0 0
\(521\) −318.000 −0.610365 −0.305182 0.952294i \(-0.598717\pi\)
−0.305182 + 0.952294i \(0.598717\pi\)
\(522\) 0 0
\(523\) −895.470 −1.71218 −0.856090 0.516827i \(-0.827113\pi\)
−0.856090 + 0.516827i \(0.827113\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 31.1769 0.0591592
\(528\) 0 0
\(529\) −229.000 −0.432892
\(530\) 0 0
\(531\) − 114.315i − 0.215283i
\(532\) 0 0
\(533\) 396.000i 0.742964i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 438.000i − 0.815642i
\(538\) 0 0
\(539\) 159.349i 0.295638i
\(540\) 0 0
\(541\) 157.000 0.290203 0.145102 0.989417i \(-0.453649\pi\)
0.145102 + 0.989417i \(0.453649\pi\)
\(542\) 0 0
\(543\) 39.8372 0.0733650
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −69.2820 −0.126658 −0.0633291 0.997993i \(-0.520172\pi\)
−0.0633291 + 0.997993i \(0.520172\pi\)
\(548\) 0 0
\(549\) 105.000 0.191257
\(550\) 0 0
\(551\) 571.577i 1.03734i
\(552\) 0 0
\(553\) 132.000i 0.238698i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 114.000i 0.204668i 0.994750 + 0.102334i \(0.0326310\pi\)
−0.994750 + 0.102334i \(0.967369\pi\)
\(558\) 0 0
\(559\) − 57.1577i − 0.102250i
\(560\) 0 0
\(561\) −36.0000 −0.0641711
\(562\) 0 0
\(563\) 128.172 0.227659 0.113829 0.993500i \(-0.463688\pi\)
0.113829 + 0.993500i \(0.463688\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −15.5885 −0.0274929
\(568\) 0 0
\(569\) −450.000 −0.790861 −0.395431 0.918496i \(-0.629405\pi\)
−0.395431 + 0.918496i \(0.629405\pi\)
\(570\) 0 0
\(571\) − 22.5167i − 0.0394337i −0.999806 0.0197169i \(-0.993724\pi\)
0.999806 0.0197169i \(-0.00627648\pi\)
\(572\) 0 0
\(573\) − 414.000i − 0.722513i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 311.000i 0.538995i 0.963001 + 0.269497i \(0.0868576\pi\)
−0.963001 + 0.269497i \(0.913142\pi\)
\(578\) 0 0
\(579\) 102.191i 0.176496i
\(580\) 0 0
\(581\) 126.000 0.216867
\(582\) 0 0
\(583\) 249.415 0.427814
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −166.277 −0.283266 −0.141633 0.989919i \(-0.545235\pi\)
−0.141633 + 0.989919i \(0.545235\pi\)
\(588\) 0 0
\(589\) −99.0000 −0.168081
\(590\) 0 0
\(591\) 280.592i 0.474775i
\(592\) 0 0
\(593\) − 636.000i − 1.07251i −0.844055 0.536256i \(-0.819838\pi\)
0.844055 0.536256i \(-0.180162\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 381.000i 0.638191i
\(598\) 0 0
\(599\) − 769.031i − 1.28386i −0.766764 0.641929i \(-0.778135\pi\)
0.766764 0.641929i \(-0.221865\pi\)
\(600\) 0 0
\(601\) 371.000 0.617304 0.308652 0.951175i \(-0.400122\pi\)
0.308652 + 0.951175i \(0.400122\pi\)
\(602\) 0 0
\(603\) −88.3346 −0.146492
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 533.472 0.878866 0.439433 0.898275i \(-0.355179\pi\)
0.439433 + 0.898275i \(0.355179\pi\)
\(608\) 0 0
\(609\) −90.0000 −0.147783
\(610\) 0 0
\(611\) − 495.367i − 0.810747i
\(612\) 0 0
\(613\) − 374.000i − 0.610114i −0.952334 0.305057i \(-0.901324\pi\)
0.952334 0.305057i \(-0.0986755\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 240.000i 0.388979i 0.980905 + 0.194489i \(0.0623050\pi\)
−0.980905 + 0.194489i \(0.937695\pi\)
\(618\) 0 0
\(619\) − 621.806i − 1.00453i −0.864713 0.502267i \(-0.832500\pi\)
0.864713 0.502267i \(-0.167500\pi\)
\(620\) 0 0
\(621\) −90.0000 −0.144928
\(622\) 0 0
\(623\) 249.415 0.400346
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 114.315 0.182321
\(628\) 0 0
\(629\) −84.0000 −0.133545
\(630\) 0 0
\(631\) 549.060i 0.870143i 0.900396 + 0.435071i \(0.143277\pi\)
−0.900396 + 0.435071i \(0.856723\pi\)
\(632\) 0 0
\(633\) 699.000i 1.10427i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 506.000i − 0.794349i
\(638\) 0 0
\(639\) 270.200i 0.422848i
\(640\) 0 0
\(641\) −300.000 −0.468019 −0.234009 0.972234i \(-0.575185\pi\)
−0.234009 + 0.972234i \(0.575185\pi\)
\(642\) 0 0
\(643\) 394.908 0.614164 0.307082 0.951683i \(-0.400647\pi\)
0.307082 + 0.951683i \(0.400647\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −699.749 −1.08153 −0.540764 0.841174i \(-0.681865\pi\)
−0.540764 + 0.841174i \(0.681865\pi\)
\(648\) 0 0
\(649\) −132.000 −0.203390
\(650\) 0 0
\(651\) − 15.5885i − 0.0239454i
\(652\) 0 0
\(653\) 534.000i 0.817764i 0.912587 + 0.408882i \(0.134081\pi\)
−0.912587 + 0.408882i \(0.865919\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 186.000i 0.283105i
\(658\) 0 0
\(659\) − 436.477i − 0.662332i −0.943573 0.331166i \(-0.892558\pi\)
0.943573 0.331166i \(-0.107442\pi\)
\(660\) 0 0
\(661\) −34.0000 −0.0514372 −0.0257186 0.999669i \(-0.508187\pi\)
−0.0257186 + 0.999669i \(0.508187\pi\)
\(662\) 0 0
\(663\) 114.315 0.172421
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −519.615 −0.779033
\(668\) 0 0
\(669\) −387.000 −0.578475
\(670\) 0 0
\(671\) − 121.244i − 0.180691i
\(672\) 0 0
\(673\) 1234.00i 1.83358i 0.399368 + 0.916790i \(0.369229\pi\)
−0.399368 + 0.916790i \(0.630771\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 534.000i 0.788774i 0.918944 + 0.394387i \(0.129043\pi\)
−0.918944 + 0.394387i \(0.870957\pi\)
\(678\) 0 0
\(679\) − 313.501i − 0.461710i
\(680\) 0 0
\(681\) 732.000 1.07489
\(682\) 0 0
\(683\) −526.543 −0.770927 −0.385464 0.922723i \(-0.625959\pi\)
−0.385464 + 0.922723i \(0.625959\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −102.191 −0.148750
\(688\) 0 0
\(689\) −792.000 −1.14949
\(690\) 0 0
\(691\) − 1122.37i − 1.62427i −0.583471 0.812134i \(-0.698306\pi\)
0.583471 0.812134i \(-0.301694\pi\)
\(692\) 0 0
\(693\) 18.0000i 0.0259740i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 216.000i 0.309900i
\(698\) 0 0
\(699\) − 145.492i − 0.208143i
\(700\) 0 0
\(701\) 306.000 0.436519 0.218260 0.975891i \(-0.429962\pi\)
0.218260 + 0.975891i \(0.429962\pi\)
\(702\) 0 0
\(703\) 266.736 0.379425
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 83.1384 0.117593
\(708\) 0 0
\(709\) −433.000 −0.610719 −0.305360 0.952237i \(-0.598777\pi\)
−0.305360 + 0.952237i \(0.598777\pi\)
\(710\) 0 0
\(711\) − 228.631i − 0.321562i
\(712\) 0 0
\(713\) − 90.0000i − 0.126227i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 336.000i − 0.468619i
\(718\) 0 0
\(719\) − 585.433i − 0.814233i −0.913376 0.407116i \(-0.866534\pi\)
0.913376 0.407116i \(-0.133466\pi\)
\(720\) 0 0
\(721\) 168.000 0.233010
\(722\) 0 0
\(723\) −126.440 −0.174882
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −930.111 −1.27938 −0.639691 0.768632i \(-0.720938\pi\)
−0.639691 + 0.768632i \(0.720938\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) − 31.1769i − 0.0426497i
\(732\) 0 0
\(733\) 590.000i 0.804911i 0.915439 + 0.402456i \(0.131843\pi\)
−0.915439 + 0.402456i \(0.868157\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 102.000i 0.138399i
\(738\) 0 0
\(739\) 644.323i 0.871885i 0.899975 + 0.435942i \(0.143585\pi\)
−0.899975 + 0.435942i \(0.856415\pi\)
\(740\) 0 0
\(741\) −363.000 −0.489879
\(742\) 0 0
\(743\) −741.318 −0.997736 −0.498868 0.866678i \(-0.666251\pi\)
−0.498868 + 0.866678i \(0.666251\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −218.238 −0.292153
\(748\) 0 0
\(749\) 312.000 0.416555
\(750\) 0 0
\(751\) 907.595i 1.20851i 0.796789 + 0.604257i \(0.206530\pi\)
−0.796789 + 0.604257i \(0.793470\pi\)
\(752\) 0 0
\(753\) 60.0000i 0.0796813i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 841.000i 1.11096i 0.831528 + 0.555482i \(0.187466\pi\)
−0.831528 + 0.555482i \(0.812534\pi\)
\(758\) 0 0
\(759\) 103.923i 0.136921i
\(760\) 0 0
\(761\) 924.000 1.21419 0.607096 0.794629i \(-0.292334\pi\)
0.607096 + 0.794629i \(0.292334\pi\)
\(762\) 0 0
\(763\) 292.717 0.383639
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 419.156 0.546488
\(768\) 0 0
\(769\) −347.000 −0.451235 −0.225618 0.974216i \(-0.572440\pi\)
−0.225618 + 0.974216i \(0.572440\pi\)
\(770\) 0 0
\(771\) 394.908i 0.512202i
\(772\) 0 0
\(773\) 1404.00i 1.81630i 0.418645 + 0.908150i \(0.362505\pi\)
−0.418645 + 0.908150i \(0.637495\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 42.0000i 0.0540541i
\(778\) 0 0
\(779\) − 685.892i − 0.880478i
\(780\) 0 0
\(781\) 312.000 0.399488
\(782\) 0 0
\(783\) 155.885 0.199086
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 43.3013 0.0550207 0.0275103 0.999622i \(-0.491242\pi\)
0.0275103 + 0.999622i \(0.491242\pi\)
\(788\) 0 0
\(789\) −732.000 −0.927757
\(790\) 0 0
\(791\) − 20.7846i − 0.0262764i
\(792\) 0 0
\(793\) 385.000i 0.485498i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 348.000i 0.436637i 0.975878 + 0.218319i \(0.0700572\pi\)
−0.975878 + 0.218319i \(0.929943\pi\)
\(798\) 0 0
\(799\) − 270.200i − 0.338173i
\(800\) 0 0
\(801\) −432.000 −0.539326
\(802\) 0 0
\(803\) 214.774 0.267465
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −467.654 −0.579497
\(808\) 0 0
\(809\) −384.000 −0.474660 −0.237330 0.971429i \(-0.576272\pi\)
−0.237330 + 0.971429i \(0.576272\pi\)
\(810\) 0 0
\(811\) 691.088i 0.852143i 0.904689 + 0.426072i \(0.140103\pi\)
−0.904689 + 0.426072i \(0.859897\pi\)
\(812\) 0 0
\(813\) − 60.0000i − 0.0738007i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 99.0000i 0.121175i
\(818\) 0 0
\(819\) − 57.1577i − 0.0697896i
\(820\) 0 0
\(821\) 462.000 0.562728 0.281364 0.959601i \(-0.409213\pi\)
0.281364 + 0.959601i \(0.409213\pi\)
\(822\) 0 0
\(823\) −614.878 −0.747118 −0.373559 0.927606i \(-0.621863\pi\)
−0.373559 + 0.927606i \(0.621863\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −193.990 −0.234570 −0.117285 0.993098i \(-0.537419\pi\)
−0.117285 + 0.993098i \(0.537419\pi\)
\(828\) 0 0
\(829\) −1606.00 −1.93727 −0.968637 0.248480i \(-0.920069\pi\)
−0.968637 + 0.248480i \(0.920069\pi\)
\(830\) 0 0
\(831\) − 84.8705i − 0.102131i
\(832\) 0 0
\(833\) − 276.000i − 0.331333i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 27.0000i 0.0322581i
\(838\) 0 0
\(839\) − 897.202i − 1.06937i −0.845051 0.534686i \(-0.820430\pi\)
0.845051 0.534686i \(-0.179570\pi\)
\(840\) 0 0
\(841\) 59.0000 0.0701546
\(842\) 0 0
\(843\) 426.084 0.505438
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −188.794 −0.222897
\(848\) 0 0
\(849\) 243.000 0.286219
\(850\) 0 0
\(851\) 242.487i 0.284944i
\(852\) 0 0
\(853\) − 575.000i − 0.674091i −0.941488 0.337046i \(-0.890572\pi\)
0.941488 0.337046i \(-0.109428\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1068.00i 1.24621i 0.782139 + 0.623104i \(0.214129\pi\)
−0.782139 + 0.623104i \(0.785871\pi\)
\(858\) 0 0
\(859\) − 1233.22i − 1.43565i −0.696225 0.717823i \(-0.745139\pi\)
0.696225 0.717823i \(-0.254861\pi\)
\(860\) 0 0
\(861\) 108.000 0.125436
\(862\) 0 0
\(863\) 166.277 0.192673 0.0963365 0.995349i \(-0.469287\pi\)
0.0963365 + 0.995349i \(0.469287\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −438.209 −0.505431
\(868\) 0 0
\(869\) −264.000 −0.303797
\(870\) 0 0
\(871\) − 323.894i − 0.371864i
\(872\) 0 0
\(873\) 543.000i 0.621993i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 731.000i 0.833523i 0.909016 + 0.416762i \(0.136835\pi\)
−0.909016 + 0.416762i \(0.863165\pi\)
\(878\) 0 0
\(879\) 135.100i 0.153697i
\(880\) 0 0
\(881\) 48.0000 0.0544835 0.0272418 0.999629i \(-0.491328\pi\)
0.0272418 + 0.999629i \(0.491328\pi\)
\(882\) 0 0
\(883\) −1037.50 −1.17497 −0.587485 0.809235i \(-0.699882\pi\)
−0.587485 + 0.809235i \(0.699882\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1375.25 1.55045 0.775225 0.631686i \(-0.217637\pi\)
0.775225 + 0.631686i \(0.217637\pi\)
\(888\) 0 0
\(889\) −180.000 −0.202475
\(890\) 0 0
\(891\) − 31.1769i − 0.0349909i
\(892\) 0 0
\(893\) 858.000i 0.960806i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 330.000i − 0.367893i
\(898\) 0 0
\(899\) 155.885i 0.173398i
\(900\) 0 0
\(901\) −432.000 −0.479467
\(902\) 0 0
\(903\) −15.5885 −0.0172630
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1531.13 −1.68813 −0.844064 0.536242i \(-0.819844\pi\)
−0.844064 + 0.536242i \(0.819844\pi\)
\(908\) 0 0
\(909\) −144.000 −0.158416
\(910\) 0 0
\(911\) − 1389.10i − 1.52481i −0.647098 0.762407i \(-0.724018\pi\)
0.647098 0.762407i \(-0.275982\pi\)
\(912\) 0 0
\(913\) 252.000i 0.276013i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 120.000i − 0.130862i
\(918\) 0 0
\(919\) 140.296i 0.152662i 0.997083 + 0.0763309i \(0.0243205\pi\)
−0.997083 + 0.0763309i \(0.975679\pi\)
\(920\) 0 0
\(921\) −351.000 −0.381107
\(922\) 0 0
\(923\) −990.733 −1.07338
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −290.985 −0.313899
\(928\) 0 0
\(929\) −1002.00 −1.07858 −0.539290 0.842120i \(-0.681307\pi\)
−0.539290 + 0.842120i \(0.681307\pi\)
\(930\) 0 0
\(931\) 876.418i 0.941372i
\(932\) 0 0
\(933\) − 642.000i − 0.688103i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 661.000i − 0.705443i −0.935728 0.352721i \(-0.885256\pi\)
0.935728 0.352721i \(-0.114744\pi\)
\(938\) 0 0
\(939\) − 43.3013i − 0.0461142i
\(940\) 0 0
\(941\) 1110.00 1.17960 0.589798 0.807551i \(-0.299207\pi\)
0.589798 + 0.807551i \(0.299207\pi\)
\(942\) 0 0
\(943\) 623.538 0.661228
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1008.05 1.06447 0.532235 0.846597i \(-0.321352\pi\)
0.532235 + 0.846597i \(0.321352\pi\)
\(948\) 0 0
\(949\) −682.000 −0.718651
\(950\) 0 0
\(951\) 1039.23i 1.09278i
\(952\) 0 0
\(953\) − 1680.00i − 1.76285i −0.472320 0.881427i \(-0.656583\pi\)
0.472320 0.881427i \(-0.343417\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 180.000i − 0.188088i
\(958\) 0 0
\(959\) − 93.5307i − 0.0975295i
\(960\) 0 0
\(961\) 934.000 0.971904
\(962\) 0 0
\(963\) −540.400 −0.561163
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −616.610 −0.637653 −0.318826 0.947813i \(-0.603289\pi\)
−0.318826 + 0.947813i \(0.603289\pi\)
\(968\) 0 0
\(969\) −198.000 −0.204334
\(970\) 0 0
\(971\) 308.305i 0.317513i 0.987318 + 0.158756i \(0.0507485\pi\)
−0.987318 + 0.158756i \(0.949252\pi\)
\(972\) 0 0
\(973\) 84.0000i 0.0863309i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1578.00i 1.61515i 0.589766 + 0.807574i \(0.299220\pi\)
−0.589766 + 0.807574i \(0.700780\pi\)
\(978\) 0 0
\(979\) 498.831i 0.509531i
\(980\) 0 0
\(981\) −507.000 −0.516820
\(982\) 0 0
\(983\) −1378.71 −1.40256 −0.701278 0.712888i \(-0.747387\pi\)
−0.701278 + 0.712888i \(0.747387\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −135.100 −0.136879
\(988\) 0 0
\(989\) −90.0000 −0.0910010
\(990\) 0 0
\(991\) − 81.4064i − 0.0821457i −0.999156 0.0410728i \(-0.986922\pi\)
0.999156 0.0410728i \(-0.0130776\pi\)
\(992\) 0 0
\(993\) 708.000i 0.712991i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 34.0000i − 0.0341023i −0.999855 0.0170512i \(-0.994572\pi\)
0.999855 0.0170512i \(-0.00542781\pi\)
\(998\) 0 0
\(999\) − 72.7461i − 0.0728190i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.3.j.c.799.1 4
3.2 odd 2 3600.3.j.h.1999.2 4
4.3 odd 2 inner 1200.3.j.c.799.4 4
5.2 odd 4 1200.3.e.f.751.2 yes 2
5.3 odd 4 1200.3.e.c.751.1 2
5.4 even 2 inner 1200.3.j.c.799.3 4
12.11 even 2 3600.3.j.h.1999.3 4
15.2 even 4 3600.3.e.r.3151.1 2
15.8 even 4 3600.3.e.l.3151.2 2
15.14 odd 2 3600.3.j.h.1999.4 4
20.3 even 4 1200.3.e.c.751.2 yes 2
20.7 even 4 1200.3.e.f.751.1 yes 2
20.19 odd 2 inner 1200.3.j.c.799.2 4
60.23 odd 4 3600.3.e.l.3151.1 2
60.47 odd 4 3600.3.e.r.3151.2 2
60.59 even 2 3600.3.j.h.1999.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1200.3.e.c.751.1 2 5.3 odd 4
1200.3.e.c.751.2 yes 2 20.3 even 4
1200.3.e.f.751.1 yes 2 20.7 even 4
1200.3.e.f.751.2 yes 2 5.2 odd 4
1200.3.j.c.799.1 4 1.1 even 1 trivial
1200.3.j.c.799.2 4 20.19 odd 2 inner
1200.3.j.c.799.3 4 5.4 even 2 inner
1200.3.j.c.799.4 4 4.3 odd 2 inner
3600.3.e.l.3151.1 2 60.23 odd 4
3600.3.e.l.3151.2 2 15.8 even 4
3600.3.e.r.3151.1 2 15.2 even 4
3600.3.e.r.3151.2 2 60.47 odd 4
3600.3.j.h.1999.1 4 60.59 even 2
3600.3.j.h.1999.2 4 3.2 odd 2
3600.3.j.h.1999.3 4 12.11 even 2
3600.3.j.h.1999.4 4 15.14 odd 2