Newspace parameters
Level: | \( N \) | \(=\) | \( 1190 = 2 \cdot 5 \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1190.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.50219784053\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
169.1 | − | 1.00000i | 3.27794 | −1.00000 | 2.02001 | − | 0.958943i | − | 3.27794i | 1.00000 | 1.00000i | 7.74492 | −0.958943 | − | 2.02001i | ||||||||||||
169.2 | 1.00000i | 3.27794 | −1.00000 | 2.02001 | + | 0.958943i | 3.27794i | 1.00000 | − | 1.00000i | 7.74492 | −0.958943 | + | 2.02001i | |||||||||||||
169.3 | − | 1.00000i | −2.81638 | −1.00000 | 1.66117 | + | 1.49684i | 2.81638i | 1.00000 | 1.00000i | 4.93199 | 1.49684 | − | 1.66117i | |||||||||||||
169.4 | 1.00000i | −2.81638 | −1.00000 | 1.66117 | − | 1.49684i | − | 2.81638i | 1.00000 | − | 1.00000i | 4.93199 | 1.49684 | + | 1.66117i | ||||||||||||
169.5 | − | 1.00000i | 1.54175 | −1.00000 | 1.31588 | − | 1.80789i | − | 1.54175i | 1.00000 | 1.00000i | −0.623005 | −1.80789 | − | 1.31588i | ||||||||||||
169.6 | 1.00000i | 1.54175 | −1.00000 | 1.31588 | + | 1.80789i | 1.54175i | 1.00000 | − | 1.00000i | −0.623005 | −1.80789 | + | 1.31588i | |||||||||||||
169.7 | − | 1.00000i | −1.62649 | −1.00000 | 2.16676 | + | 0.552397i | 1.62649i | 1.00000 | 1.00000i | −0.354542 | 0.552397 | − | 2.16676i | |||||||||||||
169.8 | 1.00000i | −1.62649 | −1.00000 | 2.16676 | − | 0.552397i | − | 1.62649i | 1.00000 | − | 1.00000i | −0.354542 | 0.552397 | + | 2.16676i | ||||||||||||
169.9 | − | 1.00000i | 3.07161 | −1.00000 | −1.96828 | + | 1.06107i | − | 3.07161i | 1.00000 | 1.00000i | 6.43479 | 1.06107 | + | 1.96828i | ||||||||||||
169.10 | 1.00000i | 3.07161 | −1.00000 | −1.96828 | − | 1.06107i | 3.07161i | 1.00000 | − | 1.00000i | 6.43479 | 1.06107 | − | 1.96828i | |||||||||||||
169.11 | − | 1.00000i | −0.129014 | −1.00000 | 2.23581 | − | 0.0342441i | 0.129014i | 1.00000 | 1.00000i | −2.98336 | −0.0342441 | − | 2.23581i | |||||||||||||
169.12 | 1.00000i | −0.129014 | −1.00000 | 2.23581 | + | 0.0342441i | − | 0.129014i | 1.00000 | − | 1.00000i | −2.98336 | −0.0342441 | + | 2.23581i | ||||||||||||
169.13 | − | 1.00000i | 1.13790 | −1.00000 | −1.14870 | + | 1.91846i | − | 1.13790i | 1.00000 | 1.00000i | −1.70517 | 1.91846 | + | 1.14870i | ||||||||||||
169.14 | 1.00000i | 1.13790 | −1.00000 | −1.14870 | − | 1.91846i | 1.13790i | 1.00000 | − | 1.00000i | −1.70517 | 1.91846 | − | 1.14870i | |||||||||||||
169.15 | − | 1.00000i | −1.27851 | −1.00000 | 0.138084 | − | 2.23180i | 1.27851i | 1.00000 | 1.00000i | −1.36542 | −2.23180 | − | 0.138084i | |||||||||||||
169.16 | 1.00000i | −1.27851 | −1.00000 | 0.138084 | + | 2.23180i | − | 1.27851i | 1.00000 | − | 1.00000i | −1.36542 | −2.23180 | + | 0.138084i | ||||||||||||
169.17 | − | 1.00000i | −0.432187 | −1.00000 | −1.67673 | + | 1.47938i | 0.432187i | 1.00000 | 1.00000i | −2.81321 | 1.47938 | + | 1.67673i | |||||||||||||
169.18 | 1.00000i | −0.432187 | −1.00000 | −1.67673 | − | 1.47938i | − | 0.432187i | 1.00000 | − | 1.00000i | −2.81321 | 1.47938 | − | 1.67673i | ||||||||||||
169.19 | − | 1.00000i | −1.19927 | −1.00000 | −2.22599 | + | 0.212063i | 1.19927i | 1.00000 | 1.00000i | −1.56176 | 0.212063 | + | 2.22599i | |||||||||||||
169.20 | 1.00000i | −1.19927 | −1.00000 | −2.22599 | − | 0.212063i | − | 1.19927i | 1.00000 | − | 1.00000i | −1.56176 | 0.212063 | − | 2.22599i | ||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
85.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1190.2.g.d | yes | 24 |
5.b | even | 2 | 1 | 1190.2.g.c | ✓ | 24 | |
17.b | even | 2 | 1 | 1190.2.g.c | ✓ | 24 | |
85.c | even | 2 | 1 | inner | 1190.2.g.d | yes | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1190.2.g.c | ✓ | 24 | 5.b | even | 2 | 1 | |
1190.2.g.c | ✓ | 24 | 17.b | even | 2 | 1 | |
1190.2.g.d | yes | 24 | 1.a | even | 1 | 1 | trivial |
1190.2.g.d | yes | 24 | 85.c | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{12} - 5 T_{3}^{11} - 10 T_{3}^{10} + 73 T_{3}^{9} + 9 T_{3}^{8} - 340 T_{3}^{7} + 80 T_{3}^{6} + \cdots + 16 \)
acting on \(S_{2}^{\mathrm{new}}(1190, [\chi])\).