Defining parameters
Level: | \( N \) | \(=\) | \( 1190 = 2 \cdot 5 \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1190.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 85 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(432\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1190, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 224 | 56 | 168 |
Cusp forms | 208 | 56 | 152 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1190, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1190.2.g.a | $4$ | $9.502$ | \(\Q(i, \sqrt{21})\) | None | \(0\) | \(-2\) | \(-4\) | \(4\) | \(q+\beta _{2}q^{2}+(-1+\beta _{3})q^{3}-q^{4}+(-1+\cdots)q^{5}+\cdots\) |
1190.2.g.b | $4$ | $9.502$ | \(\Q(i, \sqrt{21})\) | None | \(0\) | \(2\) | \(4\) | \(-4\) | \(q+\beta _{2}q^{2}+(1-\beta _{3})q^{3}-q^{4}+(1-2\beta _{2}+\cdots)q^{5}+\cdots\) |
1190.2.g.c | $24$ | $9.502$ | None | \(0\) | \(-10\) | \(-4\) | \(-24\) | ||
1190.2.g.d | $24$ | $9.502$ | None | \(0\) | \(10\) | \(4\) | \(24\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1190, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1190, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(595, [\chi])\)\(^{\oplus 2}\)