Properties

Label 1190.2.g
Level $1190$
Weight $2$
Character orbit 1190.g
Rep. character $\chi_{1190}(169,\cdot)$
Character field $\Q$
Dimension $56$
Newform subspaces $4$
Sturm bound $432$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1190 = 2 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1190.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(432\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1190, [\chi])\).

Total New Old
Modular forms 224 56 168
Cusp forms 208 56 152
Eisenstein series 16 0 16

Trace form

\( 56 q - 56 q^{4} + 56 q^{9} - 8 q^{15} + 56 q^{16} + 16 q^{19} + 16 q^{21} + 8 q^{25} - 16 q^{26} + 8 q^{30} + 8 q^{34} - 56 q^{36} + 56 q^{49} - 56 q^{51} + 32 q^{55} + 80 q^{59} + 8 q^{60} - 56 q^{64}+ \cdots - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1190, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1190.2.g.a 1190.g 85.c $4$ $9.502$ \(\Q(i, \sqrt{21})\) None 1190.2.g.a \(0\) \(-2\) \(-4\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(-1+\beta _{3})q^{3}-q^{4}+(-1+\cdots)q^{5}+\cdots\)
1190.2.g.b 1190.g 85.c $4$ $9.502$ \(\Q(i, \sqrt{21})\) None 1190.2.g.a \(0\) \(2\) \(4\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(1-\beta _{3})q^{3}-q^{4}+(1-2\beta _{2}+\cdots)q^{5}+\cdots\)
1190.2.g.c 1190.g 85.c $24$ $9.502$ None 1190.2.g.c \(0\) \(-10\) \(-4\) \(-24\) $\mathrm{SU}(2)[C_{2}]$
1190.2.g.d 1190.g 85.c $24$ $9.502$ None 1190.2.g.c \(0\) \(10\) \(4\) \(24\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1190, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1190, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(595, [\chi])\)\(^{\oplus 2}\)