L(s) = 1 | + i·2-s + 2.54·3-s − 4-s + (0.885 − 2.05i)5-s + 2.54i·6-s + 7-s − i·8-s + 3.46·9-s + (2.05 + 0.885i)10-s + 6.12i·11-s − 2.54·12-s + 4.24i·13-s + i·14-s + (2.25 − 5.22i)15-s + 16-s + (1.24 − 3.93i)17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.46·3-s − 0.5·4-s + (0.396 − 0.918i)5-s + 1.03i·6-s + 0.377·7-s − 0.353i·8-s + 1.15·9-s + (0.649 + 0.280i)10-s + 1.84i·11-s − 0.734·12-s + 1.17i·13-s + 0.267i·14-s + (0.581 − 1.34i)15-s + 0.250·16-s + (0.301 − 0.953i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.654 - 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.654 - 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.908871574\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.908871574\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 + (-0.885 + 2.05i)T \) |
| 7 | \( 1 - T \) |
| 17 | \( 1 + (-1.24 + 3.93i)T \) |
good | 3 | \( 1 - 2.54T + 3T^{2} \) |
| 11 | \( 1 - 6.12iT - 11T^{2} \) |
| 13 | \( 1 - 4.24iT - 13T^{2} \) |
| 19 | \( 1 - 5.07T + 19T^{2} \) |
| 23 | \( 1 + 1.01T + 23T^{2} \) |
| 29 | \( 1 + 1.11iT - 29T^{2} \) |
| 31 | \( 1 - 1.09iT - 31T^{2} \) |
| 37 | \( 1 - 4.53T + 37T^{2} \) |
| 41 | \( 1 + 6.80iT - 41T^{2} \) |
| 43 | \( 1 + 2.75iT - 43T^{2} \) |
| 47 | \( 1 - 1.36iT - 47T^{2} \) |
| 53 | \( 1 + 4.45iT - 53T^{2} \) |
| 59 | \( 1 - 5.67T + 59T^{2} \) |
| 61 | \( 1 + 2.35iT - 61T^{2} \) |
| 67 | \( 1 - 14.1iT - 67T^{2} \) |
| 71 | \( 1 + 4.93iT - 71T^{2} \) |
| 73 | \( 1 + 12.4T + 73T^{2} \) |
| 79 | \( 1 + 7.44iT - 79T^{2} \) |
| 83 | \( 1 - 9.94iT - 83T^{2} \) |
| 89 | \( 1 - 1.94T + 89T^{2} \) |
| 97 | \( 1 - 7.31T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.507275899346181167072907763284, −9.100905493583890506709092670876, −8.244238237795706359770210399088, −7.45081707106556036193291147812, −6.96170763515691532110485754908, −5.48447447492601905800472030854, −4.65263774233056219722045289458, −3.98121356031656348623885656465, −2.47050931356630234373368242223, −1.54576230917631787977254073052,
1.28535262006922797793843464549, 2.66288607268351107539257268301, 3.16313395148615418007864960068, 3.81936823916714132051560083319, 5.43518504572116776845865848532, 6.18592521978801117529264073828, 7.68986681216966503218158459871, 8.056037774372817790215873712142, 8.851276988781979483029606191707, 9.674818255406348278187405567168