Properties

Label 1190.2.e.g.239.12
Level $1190$
Weight $2$
Character 1190.239
Analytic conductor $9.502$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1190,2,Mod(239,1190)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1190.239"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1190 = 2 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1190.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-14,-2,-4,0,0,-14,4,-14,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.50219784053\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 28x^{12} + 292x^{10} + 1457x^{8} + 3664x^{6} + 4360x^{4} + 1856x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 239.12
Root \(1.58141i\) of defining polynomial
Character \(\chi\) \(=\) 1190.239
Dual form 1190.2.e.g.239.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.58141i q^{3} -1.00000 q^{4} +(-2.13915 - 0.651165i) q^{5} -1.58141 q^{6} -1.00000i q^{7} -1.00000i q^{8} +0.499141 q^{9} +(0.651165 - 2.13915i) q^{10} +2.47946 q^{11} -1.58141i q^{12} -1.48483i q^{13} +1.00000 q^{14} +(1.02976 - 3.38288i) q^{15} +1.00000 q^{16} -1.00000i q^{17} +0.499141i q^{18} +4.85321 q^{19} +(2.13915 + 0.651165i) q^{20} +1.58141 q^{21} +2.47946i q^{22} -4.11626i q^{23} +1.58141 q^{24} +(4.15197 + 2.78589i) q^{25} +1.48483 q^{26} +5.53358i q^{27} +1.00000i q^{28} +3.24982 q^{29} +(3.38288 + 1.02976i) q^{30} -4.93212 q^{31} +1.00000i q^{32} +3.92105i q^{33} +1.00000 q^{34} +(-0.651165 + 2.13915i) q^{35} -0.499141 q^{36} -8.92252i q^{37} +4.85321i q^{38} +2.34812 q^{39} +(-0.651165 + 2.13915i) q^{40} +9.41904 q^{41} +1.58141i q^{42} +10.3912i q^{43} -2.47946 q^{44} +(-1.06774 - 0.325023i) q^{45} +4.11626 q^{46} +8.26867i q^{47} +1.58141i q^{48} -1.00000 q^{49} +(-2.78589 + 4.15197i) q^{50} +1.58141 q^{51} +1.48483i q^{52} +4.09224i q^{53} -5.53358 q^{54} +(-5.30396 - 1.61454i) q^{55} -1.00000 q^{56} +7.67492i q^{57} +3.24982i q^{58} -9.51108 q^{59} +(-1.02976 + 3.38288i) q^{60} +9.86895 q^{61} -4.93212i q^{62} -0.499141i q^{63} -1.00000 q^{64} +(-0.966869 + 3.17628i) q^{65} -3.92105 q^{66} -15.8048i q^{67} +1.00000i q^{68} +6.50950 q^{69} +(-2.13915 - 0.651165i) q^{70} +11.7828 q^{71} -0.499141i q^{72} +10.4393i q^{73} +8.92252 q^{74} +(-4.40563 + 6.56596i) q^{75} -4.85321 q^{76} -2.47946i q^{77} +2.34812i q^{78} +15.7552 q^{79} +(-2.13915 - 0.651165i) q^{80} -7.25344 q^{81} +9.41904i q^{82} +16.9990i q^{83} -1.58141 q^{84} +(-0.651165 + 2.13915i) q^{85} -10.3912 q^{86} +5.13930i q^{87} -2.47946i q^{88} -15.3955 q^{89} +(0.325023 - 1.06774i) q^{90} -1.48483 q^{91} +4.11626i q^{92} -7.79970i q^{93} -8.26867 q^{94} +(-10.3818 - 3.16024i) q^{95} -1.58141 q^{96} -14.0489i q^{97} -1.00000i q^{98} +1.23760 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{4} - 2 q^{5} - 4 q^{6} - 14 q^{9} + 4 q^{10} - 14 q^{11} + 14 q^{14} + 2 q^{15} + 14 q^{16} + 4 q^{19} + 2 q^{20} + 4 q^{21} + 4 q^{24} + 14 q^{25} + 2 q^{26} + 20 q^{29} - 2 q^{30} - 36 q^{31}+ \cdots + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1190\mathbb{Z}\right)^\times\).

\(n\) \(71\) \(171\) \(477\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.58141i 0.913028i 0.889716 + 0.456514i \(0.150902\pi\)
−0.889716 + 0.456514i \(0.849098\pi\)
\(4\) −1.00000 −0.500000
\(5\) −2.13915 0.651165i −0.956659 0.291210i
\(6\) −1.58141 −0.645608
\(7\) 1.00000i 0.377964i
\(8\) 1.00000i 0.353553i
\(9\) 0.499141 0.166380
\(10\) 0.651165 2.13915i 0.205917 0.676460i
\(11\) 2.47946 0.747587 0.373793 0.927512i \(-0.378057\pi\)
0.373793 + 0.927512i \(0.378057\pi\)
\(12\) 1.58141i 0.456514i
\(13\) 1.48483i 0.411817i −0.978571 0.205909i \(-0.933985\pi\)
0.978571 0.205909i \(-0.0660150\pi\)
\(14\) 1.00000 0.267261
\(15\) 1.02976 3.38288i 0.265883 0.873456i
\(16\) 1.00000 0.250000
\(17\) 1.00000i 0.242536i
\(18\) 0.499141i 0.117649i
\(19\) 4.85321 1.11340 0.556702 0.830713i \(-0.312067\pi\)
0.556702 + 0.830713i \(0.312067\pi\)
\(20\) 2.13915 + 0.651165i 0.478330 + 0.145605i
\(21\) 1.58141 0.345092
\(22\) 2.47946i 0.528624i
\(23\) 4.11626i 0.858299i −0.903233 0.429150i \(-0.858813\pi\)
0.903233 0.429150i \(-0.141187\pi\)
\(24\) 1.58141 0.322804
\(25\) 4.15197 + 2.78589i 0.830393 + 0.557178i
\(26\) 1.48483 0.291199
\(27\) 5.53358i 1.06494i
\(28\) 1.00000i 0.188982i
\(29\) 3.24982 0.603477 0.301738 0.953391i \(-0.402433\pi\)
0.301738 + 0.953391i \(0.402433\pi\)
\(30\) 3.38288 + 1.02976i 0.617627 + 0.188008i
\(31\) −4.93212 −0.885834 −0.442917 0.896563i \(-0.646056\pi\)
−0.442917 + 0.896563i \(0.646056\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 3.92105i 0.682568i
\(34\) 1.00000 0.171499
\(35\) −0.651165 + 2.13915i −0.110067 + 0.361583i
\(36\) −0.499141 −0.0831901
\(37\) 8.92252i 1.46685i −0.679768 0.733427i \(-0.737920\pi\)
0.679768 0.733427i \(-0.262080\pi\)
\(38\) 4.85321i 0.787295i
\(39\) 2.34812 0.376001
\(40\) −0.651165 + 2.13915i −0.102958 + 0.338230i
\(41\) 9.41904 1.47101 0.735503 0.677521i \(-0.236946\pi\)
0.735503 + 0.677521i \(0.236946\pi\)
\(42\) 1.58141i 0.244017i
\(43\) 10.3912i 1.58465i 0.610099 + 0.792325i \(0.291130\pi\)
−0.610099 + 0.792325i \(0.708870\pi\)
\(44\) −2.47946 −0.373793
\(45\) −1.06774 0.325023i −0.159169 0.0484516i
\(46\) 4.11626 0.606909
\(47\) 8.26867i 1.20611i 0.797700 + 0.603055i \(0.206050\pi\)
−0.797700 + 0.603055i \(0.793950\pi\)
\(48\) 1.58141i 0.228257i
\(49\) −1.00000 −0.142857
\(50\) −2.78589 + 4.15197i −0.393984 + 0.587177i
\(51\) 1.58141 0.221442
\(52\) 1.48483i 0.205909i
\(53\) 4.09224i 0.562112i 0.959691 + 0.281056i \(0.0906847\pi\)
−0.959691 + 0.281056i \(0.909315\pi\)
\(54\) −5.53358 −0.753025
\(55\) −5.30396 1.61454i −0.715186 0.217705i
\(56\) −1.00000 −0.133631
\(57\) 7.67492i 1.01657i
\(58\) 3.24982i 0.426722i
\(59\) −9.51108 −1.23824 −0.619119 0.785297i \(-0.712510\pi\)
−0.619119 + 0.785297i \(0.712510\pi\)
\(60\) −1.02976 + 3.38288i −0.132941 + 0.436728i
\(61\) 9.86895 1.26359 0.631795 0.775136i \(-0.282318\pi\)
0.631795 + 0.775136i \(0.282318\pi\)
\(62\) 4.93212i 0.626379i
\(63\) 0.499141i 0.0628858i
\(64\) −1.00000 −0.125000
\(65\) −0.966869 + 3.17628i −0.119925 + 0.393969i
\(66\) −3.92105 −0.482648
\(67\) 15.8048i 1.93086i −0.260657 0.965431i \(-0.583939\pi\)
0.260657 0.965431i \(-0.416061\pi\)
\(68\) 1.00000i 0.121268i
\(69\) 6.50950 0.783651
\(70\) −2.13915 0.651165i −0.255678 0.0778292i
\(71\) 11.7828 1.39836 0.699181 0.714944i \(-0.253548\pi\)
0.699181 + 0.714944i \(0.253548\pi\)
\(72\) 0.499141i 0.0588243i
\(73\) 10.4393i 1.22183i 0.791697 + 0.610914i \(0.209198\pi\)
−0.791697 + 0.610914i \(0.790802\pi\)
\(74\) 8.92252 1.03722
\(75\) −4.40563 + 6.56596i −0.508719 + 0.758172i
\(76\) −4.85321 −0.556702
\(77\) 2.47946i 0.282561i
\(78\) 2.34812i 0.265873i
\(79\) 15.7552 1.77260 0.886298 0.463115i \(-0.153268\pi\)
0.886298 + 0.463115i \(0.153268\pi\)
\(80\) −2.13915 0.651165i −0.239165 0.0728025i
\(81\) −7.25344 −0.805937
\(82\) 9.41904i 1.04016i
\(83\) 16.9990i 1.86588i 0.360032 + 0.932940i \(0.382766\pi\)
−0.360032 + 0.932940i \(0.617234\pi\)
\(84\) −1.58141 −0.172546
\(85\) −0.651165 + 2.13915i −0.0706288 + 0.232024i
\(86\) −10.3912 −1.12052
\(87\) 5.13930i 0.550991i
\(88\) 2.47946i 0.264312i
\(89\) −15.3955 −1.63192 −0.815961 0.578107i \(-0.803792\pi\)
−0.815961 + 0.578107i \(0.803792\pi\)
\(90\) 0.325023 1.06774i 0.0342604 0.112550i
\(91\) −1.48483 −0.155652
\(92\) 4.11626i 0.429150i
\(93\) 7.79970i 0.808791i
\(94\) −8.26867 −0.852849
\(95\) −10.3818 3.16024i −1.06515 0.324234i
\(96\) −1.58141 −0.161402
\(97\) 14.0489i 1.42645i −0.700933 0.713227i \(-0.747233\pi\)
0.700933 0.713227i \(-0.252767\pi\)
\(98\) 1.00000i 0.101015i
\(99\) 1.23760 0.124384
\(100\) −4.15197 2.78589i −0.415197 0.278589i
\(101\) 8.31807 0.827679 0.413840 0.910350i \(-0.364187\pi\)
0.413840 + 0.910350i \(0.364187\pi\)
\(102\) 1.58141i 0.156583i
\(103\) 16.1282i 1.58915i −0.607163 0.794577i \(-0.707693\pi\)
0.607163 0.794577i \(-0.292307\pi\)
\(104\) −1.48483 −0.145599
\(105\) −3.38288 1.02976i −0.330135 0.100494i
\(106\) −4.09224 −0.397473
\(107\) 2.19983i 0.212665i 0.994331 + 0.106333i \(0.0339108\pi\)
−0.994331 + 0.106333i \(0.966089\pi\)
\(108\) 5.53358i 0.532469i
\(109\) 4.13495 0.396057 0.198028 0.980196i \(-0.436546\pi\)
0.198028 + 0.980196i \(0.436546\pi\)
\(110\) 1.61454 5.30396i 0.153941 0.505713i
\(111\) 14.1102 1.33928
\(112\) 1.00000i 0.0944911i
\(113\) 3.67558i 0.345769i −0.984942 0.172885i \(-0.944691\pi\)
0.984942 0.172885i \(-0.0553088\pi\)
\(114\) −7.67492 −0.718822
\(115\) −2.68037 + 8.80532i −0.249945 + 0.821100i
\(116\) −3.24982 −0.301738
\(117\) 0.741138i 0.0685182i
\(118\) 9.51108i 0.875566i
\(119\) −1.00000 −0.0916698
\(120\) −3.38288 1.02976i −0.308813 0.0940038i
\(121\) −4.85225 −0.441114
\(122\) 9.86895i 0.893493i
\(123\) 14.8954i 1.34307i
\(124\) 4.93212 0.442917
\(125\) −7.06763 8.66306i −0.632148 0.774848i
\(126\) 0.499141 0.0444670
\(127\) 0.539711i 0.0478916i 0.999713 + 0.0239458i \(0.00762291\pi\)
−0.999713 + 0.0239458i \(0.992377\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −16.4328 −1.44683
\(130\) −3.17628 0.966869i −0.278578 0.0848000i
\(131\) −8.07474 −0.705493 −0.352747 0.935719i \(-0.614752\pi\)
−0.352747 + 0.935719i \(0.614752\pi\)
\(132\) 3.92105i 0.341284i
\(133\) 4.85321i 0.420827i
\(134\) 15.8048 1.36533
\(135\) 3.60327 11.8372i 0.310121 1.01878i
\(136\) −1.00000 −0.0857493
\(137\) 10.1767i 0.869451i −0.900563 0.434725i \(-0.856845\pi\)
0.900563 0.434725i \(-0.143155\pi\)
\(138\) 6.50950i 0.554125i
\(139\) 17.9150 1.51953 0.759767 0.650196i \(-0.225313\pi\)
0.759767 + 0.650196i \(0.225313\pi\)
\(140\) 0.651165 2.13915i 0.0550335 0.180792i
\(141\) −13.0762 −1.10121
\(142\) 11.7828i 0.988792i
\(143\) 3.68158i 0.307869i
\(144\) 0.499141 0.0415950
\(145\) −6.95187 2.11617i −0.577321 0.175738i
\(146\) −10.4393 −0.863963
\(147\) 1.58141i 0.130433i
\(148\) 8.92252i 0.733427i
\(149\) 5.62465 0.460789 0.230395 0.973097i \(-0.425998\pi\)
0.230395 + 0.973097i \(0.425998\pi\)
\(150\) −6.56596 4.40563i −0.536109 0.359718i
\(151\) 17.0093 1.38419 0.692097 0.721805i \(-0.256687\pi\)
0.692097 + 0.721805i \(0.256687\pi\)
\(152\) 4.85321i 0.393647i
\(153\) 0.499141i 0.0403531i
\(154\) 2.47946 0.199801
\(155\) 10.5506 + 3.21162i 0.847441 + 0.257964i
\(156\) −2.34812 −0.188000
\(157\) 8.76768i 0.699737i −0.936799 0.349869i \(-0.886226\pi\)
0.936799 0.349869i \(-0.113774\pi\)
\(158\) 15.7552i 1.25341i
\(159\) −6.47151 −0.513224
\(160\) 0.651165 2.13915i 0.0514792 0.169115i
\(161\) −4.11626 −0.324407
\(162\) 7.25344i 0.569884i
\(163\) 15.9342i 1.24807i 0.781398 + 0.624033i \(0.214507\pi\)
−0.781398 + 0.624033i \(0.785493\pi\)
\(164\) −9.41904 −0.735503
\(165\) 2.55325 8.38774i 0.198771 0.652984i
\(166\) −16.9990 −1.31938
\(167\) 5.93877i 0.459555i −0.973243 0.229778i \(-0.926200\pi\)
0.973243 0.229778i \(-0.0737999\pi\)
\(168\) 1.58141i 0.122008i
\(169\) 10.7953 0.830407
\(170\) −2.13915 0.651165i −0.164066 0.0499421i
\(171\) 2.42243 0.185248
\(172\) 10.3912i 0.792325i
\(173\) 19.9065i 1.51346i 0.653726 + 0.756731i \(0.273205\pi\)
−0.653726 + 0.756731i \(0.726795\pi\)
\(174\) −5.13930 −0.389609
\(175\) 2.78589 4.15197i 0.210593 0.313859i
\(176\) 2.47946 0.186897
\(177\) 15.0409i 1.13055i
\(178\) 15.3955i 1.15394i
\(179\) 13.0850 0.978021 0.489011 0.872278i \(-0.337358\pi\)
0.489011 + 0.872278i \(0.337358\pi\)
\(180\) 1.06774 + 0.325023i 0.0795846 + 0.0242258i
\(181\) 5.13376 0.381589 0.190795 0.981630i \(-0.438894\pi\)
0.190795 + 0.981630i \(0.438894\pi\)
\(182\) 1.48483i 0.110063i
\(183\) 15.6069i 1.15369i
\(184\) −4.11626 −0.303455
\(185\) −5.81004 + 19.0867i −0.427163 + 1.40328i
\(186\) 7.79970 0.571902
\(187\) 2.47946i 0.181316i
\(188\) 8.26867i 0.603055i
\(189\) 5.53358 0.402509
\(190\) 3.16024 10.3818i 0.229268 0.753173i
\(191\) −19.5123 −1.41186 −0.705932 0.708280i \(-0.749471\pi\)
−0.705932 + 0.708280i \(0.749471\pi\)
\(192\) 1.58141i 0.114128i
\(193\) 2.08248i 0.149900i 0.997187 + 0.0749501i \(0.0238797\pi\)
−0.997187 + 0.0749501i \(0.976120\pi\)
\(194\) 14.0489 1.00865
\(195\) −5.02300 1.52902i −0.359704 0.109495i
\(196\) 1.00000 0.0714286
\(197\) 6.86555i 0.489150i 0.969630 + 0.244575i \(0.0786484\pi\)
−0.969630 + 0.244575i \(0.921352\pi\)
\(198\) 1.23760i 0.0879525i
\(199\) 7.97203 0.565122 0.282561 0.959249i \(-0.408816\pi\)
0.282561 + 0.959249i \(0.408816\pi\)
\(200\) 2.78589 4.15197i 0.196992 0.293588i
\(201\) 24.9939 1.76293
\(202\) 8.31807i 0.585258i
\(203\) 3.24982i 0.228093i
\(204\) −1.58141 −0.110721
\(205\) −20.1488 6.13335i −1.40725 0.428372i
\(206\) 16.1282 1.12370
\(207\) 2.05459i 0.142804i
\(208\) 1.48483i 0.102954i
\(209\) 12.0334 0.832365
\(210\) 1.02976 3.38288i 0.0710602 0.233441i
\(211\) 9.87489 0.679815 0.339908 0.940459i \(-0.389604\pi\)
0.339908 + 0.940459i \(0.389604\pi\)
\(212\) 4.09224i 0.281056i
\(213\) 18.6335i 1.27674i
\(214\) −2.19983 −0.150377
\(215\) 6.76642 22.2285i 0.461466 1.51597i
\(216\) 5.53358 0.376512
\(217\) 4.93212i 0.334814i
\(218\) 4.13495i 0.280054i
\(219\) −16.5088 −1.11556
\(220\) 5.30396 + 1.61454i 0.357593 + 0.108852i
\(221\) −1.48483 −0.0998803
\(222\) 14.1102i 0.947013i
\(223\) 0.615959i 0.0412477i 0.999787 + 0.0206238i \(0.00656524\pi\)
−0.999787 + 0.0206238i \(0.993435\pi\)
\(224\) 1.00000 0.0668153
\(225\) 2.07242 + 1.39055i 0.138161 + 0.0927033i
\(226\) 3.67558 0.244496
\(227\) 13.0080i 0.863370i −0.902025 0.431685i \(-0.857919\pi\)
0.902025 0.431685i \(-0.142081\pi\)
\(228\) 7.67492i 0.508284i
\(229\) −16.7881 −1.10939 −0.554695 0.832054i \(-0.687165\pi\)
−0.554695 + 0.832054i \(0.687165\pi\)
\(230\) −8.80532 2.68037i −0.580605 0.176738i
\(231\) 3.92105 0.257986
\(232\) 3.24982i 0.213361i
\(233\) 7.50071i 0.491388i −0.969347 0.245694i \(-0.920984\pi\)
0.969347 0.245694i \(-0.0790158\pi\)
\(234\) 0.741138 0.0484497
\(235\) 5.38428 17.6880i 0.351231 1.15384i
\(236\) 9.51108 0.619119
\(237\) 24.9154i 1.61843i
\(238\) 1.00000i 0.0648204i
\(239\) 7.82561 0.506196 0.253098 0.967441i \(-0.418550\pi\)
0.253098 + 0.967441i \(0.418550\pi\)
\(240\) 1.02976 3.38288i 0.0664707 0.218364i
\(241\) −22.5508 −1.45263 −0.726313 0.687364i \(-0.758768\pi\)
−0.726313 + 0.687364i \(0.758768\pi\)
\(242\) 4.85225i 0.311915i
\(243\) 5.13007i 0.329094i
\(244\) −9.86895 −0.631795
\(245\) 2.13915 + 0.651165i 0.136666 + 0.0416014i
\(246\) −14.8954 −0.949694
\(247\) 7.20618i 0.458519i
\(248\) 4.93212i 0.313190i
\(249\) −26.8824 −1.70360
\(250\) 8.66306 7.06763i 0.547900 0.446996i
\(251\) 28.6256 1.80683 0.903417 0.428764i \(-0.141051\pi\)
0.903417 + 0.428764i \(0.141051\pi\)
\(252\) 0.499141i 0.0314429i
\(253\) 10.2061i 0.641653i
\(254\) −0.539711 −0.0338645
\(255\) −3.38288 1.02976i −0.211844 0.0644861i
\(256\) 1.00000 0.0625000
\(257\) 9.67057i 0.603233i 0.953429 + 0.301617i \(0.0975263\pi\)
−0.953429 + 0.301617i \(0.902474\pi\)
\(258\) 16.4328i 1.02306i
\(259\) −8.92252 −0.554419
\(260\) 0.966869 3.17628i 0.0599626 0.196984i
\(261\) 1.62212 0.100407
\(262\) 8.07474i 0.498859i
\(263\) 10.5324i 0.649457i 0.945807 + 0.324728i \(0.105273\pi\)
−0.945807 + 0.324728i \(0.894727\pi\)
\(264\) 3.92105 0.241324
\(265\) 2.66472 8.75393i 0.163693 0.537750i
\(266\) 4.85321 0.297569
\(267\) 24.3466i 1.48999i
\(268\) 15.8048i 0.965431i
\(269\) 9.77949 0.596266 0.298133 0.954524i \(-0.403636\pi\)
0.298133 + 0.954524i \(0.403636\pi\)
\(270\) 11.8372 + 3.60327i 0.720388 + 0.219288i
\(271\) −18.7381 −1.13826 −0.569130 0.822247i \(-0.692720\pi\)
−0.569130 + 0.822247i \(0.692720\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 2.34812i 0.142115i
\(274\) 10.1767 0.614795
\(275\) 10.2947 + 6.90751i 0.620791 + 0.416539i
\(276\) −6.50950 −0.391826
\(277\) 18.3954i 1.10527i −0.833422 0.552637i \(-0.813622\pi\)
0.833422 0.552637i \(-0.186378\pi\)
\(278\) 17.9150i 1.07447i
\(279\) −2.46182 −0.147385
\(280\) 2.13915 + 0.651165i 0.127839 + 0.0389146i
\(281\) −15.4172 −0.919711 −0.459855 0.887994i \(-0.652099\pi\)
−0.459855 + 0.887994i \(0.652099\pi\)
\(282\) 13.0762i 0.778675i
\(283\) 3.20689i 0.190630i −0.995447 0.0953150i \(-0.969614\pi\)
0.995447 0.0953150i \(-0.0303858\pi\)
\(284\) −11.7828 −0.699181
\(285\) 4.99764 16.4178i 0.296035 0.972509i
\(286\) 3.68158 0.217696
\(287\) 9.41904i 0.555988i
\(288\) 0.499141i 0.0294121i
\(289\) −1.00000 −0.0588235
\(290\) 2.11617 6.95187i 0.124266 0.408228i
\(291\) 22.2171 1.30239
\(292\) 10.4393i 0.610914i
\(293\) 0.379629i 0.0221782i −0.999939 0.0110891i \(-0.996470\pi\)
0.999939 0.0110891i \(-0.00352983\pi\)
\(294\) 1.58141 0.0922297
\(295\) 20.3457 + 6.19329i 1.18457 + 0.360587i
\(296\) −8.92252 −0.518611
\(297\) 13.7203i 0.796133i
\(298\) 5.62465i 0.325827i
\(299\) −6.11194 −0.353462
\(300\) 4.40563 6.56596i 0.254359 0.379086i
\(301\) 10.3912 0.598942
\(302\) 17.0093i 0.978773i
\(303\) 13.1543i 0.755694i
\(304\) 4.85321 0.278351
\(305\) −21.1112 6.42632i −1.20882 0.367970i
\(306\) 0.499141 0.0285340
\(307\) 5.97695i 0.341123i −0.985347 0.170561i \(-0.945442\pi\)
0.985347 0.170561i \(-0.0545581\pi\)
\(308\) 2.47946i 0.141281i
\(309\) 25.5052 1.45094
\(310\) −3.21162 + 10.5506i −0.182408 + 0.599232i
\(311\) −30.5004 −1.72952 −0.864759 0.502188i \(-0.832529\pi\)
−0.864759 + 0.502188i \(0.832529\pi\)
\(312\) 2.34812i 0.132936i
\(313\) 20.5359i 1.16076i −0.814347 0.580378i \(-0.802905\pi\)
0.814347 0.580378i \(-0.197095\pi\)
\(314\) 8.76768 0.494789
\(315\) −0.325023 + 1.06774i −0.0183130 + 0.0601603i
\(316\) −15.7552 −0.886298
\(317\) 9.79660i 0.550232i −0.961411 0.275116i \(-0.911284\pi\)
0.961411 0.275116i \(-0.0887162\pi\)
\(318\) 6.47151i 0.362904i
\(319\) 8.05782 0.451151
\(320\) 2.13915 + 0.651165i 0.119582 + 0.0364013i
\(321\) −3.47883 −0.194169
\(322\) 4.11626i 0.229390i
\(323\) 4.85321i 0.270040i
\(324\) 7.25344 0.402969
\(325\) 4.13656 6.16496i 0.229455 0.341970i
\(326\) −15.9342 −0.882516
\(327\) 6.53906i 0.361611i
\(328\) 9.41904i 0.520079i
\(329\) 8.26867 0.455867
\(330\) 8.38774 + 2.55325i 0.461730 + 0.140552i
\(331\) −9.38887 −0.516059 −0.258030 0.966137i \(-0.583073\pi\)
−0.258030 + 0.966137i \(0.583073\pi\)
\(332\) 16.9990i 0.932940i
\(333\) 4.45359i 0.244055i
\(334\) 5.93877 0.324955
\(335\) −10.2915 + 33.8089i −0.562287 + 1.84718i
\(336\) 1.58141 0.0862730
\(337\) 3.89003i 0.211904i 0.994371 + 0.105952i \(0.0337889\pi\)
−0.994371 + 0.105952i \(0.966211\pi\)
\(338\) 10.7953i 0.587186i
\(339\) 5.81260 0.315697
\(340\) 0.651165 2.13915i 0.0353144 0.116012i
\(341\) −12.2290 −0.662238
\(342\) 2.42243i 0.130990i
\(343\) 1.00000i 0.0539949i
\(344\) 10.3912 0.560259
\(345\) −13.9248 4.23876i −0.749687 0.228207i
\(346\) −19.9065 −1.07018
\(347\) 5.56440i 0.298713i 0.988783 + 0.149356i \(0.0477202\pi\)
−0.988783 + 0.149356i \(0.952280\pi\)
\(348\) 5.13930i 0.275495i
\(349\) −16.9111 −0.905231 −0.452615 0.891706i \(-0.649509\pi\)
−0.452615 + 0.891706i \(0.649509\pi\)
\(350\) 4.15197 + 2.78589i 0.221932 + 0.148912i
\(351\) 8.21641 0.438560
\(352\) 2.47946i 0.132156i
\(353\) 1.79189i 0.0953729i −0.998862 0.0476865i \(-0.984815\pi\)
0.998862 0.0476865i \(-0.0151848\pi\)
\(354\) 15.0409 0.799416
\(355\) −25.2053 7.67256i −1.33776 0.407217i
\(356\) 15.3955 0.815961
\(357\) 1.58141i 0.0836971i
\(358\) 13.0850i 0.691565i
\(359\) −6.81835 −0.359859 −0.179929 0.983680i \(-0.557587\pi\)
−0.179929 + 0.983680i \(0.557587\pi\)
\(360\) −0.325023 + 1.06774i −0.0171302 + 0.0562748i
\(361\) 4.55366 0.239667
\(362\) 5.13376i 0.269824i
\(363\) 7.67341i 0.402749i
\(364\) 1.48483 0.0778261
\(365\) 6.79771 22.3313i 0.355808 1.16887i
\(366\) −15.6069 −0.815784
\(367\) 25.1760i 1.31418i −0.753813 0.657089i \(-0.771788\pi\)
0.753813 0.657089i \(-0.228212\pi\)
\(368\) 4.11626i 0.214575i
\(369\) 4.70142 0.244746
\(370\) −19.0867 5.81004i −0.992268 0.302050i
\(371\) 4.09224 0.212458
\(372\) 7.79970i 0.404396i
\(373\) 30.7407i 1.59169i −0.605499 0.795846i \(-0.707026\pi\)
0.605499 0.795846i \(-0.292974\pi\)
\(374\) 2.47946 0.128210
\(375\) 13.6999 11.1768i 0.707458 0.577168i
\(376\) 8.26867 0.426424
\(377\) 4.82542i 0.248522i
\(378\) 5.53358i 0.284617i
\(379\) 13.1580 0.675881 0.337940 0.941168i \(-0.390270\pi\)
0.337940 + 0.941168i \(0.390270\pi\)
\(380\) 10.3818 + 3.16024i 0.532574 + 0.162117i
\(381\) −0.853504 −0.0437264
\(382\) 19.5123i 0.998338i
\(383\) 25.8537i 1.32106i 0.750798 + 0.660532i \(0.229669\pi\)
−0.750798 + 0.660532i \(0.770331\pi\)
\(384\) 1.58141 0.0807010
\(385\) −1.61454 + 5.30396i −0.0822847 + 0.270315i
\(386\) −2.08248 −0.105995
\(387\) 5.18669i 0.263654i
\(388\) 14.0489i 0.713227i
\(389\) −28.0199 −1.42067 −0.710334 0.703865i \(-0.751456\pi\)
−0.710334 + 0.703865i \(0.751456\pi\)
\(390\) 1.52902 5.02300i 0.0774248 0.254349i
\(391\) −4.11626 −0.208168
\(392\) 1.00000i 0.0505076i
\(393\) 12.7695i 0.644135i
\(394\) −6.86555 −0.345881
\(395\) −33.7028 10.2592i −1.69577 0.516198i
\(396\) −1.23760 −0.0621918
\(397\) 22.4810i 1.12829i 0.825677 + 0.564144i \(0.190794\pi\)
−0.825677 + 0.564144i \(0.809206\pi\)
\(398\) 7.97203i 0.399602i
\(399\) 7.67492 0.384227
\(400\) 4.15197 + 2.78589i 0.207598 + 0.139294i
\(401\) −24.3231 −1.21464 −0.607318 0.794459i \(-0.707754\pi\)
−0.607318 + 0.794459i \(0.707754\pi\)
\(402\) 24.9939i 1.24658i
\(403\) 7.32334i 0.364802i
\(404\) −8.31807 −0.413840
\(405\) 15.5162 + 4.72319i 0.771007 + 0.234697i
\(406\) 3.24982 0.161286
\(407\) 22.1231i 1.09660i
\(408\) 1.58141i 0.0782915i
\(409\) −28.8624 −1.42716 −0.713578 0.700576i \(-0.752927\pi\)
−0.713578 + 0.700576i \(0.752927\pi\)
\(410\) 6.13335 20.1488i 0.302905 0.995077i
\(411\) 16.0935 0.793833
\(412\) 16.1282i 0.794577i
\(413\) 9.51108i 0.468010i
\(414\) 2.05459 0.100978
\(415\) 11.0691 36.3634i 0.543363 1.78501i
\(416\) 1.48483 0.0727997
\(417\) 28.3310i 1.38738i
\(418\) 12.0334i 0.588571i
\(419\) −16.3304 −0.797790 −0.398895 0.916997i \(-0.630606\pi\)
−0.398895 + 0.916997i \(0.630606\pi\)
\(420\) 3.38288 + 1.02976i 0.165068 + 0.0502471i
\(421\) −26.6939 −1.30098 −0.650491 0.759514i \(-0.725437\pi\)
−0.650491 + 0.759514i \(0.725437\pi\)
\(422\) 9.87489i 0.480702i
\(423\) 4.12723i 0.200673i
\(424\) 4.09224 0.198737
\(425\) 2.78589 4.15197i 0.135135 0.201400i
\(426\) −18.6335 −0.902794
\(427\) 9.86895i 0.477592i
\(428\) 2.19983i 0.106333i
\(429\) 5.82209 0.281093
\(430\) 22.2285 + 6.76642i 1.07195 + 0.326306i
\(431\) −6.02989 −0.290450 −0.145225 0.989399i \(-0.546391\pi\)
−0.145225 + 0.989399i \(0.546391\pi\)
\(432\) 5.53358i 0.266234i
\(433\) 16.9902i 0.816497i 0.912871 + 0.408248i \(0.133860\pi\)
−0.912871 + 0.408248i \(0.866140\pi\)
\(434\) −4.93212 −0.236749
\(435\) 3.34654 10.9938i 0.160454 0.527111i
\(436\) −4.13495 −0.198028
\(437\) 19.9771i 0.955633i
\(438\) 16.5088i 0.788822i
\(439\) 20.3664 0.972035 0.486018 0.873949i \(-0.338449\pi\)
0.486018 + 0.873949i \(0.338449\pi\)
\(440\) −1.61454 + 5.30396i −0.0769703 + 0.252856i
\(441\) −0.499141 −0.0237686
\(442\) 1.48483i 0.0706261i
\(443\) 12.5581i 0.596654i 0.954464 + 0.298327i \(0.0964285\pi\)
−0.954464 + 0.298327i \(0.903571\pi\)
\(444\) −14.1102 −0.669639
\(445\) 32.9334 + 10.0250i 1.56119 + 0.475232i
\(446\) −0.615959 −0.0291665
\(447\) 8.89488i 0.420714i
\(448\) 1.00000i 0.0472456i
\(449\) −25.7519 −1.21531 −0.607654 0.794202i \(-0.707889\pi\)
−0.607654 + 0.794202i \(0.707889\pi\)
\(450\) −1.39055 + 2.07242i −0.0655511 + 0.0976946i
\(451\) 23.3542 1.09971
\(452\) 3.67558i 0.172885i
\(453\) 26.8986i 1.26381i
\(454\) 13.0080 0.610495
\(455\) 3.17628 + 0.966869i 0.148906 + 0.0453275i
\(456\) 7.67492 0.359411
\(457\) 28.4616i 1.33138i 0.746229 + 0.665689i \(0.231862\pi\)
−0.746229 + 0.665689i \(0.768138\pi\)
\(458\) 16.7881i 0.784457i
\(459\) 5.53358 0.258285
\(460\) 2.68037 8.80532i 0.124973 0.410550i
\(461\) −3.91476 −0.182329 −0.0911643 0.995836i \(-0.529059\pi\)
−0.0911643 + 0.995836i \(0.529059\pi\)
\(462\) 3.92105i 0.182424i
\(463\) 24.4445i 1.13603i −0.823017 0.568016i \(-0.807711\pi\)
0.823017 0.568016i \(-0.192289\pi\)
\(464\) 3.24982 0.150869
\(465\) −5.07890 + 16.6848i −0.235528 + 0.773738i
\(466\) 7.50071 0.347464
\(467\) 15.8270i 0.732385i −0.930539 0.366192i \(-0.880661\pi\)
0.930539 0.366192i \(-0.119339\pi\)
\(468\) 0.741138i 0.0342591i
\(469\) −15.8048 −0.729798
\(470\) 17.6880 + 5.38428i 0.815885 + 0.248358i
\(471\) 13.8653 0.638879
\(472\) 9.51108i 0.437783i
\(473\) 25.7647i 1.18466i
\(474\) −24.9154 −1.14440
\(475\) 20.1504 + 13.5205i 0.924563 + 0.620363i
\(476\) 1.00000 0.0458349
\(477\) 2.04260i 0.0935243i
\(478\) 7.82561i 0.357935i
\(479\) −34.7707 −1.58871 −0.794357 0.607452i \(-0.792192\pi\)
−0.794357 + 0.607452i \(0.792192\pi\)
\(480\) 3.38288 + 1.02976i 0.154407 + 0.0470019i
\(481\) −13.2484 −0.604076
\(482\) 22.5508i 1.02716i
\(483\) 6.50950i 0.296192i
\(484\) 4.85225 0.220557
\(485\) −9.14818 + 30.0529i −0.415398 + 1.36463i
\(486\) −5.13007 −0.232705
\(487\) 30.7487i 1.39336i −0.717383 0.696679i \(-0.754660\pi\)
0.717383 0.696679i \(-0.245340\pi\)
\(488\) 9.86895i 0.446747i
\(489\) −25.1986 −1.13952
\(490\) −0.651165 + 2.13915i −0.0294167 + 0.0966372i
\(491\) 33.6199 1.51724 0.758621 0.651532i \(-0.225873\pi\)
0.758621 + 0.651532i \(0.225873\pi\)
\(492\) 14.8954i 0.671535i
\(493\) 3.24982i 0.146365i
\(494\) 7.20618 0.324222
\(495\) −2.64742 0.805883i −0.118993 0.0362218i
\(496\) −4.93212 −0.221459
\(497\) 11.7828i 0.528531i
\(498\) 26.8824i 1.20463i
\(499\) 31.2932 1.40087 0.700437 0.713714i \(-0.252988\pi\)
0.700437 + 0.713714i \(0.252988\pi\)
\(500\) 7.06763 + 8.66306i 0.316074 + 0.387424i
\(501\) 9.39163 0.419587
\(502\) 28.6256i 1.27762i
\(503\) 18.5131i 0.825459i 0.910854 + 0.412730i \(0.135425\pi\)
−0.910854 + 0.412730i \(0.864575\pi\)
\(504\) −0.499141 −0.0222335
\(505\) −17.7936 5.41644i −0.791807 0.241028i
\(506\) 10.2061 0.453717
\(507\) 17.0718i 0.758184i
\(508\) 0.539711i 0.0239458i
\(509\) 16.4622 0.729674 0.364837 0.931071i \(-0.381125\pi\)
0.364837 + 0.931071i \(0.381125\pi\)
\(510\) 1.02976 3.38288i 0.0455985 0.149797i
\(511\) 10.4393 0.461807
\(512\) 1.00000i 0.0441942i
\(513\) 26.8556i 1.18570i
\(514\) −9.67057 −0.426550
\(515\) −10.5021 + 34.5006i −0.462778 + 1.52028i
\(516\) 16.4328 0.723415
\(517\) 20.5019i 0.901672i
\(518\) 8.92252i 0.392033i
\(519\) −31.4803 −1.38183
\(520\) 3.17628 + 0.966869i 0.139289 + 0.0424000i
\(521\) −30.6959 −1.34481 −0.672406 0.740183i \(-0.734739\pi\)
−0.672406 + 0.740183i \(0.734739\pi\)
\(522\) 1.62212i 0.0709982i
\(523\) 18.5329i 0.810389i −0.914231 0.405194i \(-0.867204\pi\)
0.914231 0.405194i \(-0.132796\pi\)
\(524\) 8.07474 0.352747
\(525\) 6.56596 + 4.40563i 0.286562 + 0.192278i
\(526\) −10.5324 −0.459235
\(527\) 4.93212i 0.214846i
\(528\) 3.92105i 0.170642i
\(529\) 6.05641 0.263322
\(530\) 8.75393 + 2.66472i 0.380246 + 0.115748i
\(531\) −4.74737 −0.206018
\(532\) 4.85321i 0.210413i
\(533\) 13.9857i 0.605786i
\(534\) 24.3466 1.05358
\(535\) 1.43245 4.70577i 0.0619302 0.203448i
\(536\) −15.8048 −0.682663
\(537\) 20.6928i 0.892961i
\(538\) 9.77949i 0.421624i
\(539\) −2.47946 −0.106798
\(540\) −3.60327 + 11.8372i −0.155060 + 0.509391i
\(541\) 25.0160 1.07552 0.537761 0.843097i \(-0.319270\pi\)
0.537761 + 0.843097i \(0.319270\pi\)
\(542\) 18.7381i 0.804872i
\(543\) 8.11858i 0.348402i
\(544\) 1.00000 0.0428746
\(545\) −8.84531 2.69254i −0.378891 0.115336i
\(546\) 2.34812 0.100490
\(547\) 12.0619i 0.515730i 0.966181 + 0.257865i \(0.0830190\pi\)
−0.966181 + 0.257865i \(0.916981\pi\)
\(548\) 10.1767i 0.434725i
\(549\) 4.92599 0.210236
\(550\) −6.90751 + 10.2947i −0.294537 + 0.438966i
\(551\) 15.7721 0.671913
\(552\) 6.50950i 0.277063i
\(553\) 15.7552i 0.669978i
\(554\) 18.3954 0.781547
\(555\) −30.1838 9.18806i −1.28123 0.390011i
\(556\) −17.9150 −0.759767
\(557\) 17.5136i 0.742073i 0.928618 + 0.371037i \(0.120998\pi\)
−0.928618 + 0.371037i \(0.879002\pi\)
\(558\) 2.46182i 0.104217i
\(559\) 15.4292 0.652586
\(560\) −0.651165 + 2.13915i −0.0275168 + 0.0903958i
\(561\) 3.92105 0.165547
\(562\) 15.4172i 0.650334i
\(563\) 17.5043i 0.737720i 0.929485 + 0.368860i \(0.120252\pi\)
−0.929485 + 0.368860i \(0.879748\pi\)
\(564\) 13.0762 0.550606
\(565\) −2.39341 + 7.86263i −0.100691 + 0.330783i
\(566\) 3.20689 0.134796
\(567\) 7.25344i 0.304616i
\(568\) 11.7828i 0.494396i
\(569\) −35.7406 −1.49832 −0.749162 0.662387i \(-0.769543\pi\)
−0.749162 + 0.662387i \(0.769543\pi\)
\(570\) 16.4178 + 4.99764i 0.687668 + 0.209328i
\(571\) −27.4858 −1.15024 −0.575122 0.818067i \(-0.695046\pi\)
−0.575122 + 0.818067i \(0.695046\pi\)
\(572\) 3.68158i 0.153935i
\(573\) 30.8570i 1.28907i
\(574\) 9.41904 0.393143
\(575\) 11.4674 17.0906i 0.478225 0.712726i
\(576\) −0.499141 −0.0207975
\(577\) 18.4175i 0.766730i 0.923597 + 0.383365i \(0.125235\pi\)
−0.923597 + 0.383365i \(0.874765\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) −3.29326 −0.136863
\(580\) 6.95187 + 2.11617i 0.288661 + 0.0878692i
\(581\) 16.9990 0.705236
\(582\) 22.2171i 0.920930i
\(583\) 10.1466i 0.420228i
\(584\) 10.4393 0.431981
\(585\) −0.482603 + 1.58541i −0.0199532 + 0.0655486i
\(586\) 0.379629 0.0156823
\(587\) 39.8719i 1.64569i 0.568265 + 0.822845i \(0.307615\pi\)
−0.568265 + 0.822845i \(0.692385\pi\)
\(588\) 1.58141i 0.0652163i
\(589\) −23.9366 −0.986291
\(590\) −6.19329 + 20.3457i −0.254974 + 0.837618i
\(591\) −10.8572 −0.446608
\(592\) 8.92252i 0.366713i
\(593\) 15.8586i 0.651234i −0.945502 0.325617i \(-0.894428\pi\)
0.945502 0.325617i \(-0.105572\pi\)
\(594\) −13.7203 −0.562951
\(595\) 2.13915 + 0.651165i 0.0876968 + 0.0266952i
\(596\) −5.62465 −0.230395
\(597\) 12.6071i 0.515972i
\(598\) 6.11194i 0.249936i
\(599\) −6.37001 −0.260272 −0.130136 0.991496i \(-0.541541\pi\)
−0.130136 + 0.991496i \(0.541541\pi\)
\(600\) 6.56596 + 4.40563i 0.268054 + 0.179859i
\(601\) 4.47924 0.182712 0.0913559 0.995818i \(-0.470880\pi\)
0.0913559 + 0.995818i \(0.470880\pi\)
\(602\) 10.3912i 0.423516i
\(603\) 7.88881i 0.321257i
\(604\) −17.0093 −0.692097
\(605\) 10.3797 + 3.15962i 0.421996 + 0.128457i
\(606\) −13.1543 −0.534356
\(607\) 5.46432i 0.221790i −0.993832 0.110895i \(-0.964628\pi\)
0.993832 0.110895i \(-0.0353717\pi\)
\(608\) 4.85321i 0.196824i
\(609\) 5.13930 0.208255
\(610\) 6.42632 21.1112i 0.260194 0.854768i
\(611\) 12.2776 0.496697
\(612\) 0.499141i 0.0201766i
\(613\) 29.5706i 1.19435i −0.802112 0.597173i \(-0.796290\pi\)
0.802112 0.597173i \(-0.203710\pi\)
\(614\) 5.97695 0.241210
\(615\) 9.69935 31.8635i 0.391115 1.28486i
\(616\) −2.47946 −0.0999005
\(617\) 3.08987i 0.124394i 0.998064 + 0.0621968i \(0.0198106\pi\)
−0.998064 + 0.0621968i \(0.980189\pi\)
\(618\) 25.5052i 1.02597i
\(619\) 33.1577 1.33272 0.666361 0.745629i \(-0.267851\pi\)
0.666361 + 0.745629i \(0.267851\pi\)
\(620\) −10.5506 3.21162i −0.423721 0.128982i
\(621\) 22.7776 0.914035
\(622\) 30.5004i 1.22295i
\(623\) 15.3955i 0.616808i
\(624\) 2.34812 0.0940001
\(625\) 9.47766 + 23.1338i 0.379106 + 0.925353i
\(626\) 20.5359 0.820778
\(627\) 19.0297i 0.759973i
\(628\) 8.76768i 0.349869i
\(629\) −8.92252 −0.355764
\(630\) −1.06774 0.325023i −0.0425397 0.0129492i
\(631\) −9.39738 −0.374104 −0.187052 0.982350i \(-0.559893\pi\)
−0.187052 + 0.982350i \(0.559893\pi\)
\(632\) 15.7552i 0.626707i
\(633\) 15.6162i 0.620690i
\(634\) 9.79660 0.389073
\(635\) 0.351441 1.15453i 0.0139465 0.0458159i
\(636\) 6.47151 0.256612
\(637\) 1.48483i 0.0588310i
\(638\) 8.05782i 0.319012i
\(639\) 5.88128 0.232660
\(640\) −0.651165 + 2.13915i −0.0257396 + 0.0845575i
\(641\) 41.7840 1.65037 0.825185 0.564862i \(-0.191071\pi\)
0.825185 + 0.564862i \(0.191071\pi\)
\(642\) 3.47883i 0.137298i
\(643\) 0.121038i 0.00477329i 0.999997 + 0.00238664i \(0.000759693\pi\)
−0.999997 + 0.00238664i \(0.999240\pi\)
\(644\) 4.11626 0.162203
\(645\) 35.1524 + 10.7005i 1.38412 + 0.421331i
\(646\) 4.85321 0.190947
\(647\) 15.0998i 0.593633i 0.954934 + 0.296817i \(0.0959250\pi\)
−0.954934 + 0.296817i \(0.904075\pi\)
\(648\) 7.25344i 0.284942i
\(649\) −23.5824 −0.925690
\(650\) 6.16496 + 4.13656i 0.241809 + 0.162249i
\(651\) −7.79970 −0.305694
\(652\) 15.9342i 0.624033i
\(653\) 30.3759i 1.18870i 0.804206 + 0.594350i \(0.202591\pi\)
−0.804206 + 0.594350i \(0.797409\pi\)
\(654\) −6.53906 −0.255698
\(655\) 17.2731 + 5.25799i 0.674917 + 0.205447i
\(656\) 9.41904 0.367752
\(657\) 5.21068i 0.203288i
\(658\) 8.26867i 0.322346i
\(659\) 26.6257 1.03719 0.518596 0.855020i \(-0.326455\pi\)
0.518596 + 0.855020i \(0.326455\pi\)
\(660\) −2.55325 + 8.38774i −0.0993853 + 0.326492i
\(661\) −37.2936 −1.45055 −0.725276 0.688458i \(-0.758288\pi\)
−0.725276 + 0.688458i \(0.758288\pi\)
\(662\) 9.38887i 0.364909i
\(663\) 2.34812i 0.0911935i
\(664\) 16.9990 0.659688
\(665\) −3.16024 + 10.3818i −0.122549 + 0.402588i
\(666\) 4.45359 0.172573
\(667\) 13.3771i 0.517964i
\(668\) 5.93877i 0.229778i
\(669\) −0.974084 −0.0376603
\(670\) −33.8089 10.2915i −1.30615 0.397597i
\(671\) 24.4697 0.944643
\(672\) 1.58141i 0.0610042i
\(673\) 20.4641i 0.788835i 0.918931 + 0.394417i \(0.129054\pi\)
−0.918931 + 0.394417i \(0.870946\pi\)
\(674\) −3.89003 −0.149838
\(675\) −15.4159 + 22.9752i −0.593359 + 0.884317i
\(676\) −10.7953 −0.415203
\(677\) 35.0668i 1.34773i −0.738856 0.673864i \(-0.764634\pi\)
0.738856 0.673864i \(-0.235366\pi\)
\(678\) 5.81260i 0.223231i
\(679\) −14.0489 −0.539149
\(680\) 2.13915 + 0.651165i 0.0820328 + 0.0249711i
\(681\) 20.5709 0.788280
\(682\) 12.2290i 0.468273i
\(683\) 9.05059i 0.346311i 0.984894 + 0.173156i \(0.0553964\pi\)
−0.984894 + 0.173156i \(0.944604\pi\)
\(684\) −2.42243 −0.0926241
\(685\) −6.62669 + 21.7695i −0.253193 + 0.831768i
\(686\) −1.00000 −0.0381802
\(687\) 26.5489i 1.01290i
\(688\) 10.3912i 0.396163i
\(689\) 6.07627 0.231487
\(690\) 4.23876 13.9248i 0.161367 0.530109i
\(691\) −38.3558 −1.45912 −0.729562 0.683914i \(-0.760276\pi\)
−0.729562 + 0.683914i \(0.760276\pi\)
\(692\) 19.9065i 0.756731i
\(693\) 1.23760i 0.0470126i
\(694\) −5.56440 −0.211222
\(695\) −38.3230 11.6657i −1.45368 0.442503i
\(696\) 5.13930 0.194805
\(697\) 9.41904i 0.356772i
\(698\) 16.9111i 0.640095i
\(699\) 11.8617 0.448651
\(700\) −2.78589 + 4.15197i −0.105297 + 0.156930i
\(701\) −38.0045 −1.43541 −0.717706 0.696347i \(-0.754808\pi\)
−0.717706 + 0.696347i \(0.754808\pi\)
\(702\) 8.21641i 0.310108i
\(703\) 43.3029i 1.63320i
\(704\) −2.47946 −0.0934483
\(705\) 27.9720 + 8.51475i 1.05348 + 0.320684i
\(706\) 1.79189 0.0674389
\(707\) 8.31807i 0.312833i
\(708\) 15.0409i 0.565273i
\(709\) −31.3781 −1.17843 −0.589214 0.807977i \(-0.700562\pi\)
−0.589214 + 0.807977i \(0.700562\pi\)
\(710\) 7.67256 25.2053i 0.287946 0.945937i
\(711\) 7.86405 0.294925
\(712\) 15.3955i 0.576971i
\(713\) 20.3019i 0.760311i
\(714\) 1.58141 0.0591828
\(715\) −2.39732 + 7.87547i −0.0896546 + 0.294526i
\(716\) −13.0850 −0.489011
\(717\) 12.3755i 0.462171i
\(718\) 6.81835i 0.254459i
\(719\) −41.6679 −1.55395 −0.776975 0.629531i \(-0.783247\pi\)
−0.776975 + 0.629531i \(0.783247\pi\)
\(720\) −1.06774 0.325023i −0.0397923 0.0121129i
\(721\) −16.1282 −0.600644
\(722\) 4.55366i 0.169470i
\(723\) 35.6621i 1.32629i
\(724\) −5.13376 −0.190795
\(725\) 13.4931 + 9.05364i 0.501123 + 0.336244i
\(726\) 7.67341 0.284787
\(727\) 29.0321i 1.07674i 0.842708 + 0.538371i \(0.180960\pi\)
−0.842708 + 0.538371i \(0.819040\pi\)
\(728\) 1.48483i 0.0550314i
\(729\) −29.8731 −1.10641
\(730\) 22.3313 + 6.79771i 0.826518 + 0.251595i
\(731\) 10.3912 0.384334
\(732\) 15.6069i 0.576846i
\(733\) 14.3941i 0.531659i 0.964020 + 0.265829i \(0.0856457\pi\)
−0.964020 + 0.265829i \(0.914354\pi\)
\(734\) 25.1760 0.929264
\(735\) −1.02976 + 3.38288i −0.0379833 + 0.124779i
\(736\) 4.11626 0.151727
\(737\) 39.1874i 1.44349i
\(738\) 4.70142i 0.173062i
\(739\) 23.5565 0.866539 0.433270 0.901264i \(-0.357360\pi\)
0.433270 + 0.901264i \(0.357360\pi\)
\(740\) 5.81004 19.0867i 0.213581 0.701640i
\(741\) 11.3959 0.418640
\(742\) 4.09224i 0.150231i
\(743\) 10.5929i 0.388614i −0.980941 0.194307i \(-0.937754\pi\)
0.980941 0.194307i \(-0.0622458\pi\)
\(744\) −7.79970 −0.285951
\(745\) −12.0320 3.66258i −0.440818 0.134187i
\(746\) 30.7407 1.12550
\(747\) 8.48488i 0.310446i
\(748\) 2.47946i 0.0906582i
\(749\) 2.19983 0.0803799
\(750\) 11.1768 + 13.6999i 0.408120 + 0.500248i
\(751\) −11.2811 −0.411653 −0.205827 0.978588i \(-0.565988\pi\)
−0.205827 + 0.978588i \(0.565988\pi\)
\(752\) 8.26867i 0.301528i
\(753\) 45.2689i 1.64969i
\(754\) 4.82542 0.175732
\(755\) −36.3854 11.0758i −1.32420 0.403091i
\(756\) −5.53358 −0.201254
\(757\) 13.9885i 0.508420i −0.967149 0.254210i \(-0.918185\pi\)
0.967149 0.254210i \(-0.0818154\pi\)
\(758\) 13.1580i 0.477920i
\(759\) 16.1401 0.585847
\(760\) −3.16024 + 10.3818i −0.114634 + 0.376586i
\(761\) 23.9575 0.868460 0.434230 0.900802i \(-0.357021\pi\)
0.434230 + 0.900802i \(0.357021\pi\)
\(762\) 0.853504i 0.0309192i
\(763\) 4.13495i 0.149695i
\(764\) 19.5123 0.705932
\(765\) −0.325023 + 1.06774i −0.0117512 + 0.0386042i
\(766\) −25.8537 −0.934133
\(767\) 14.1223i 0.509927i
\(768\) 1.58141i 0.0570642i
\(769\) −14.8024 −0.533789 −0.266895 0.963726i \(-0.585998\pi\)
−0.266895 + 0.963726i \(0.585998\pi\)
\(770\) −5.30396 1.61454i −0.191141 0.0581841i
\(771\) −15.2931 −0.550769
\(772\) 2.08248i 0.0749501i
\(773\) 13.8809i 0.499262i 0.968341 + 0.249631i \(0.0803093\pi\)
−0.968341 + 0.249631i \(0.919691\pi\)
\(774\) −5.18669 −0.186432
\(775\) −20.4780 13.7403i −0.735591 0.493567i
\(776\) −14.0489 −0.504327
\(777\) 14.1102i 0.506200i
\(778\) 28.0199i 1.00456i
\(779\) 45.7126 1.63782
\(780\) 5.02300 + 1.52902i 0.179852 + 0.0547476i
\(781\) 29.2151 1.04540
\(782\) 4.11626i 0.147197i
\(783\) 17.9831i 0.642665i
\(784\) −1.00000 −0.0357143
\(785\) −5.70921 + 18.7554i −0.203770 + 0.669410i
\(786\) 12.7695 0.455472
\(787\) 12.2264i 0.435823i −0.975968 0.217912i \(-0.930076\pi\)
0.975968 0.217912i \(-0.0699245\pi\)
\(788\) 6.86555i 0.244575i
\(789\) −16.6561 −0.592972
\(790\) 10.2592 33.7028i 0.365007 1.19909i
\(791\) −3.67558 −0.130688
\(792\) 1.23760i 0.0439763i
\(793\) 14.6537i 0.520368i
\(794\) −22.4810 −0.797820
\(795\) 13.8436 + 4.21402i 0.490980 + 0.149456i
\(796\) −7.97203 −0.282561
\(797\) 32.2049i 1.14076i 0.821382 + 0.570378i \(0.193203\pi\)
−0.821382 + 0.570378i \(0.806797\pi\)
\(798\) 7.67492i 0.271689i
\(799\) 8.26867 0.292525
\(800\) −2.78589 + 4.15197i −0.0984960 + 0.146794i
\(801\) −7.68453 −0.271519
\(802\) 24.3231i 0.858877i
\(803\) 25.8839i 0.913422i
\(804\) −24.9939 −0.881466
\(805\) 8.80532 + 2.68037i 0.310347 + 0.0944705i
\(806\) −7.32334 −0.257954
\(807\) 15.4654i 0.544408i
\(808\) 8.31807i 0.292629i
\(809\) −5.71907 −0.201072 −0.100536 0.994933i \(-0.532056\pi\)
−0.100536 + 0.994933i \(0.532056\pi\)
\(810\) −4.72319 + 15.5162i −0.165956 + 0.545185i
\(811\) 53.4561 1.87710 0.938549 0.345146i \(-0.112171\pi\)
0.938549 + 0.345146i \(0.112171\pi\)
\(812\) 3.24982i 0.114046i
\(813\) 29.6327i 1.03926i
\(814\) 22.1231 0.775414
\(815\) 10.3758 34.0858i 0.363449 1.19397i
\(816\) 1.58141 0.0553604
\(817\) 50.4309i 1.76435i
\(818\) 28.8624i 1.00915i
\(819\) −0.741138 −0.0258975
\(820\) 20.1488 + 6.13335i 0.703626 + 0.214186i
\(821\) 46.8617 1.63548 0.817742 0.575585i \(-0.195226\pi\)
0.817742 + 0.575585i \(0.195226\pi\)
\(822\) 16.0935i 0.561325i
\(823\) 42.3243i 1.47533i 0.675166 + 0.737666i \(0.264072\pi\)
−0.675166 + 0.737666i \(0.735928\pi\)
\(824\) −16.1282 −0.561851
\(825\) −10.9236 + 16.2801i −0.380311 + 0.566800i
\(826\) −9.51108 −0.330933
\(827\) 50.2887i 1.74871i 0.485289 + 0.874354i \(0.338715\pi\)
−0.485289 + 0.874354i \(0.661285\pi\)
\(828\) 2.05459i 0.0714020i
\(829\) −27.5620 −0.957269 −0.478634 0.878014i \(-0.658868\pi\)
−0.478634 + 0.878014i \(0.658868\pi\)
\(830\) 36.3634 + 11.0691i 1.26219 + 0.384216i
\(831\) 29.0907 1.00915
\(832\) 1.48483i 0.0514771i
\(833\) 1.00000i 0.0346479i
\(834\) −28.3310 −0.981023
\(835\) −3.86712 + 12.7039i −0.133827 + 0.439638i
\(836\) −12.0334 −0.416183
\(837\) 27.2922i 0.943358i
\(838\) 16.3304i 0.564123i
\(839\) −14.6191 −0.504707 −0.252353 0.967635i \(-0.581205\pi\)
−0.252353 + 0.967635i \(0.581205\pi\)
\(840\) −1.02976 + 3.38288i −0.0355301 + 0.116721i
\(841\) −18.4387 −0.635816
\(842\) 26.6939i 0.919934i
\(843\) 24.3809i 0.839722i
\(844\) −9.87489 −0.339908
\(845\) −23.0928 7.02952i −0.794416 0.241823i
\(846\) −4.12723 −0.141897
\(847\) 4.85225i 0.166725i
\(848\) 4.09224i 0.140528i
\(849\) 5.07142 0.174051
\(850\) 4.15197 + 2.78589i 0.142411 + 0.0955552i
\(851\) −36.7274 −1.25900
\(852\) 18.6335i 0.638372i
\(853\) 26.4546i 0.905788i −0.891564 0.452894i \(-0.850392\pi\)
0.891564 0.452894i \(-0.149608\pi\)
\(854\) 9.86895 0.337709
\(855\) −5.18196 1.57741i −0.177219 0.0539461i
\(856\) 2.19983 0.0751885
\(857\) 0.294081i 0.0100456i −0.999987 0.00502280i \(-0.998401\pi\)
0.999987 0.00502280i \(-0.00159881\pi\)
\(858\) 5.82209i 0.198763i
\(859\) −16.6946 −0.569612 −0.284806 0.958585i \(-0.591929\pi\)
−0.284806 + 0.958585i \(0.591929\pi\)
\(860\) −6.76642 + 22.2285i −0.230733 + 0.757985i
\(861\) 14.8954 0.507633
\(862\) 6.02989i 0.205379i
\(863\) 7.15399i 0.243525i 0.992559 + 0.121762i \(0.0388545\pi\)
−0.992559 + 0.121762i \(0.961145\pi\)
\(864\) −5.53358 −0.188256
\(865\) 12.9624 42.5831i 0.440736 1.44787i
\(866\) −16.9902 −0.577350
\(867\) 1.58141i 0.0537075i
\(868\) 4.93212i 0.167407i
\(869\) 39.0644 1.32517
\(870\) 10.9938 + 3.34654i 0.372723 + 0.113458i
\(871\) −23.4674 −0.795163
\(872\) 4.13495i 0.140027i
\(873\) 7.01239i 0.237334i
\(874\) 19.9771 0.675735
\(875\) −8.66306 + 7.06763i −0.292865 + 0.238929i
\(876\) 16.5088 0.557781
\(877\) 19.9502i 0.673670i 0.941564 + 0.336835i \(0.109356\pi\)
−0.941564 + 0.336835i \(0.890644\pi\)
\(878\) 20.3664i 0.687333i
\(879\) 0.600349 0.0202493
\(880\) −5.30396 1.61454i −0.178796 0.0544262i
\(881\) 57.6910 1.94366 0.971829 0.235685i \(-0.0757334\pi\)
0.971829 + 0.235685i \(0.0757334\pi\)
\(882\) 0.499141i 0.0168069i
\(883\) 1.74844i 0.0588396i 0.999567 + 0.0294198i \(0.00936596\pi\)
−0.999567 + 0.0294198i \(0.990634\pi\)
\(884\) 1.48483 0.0499402
\(885\) −9.79413 + 32.1749i −0.329226 + 1.08155i
\(886\) −12.5581 −0.421898
\(887\) 5.63604i 0.189240i 0.995513 + 0.0946199i \(0.0301636\pi\)
−0.995513 + 0.0946199i \(0.969836\pi\)
\(888\) 14.1102i 0.473506i
\(889\) 0.539711 0.0181013
\(890\) −10.0250 + 32.9334i −0.336040 + 1.10393i
\(891\) −17.9846 −0.602508
\(892\) 0.615959i 0.0206238i
\(893\) 40.1296i 1.34289i
\(894\) −8.89488 −0.297489
\(895\) −27.9909 8.52052i −0.935633 0.284810i
\(896\) −1.00000 −0.0334077
\(897\) 9.66548i 0.322721i
\(898\) 25.7519i 0.859353i
\(899\) −16.0285 −0.534580
\(900\) −2.07242 1.39055i −0.0690805 0.0463517i
\(901\) 4.09224 0.136332
\(902\) 23.3542i 0.777609i
\(903\) 16.4328i 0.546850i
\(904\) −3.67558 −0.122248
\(905\) −10.9819 3.34293i −0.365051 0.111123i
\(906\) −26.8986 −0.893647
\(907\) 38.5509i 1.28006i −0.768349 0.640031i \(-0.778921\pi\)
0.768349 0.640031i \(-0.221079\pi\)
\(908\) 13.0080i 0.431685i
\(909\) 4.15189 0.137709
\(910\) −0.966869 + 3.17628i −0.0320514 + 0.105293i
\(911\) 2.35799 0.0781237 0.0390618 0.999237i \(-0.487563\pi\)
0.0390618 + 0.999237i \(0.487563\pi\)
\(912\) 7.67492i 0.254142i
\(913\) 42.1484i 1.39491i
\(914\) −28.4616 −0.941426
\(915\) 10.1627 33.3855i 0.335967 1.10369i
\(916\) 16.7881 0.554695
\(917\) 8.07474i 0.266651i
\(918\) 5.53358i 0.182635i
\(919\) −47.1055 −1.55387 −0.776934 0.629582i \(-0.783226\pi\)
−0.776934 + 0.629582i \(0.783226\pi\)
\(920\) 8.80532 + 2.68037i 0.290303 + 0.0883691i
\(921\) 9.45202 0.311455
\(922\) 3.91476i 0.128926i
\(923\) 17.4955i 0.575870i
\(924\) −3.92105 −0.128993
\(925\) 24.8572 37.0460i 0.817298 1.21807i
\(926\) 24.4445 0.803296
\(927\) 8.05022i 0.264404i
\(928\) 3.24982i 0.106681i
\(929\) 1.58032 0.0518487 0.0259243 0.999664i \(-0.491747\pi\)
0.0259243 + 0.999664i \(0.491747\pi\)
\(930\) −16.6848 5.07890i −0.547115 0.166544i
\(931\) −4.85321 −0.159058
\(932\) 7.50071i 0.245694i
\(933\) 48.2336i 1.57910i
\(934\) 15.8270 0.517874
\(935\) −1.61454 + 5.30396i −0.0528012 + 0.173458i
\(936\) −0.741138 −0.0242248
\(937\) 32.8668i 1.07371i −0.843674 0.536856i \(-0.819612\pi\)
0.843674 0.536856i \(-0.180388\pi\)
\(938\) 15.8048i 0.516045i
\(939\) 32.4756 1.05980
\(940\) −5.38428 + 17.6880i −0.175616 + 0.576918i
\(941\) 7.67130 0.250077 0.125039 0.992152i \(-0.460095\pi\)
0.125039 + 0.992152i \(0.460095\pi\)
\(942\) 13.8653i 0.451756i
\(943\) 38.7712i 1.26256i
\(944\) −9.51108 −0.309559
\(945\) −11.8372 3.60327i −0.385063 0.117215i
\(946\) −25.7647 −0.837684
\(947\) 43.5425i 1.41494i −0.706744 0.707470i \(-0.749837\pi\)
0.706744 0.707470i \(-0.250163\pi\)
\(948\) 24.9154i 0.809215i
\(949\) 15.5006 0.503170
\(950\) −13.5205 + 20.1504i −0.438663 + 0.653764i
\(951\) 15.4924 0.502377
\(952\) 1.00000i 0.0324102i
\(953\) 40.6687i 1.31739i −0.752411 0.658694i \(-0.771109\pi\)
0.752411 0.658694i \(-0.228891\pi\)
\(954\) −2.04260 −0.0661317
\(955\) 41.7399 + 12.7058i 1.35067 + 0.411149i
\(956\) −7.82561 −0.253098
\(957\) 12.7427i 0.411914i
\(958\) 34.7707i 1.12339i
\(959\) −10.1767 −0.328622
\(960\) −1.02976 + 3.38288i −0.0332354 + 0.109182i
\(961\) −6.67423 −0.215298
\(962\) 13.2484i 0.427146i
\(963\) 1.09802i 0.0353833i
\(964\) 22.5508 0.726313
\(965\) 1.35604 4.45475i 0.0436524 0.143403i
\(966\) 6.50950 0.209440
\(967\) 29.1570i 0.937625i −0.883298 0.468813i \(-0.844682\pi\)
0.883298 0.468813i \(-0.155318\pi\)
\(968\) 4.85225i 0.155957i
\(969\) 7.67492 0.246554
\(970\) −30.0529 9.14818i −0.964939 0.293730i
\(971\) 36.8404 1.18227 0.591133 0.806574i \(-0.298681\pi\)
0.591133 + 0.806574i \(0.298681\pi\)
\(972\) 5.13007i 0.164547i
\(973\) 17.9150i 0.574330i
\(974\) 30.7487 0.985252
\(975\) 9.74933 + 6.54161i 0.312228 + 0.209499i
\(976\) 9.86895 0.315897
\(977\) 11.2487i 0.359876i −0.983678 0.179938i \(-0.942410\pi\)
0.983678 0.179938i \(-0.0575898\pi\)
\(978\) 25.1986i 0.805762i
\(979\) −38.1726 −1.22000
\(980\) −2.13915 0.651165i −0.0683328 0.0208007i
\(981\) 2.06392 0.0658960
\(982\) 33.6199i 1.07285i
\(983\) 34.7209i 1.10743i −0.832708 0.553713i \(-0.813211\pi\)
0.832708 0.553713i \(-0.186789\pi\)
\(984\) 14.8954 0.474847
\(985\) 4.47061 14.6865i 0.142445 0.467950i
\(986\) 3.24982 0.103495
\(987\) 13.0762i 0.416219i
\(988\) 7.20618i 0.229259i
\(989\) 42.7731 1.36010
\(990\) 0.805883 2.64742i 0.0256127 0.0841406i
\(991\) 9.11416 0.289521 0.144760 0.989467i \(-0.453759\pi\)
0.144760 + 0.989467i \(0.453759\pi\)
\(992\) 4.93212i 0.156595i
\(993\) 14.8477i 0.471176i
\(994\) 11.7828 0.373728
\(995\) −17.0534 5.19111i −0.540629 0.164569i
\(996\) 26.8824 0.851800
\(997\) 23.6110i 0.747768i 0.927476 + 0.373884i \(0.121974\pi\)
−0.927476 + 0.373884i \(0.878026\pi\)
\(998\) 31.2932i 0.990568i
\(999\) 49.3735 1.56211
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1190.2.e.g.239.12 yes 14
5.2 odd 4 5950.2.a.cb.1.5 7
5.3 odd 4 5950.2.a.cc.1.3 7
5.4 even 2 inner 1190.2.e.g.239.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.e.g.239.3 14 5.4 even 2 inner
1190.2.e.g.239.12 yes 14 1.1 even 1 trivial
5950.2.a.cb.1.5 7 5.2 odd 4
5950.2.a.cc.1.3 7 5.3 odd 4