Properties

Label 5950.2.a.cc.1.3
Level $5950$
Weight $2$
Character 5950.1
Self dual yes
Analytic conductor $47.511$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5950,2,Mod(1,5950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5950.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5950 = 2 \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5950.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,-2,7,0,-2,-7,7,7,0,-7,-2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.5109892027\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 12x^{5} + 17x^{4} + 40x^{3} - 32x^{2} - 40x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1190)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.58141\) of defining polynomial
Character \(\chi\) \(=\) 5950.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.58141 q^{3} +1.00000 q^{4} -1.58141 q^{6} -1.00000 q^{7} +1.00000 q^{8} -0.499141 q^{9} +2.47946 q^{11} -1.58141 q^{12} +1.48483 q^{13} -1.00000 q^{14} +1.00000 q^{16} -1.00000 q^{17} -0.499141 q^{18} -4.85321 q^{19} +1.58141 q^{21} +2.47946 q^{22} +4.11626 q^{23} -1.58141 q^{24} +1.48483 q^{26} +5.53358 q^{27} -1.00000 q^{28} -3.24982 q^{29} -4.93212 q^{31} +1.00000 q^{32} -3.92105 q^{33} -1.00000 q^{34} -0.499141 q^{36} -8.92252 q^{37} -4.85321 q^{38} -2.34812 q^{39} +9.41904 q^{41} +1.58141 q^{42} -10.3912 q^{43} +2.47946 q^{44} +4.11626 q^{46} +8.26867 q^{47} -1.58141 q^{48} +1.00000 q^{49} +1.58141 q^{51} +1.48483 q^{52} -4.09224 q^{53} +5.53358 q^{54} -1.00000 q^{56} +7.67492 q^{57} -3.24982 q^{58} +9.51108 q^{59} +9.86895 q^{61} -4.93212 q^{62} +0.499141 q^{63} +1.00000 q^{64} -3.92105 q^{66} -15.8048 q^{67} -1.00000 q^{68} -6.50950 q^{69} +11.7828 q^{71} -0.499141 q^{72} -10.4393 q^{73} -8.92252 q^{74} -4.85321 q^{76} -2.47946 q^{77} -2.34812 q^{78} -15.7552 q^{79} -7.25344 q^{81} +9.41904 q^{82} -16.9990 q^{83} +1.58141 q^{84} -10.3912 q^{86} +5.13930 q^{87} +2.47946 q^{88} +15.3955 q^{89} -1.48483 q^{91} +4.11626 q^{92} +7.79970 q^{93} +8.26867 q^{94} -1.58141 q^{96} -14.0489 q^{97} +1.00000 q^{98} -1.23760 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} - 2 q^{3} + 7 q^{4} - 2 q^{6} - 7 q^{7} + 7 q^{8} + 7 q^{9} - 7 q^{11} - 2 q^{12} + q^{13} - 7 q^{14} + 7 q^{16} - 7 q^{17} + 7 q^{18} - 2 q^{19} + 2 q^{21} - 7 q^{22} - 27 q^{23} - 2 q^{24}+ \cdots - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.58141 −0.913028 −0.456514 0.889716i \(-0.650902\pi\)
−0.456514 + 0.889716i \(0.650902\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.58141 −0.645608
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) −0.499141 −0.166380
\(10\) 0 0
\(11\) 2.47946 0.747587 0.373793 0.927512i \(-0.378057\pi\)
0.373793 + 0.927512i \(0.378057\pi\)
\(12\) −1.58141 −0.456514
\(13\) 1.48483 0.411817 0.205909 0.978571i \(-0.433985\pi\)
0.205909 + 0.978571i \(0.433985\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −0.499141 −0.117649
\(19\) −4.85321 −1.11340 −0.556702 0.830713i \(-0.687933\pi\)
−0.556702 + 0.830713i \(0.687933\pi\)
\(20\) 0 0
\(21\) 1.58141 0.345092
\(22\) 2.47946 0.528624
\(23\) 4.11626 0.858299 0.429150 0.903233i \(-0.358813\pi\)
0.429150 + 0.903233i \(0.358813\pi\)
\(24\) −1.58141 −0.322804
\(25\) 0 0
\(26\) 1.48483 0.291199
\(27\) 5.53358 1.06494
\(28\) −1.00000 −0.188982
\(29\) −3.24982 −0.603477 −0.301738 0.953391i \(-0.597567\pi\)
−0.301738 + 0.953391i \(0.597567\pi\)
\(30\) 0 0
\(31\) −4.93212 −0.885834 −0.442917 0.896563i \(-0.646056\pi\)
−0.442917 + 0.896563i \(0.646056\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.92105 −0.682568
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) −0.499141 −0.0831901
\(37\) −8.92252 −1.46685 −0.733427 0.679768i \(-0.762080\pi\)
−0.733427 + 0.679768i \(0.762080\pi\)
\(38\) −4.85321 −0.787295
\(39\) −2.34812 −0.376001
\(40\) 0 0
\(41\) 9.41904 1.47101 0.735503 0.677521i \(-0.236946\pi\)
0.735503 + 0.677521i \(0.236946\pi\)
\(42\) 1.58141 0.244017
\(43\) −10.3912 −1.58465 −0.792325 0.610099i \(-0.791130\pi\)
−0.792325 + 0.610099i \(0.791130\pi\)
\(44\) 2.47946 0.373793
\(45\) 0 0
\(46\) 4.11626 0.606909
\(47\) 8.26867 1.20611 0.603055 0.797700i \(-0.293950\pi\)
0.603055 + 0.797700i \(0.293950\pi\)
\(48\) −1.58141 −0.228257
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.58141 0.221442
\(52\) 1.48483 0.205909
\(53\) −4.09224 −0.562112 −0.281056 0.959691i \(-0.590685\pi\)
−0.281056 + 0.959691i \(0.590685\pi\)
\(54\) 5.53358 0.753025
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) 7.67492 1.01657
\(58\) −3.24982 −0.426722
\(59\) 9.51108 1.23824 0.619119 0.785297i \(-0.287490\pi\)
0.619119 + 0.785297i \(0.287490\pi\)
\(60\) 0 0
\(61\) 9.86895 1.26359 0.631795 0.775136i \(-0.282318\pi\)
0.631795 + 0.775136i \(0.282318\pi\)
\(62\) −4.93212 −0.626379
\(63\) 0.499141 0.0628858
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.92105 −0.482648
\(67\) −15.8048 −1.93086 −0.965431 0.260657i \(-0.916061\pi\)
−0.965431 + 0.260657i \(0.916061\pi\)
\(68\) −1.00000 −0.121268
\(69\) −6.50950 −0.783651
\(70\) 0 0
\(71\) 11.7828 1.39836 0.699181 0.714944i \(-0.253548\pi\)
0.699181 + 0.714944i \(0.253548\pi\)
\(72\) −0.499141 −0.0588243
\(73\) −10.4393 −1.22183 −0.610914 0.791697i \(-0.709198\pi\)
−0.610914 + 0.791697i \(0.709198\pi\)
\(74\) −8.92252 −1.03722
\(75\) 0 0
\(76\) −4.85321 −0.556702
\(77\) −2.47946 −0.282561
\(78\) −2.34812 −0.265873
\(79\) −15.7552 −1.77260 −0.886298 0.463115i \(-0.846732\pi\)
−0.886298 + 0.463115i \(0.846732\pi\)
\(80\) 0 0
\(81\) −7.25344 −0.805937
\(82\) 9.41904 1.04016
\(83\) −16.9990 −1.86588 −0.932940 0.360032i \(-0.882766\pi\)
−0.932940 + 0.360032i \(0.882766\pi\)
\(84\) 1.58141 0.172546
\(85\) 0 0
\(86\) −10.3912 −1.12052
\(87\) 5.13930 0.550991
\(88\) 2.47946 0.264312
\(89\) 15.3955 1.63192 0.815961 0.578107i \(-0.196208\pi\)
0.815961 + 0.578107i \(0.196208\pi\)
\(90\) 0 0
\(91\) −1.48483 −0.155652
\(92\) 4.11626 0.429150
\(93\) 7.79970 0.808791
\(94\) 8.26867 0.852849
\(95\) 0 0
\(96\) −1.58141 −0.161402
\(97\) −14.0489 −1.42645 −0.713227 0.700933i \(-0.752767\pi\)
−0.713227 + 0.700933i \(0.752767\pi\)
\(98\) 1.00000 0.101015
\(99\) −1.23760 −0.124384
\(100\) 0 0
\(101\) 8.31807 0.827679 0.413840 0.910350i \(-0.364187\pi\)
0.413840 + 0.910350i \(0.364187\pi\)
\(102\) 1.58141 0.156583
\(103\) 16.1282 1.58915 0.794577 0.607163i \(-0.207693\pi\)
0.794577 + 0.607163i \(0.207693\pi\)
\(104\) 1.48483 0.145599
\(105\) 0 0
\(106\) −4.09224 −0.397473
\(107\) 2.19983 0.212665 0.106333 0.994331i \(-0.466089\pi\)
0.106333 + 0.994331i \(0.466089\pi\)
\(108\) 5.53358 0.532469
\(109\) −4.13495 −0.396057 −0.198028 0.980196i \(-0.563454\pi\)
−0.198028 + 0.980196i \(0.563454\pi\)
\(110\) 0 0
\(111\) 14.1102 1.33928
\(112\) −1.00000 −0.0944911
\(113\) 3.67558 0.345769 0.172885 0.984942i \(-0.444691\pi\)
0.172885 + 0.984942i \(0.444691\pi\)
\(114\) 7.67492 0.718822
\(115\) 0 0
\(116\) −3.24982 −0.301738
\(117\) −0.741138 −0.0685182
\(118\) 9.51108 0.875566
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −4.85225 −0.441114
\(122\) 9.86895 0.893493
\(123\) −14.8954 −1.34307
\(124\) −4.93212 −0.442917
\(125\) 0 0
\(126\) 0.499141 0.0444670
\(127\) 0.539711 0.0478916 0.0239458 0.999713i \(-0.492377\pi\)
0.0239458 + 0.999713i \(0.492377\pi\)
\(128\) 1.00000 0.0883883
\(129\) 16.4328 1.44683
\(130\) 0 0
\(131\) −8.07474 −0.705493 −0.352747 0.935719i \(-0.614752\pi\)
−0.352747 + 0.935719i \(0.614752\pi\)
\(132\) −3.92105 −0.341284
\(133\) 4.85321 0.420827
\(134\) −15.8048 −1.36533
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) −10.1767 −0.869451 −0.434725 0.900563i \(-0.643155\pi\)
−0.434725 + 0.900563i \(0.643155\pi\)
\(138\) −6.50950 −0.554125
\(139\) −17.9150 −1.51953 −0.759767 0.650196i \(-0.774687\pi\)
−0.759767 + 0.650196i \(0.774687\pi\)
\(140\) 0 0
\(141\) −13.0762 −1.10121
\(142\) 11.7828 0.988792
\(143\) 3.68158 0.307869
\(144\) −0.499141 −0.0415950
\(145\) 0 0
\(146\) −10.4393 −0.863963
\(147\) −1.58141 −0.130433
\(148\) −8.92252 −0.733427
\(149\) −5.62465 −0.460789 −0.230395 0.973097i \(-0.574002\pi\)
−0.230395 + 0.973097i \(0.574002\pi\)
\(150\) 0 0
\(151\) 17.0093 1.38419 0.692097 0.721805i \(-0.256687\pi\)
0.692097 + 0.721805i \(0.256687\pi\)
\(152\) −4.85321 −0.393647
\(153\) 0.499141 0.0403531
\(154\) −2.47946 −0.199801
\(155\) 0 0
\(156\) −2.34812 −0.188000
\(157\) −8.76768 −0.699737 −0.349869 0.936799i \(-0.613774\pi\)
−0.349869 + 0.936799i \(0.613774\pi\)
\(158\) −15.7552 −1.25341
\(159\) 6.47151 0.513224
\(160\) 0 0
\(161\) −4.11626 −0.324407
\(162\) −7.25344 −0.569884
\(163\) −15.9342 −1.24807 −0.624033 0.781398i \(-0.714507\pi\)
−0.624033 + 0.781398i \(0.714507\pi\)
\(164\) 9.41904 0.735503
\(165\) 0 0
\(166\) −16.9990 −1.31938
\(167\) −5.93877 −0.459555 −0.229778 0.973243i \(-0.573800\pi\)
−0.229778 + 0.973243i \(0.573800\pi\)
\(168\) 1.58141 0.122008
\(169\) −10.7953 −0.830407
\(170\) 0 0
\(171\) 2.42243 0.185248
\(172\) −10.3912 −0.792325
\(173\) −19.9065 −1.51346 −0.756731 0.653726i \(-0.773205\pi\)
−0.756731 + 0.653726i \(0.773205\pi\)
\(174\) 5.13930 0.389609
\(175\) 0 0
\(176\) 2.47946 0.186897
\(177\) −15.0409 −1.13055
\(178\) 15.3955 1.15394
\(179\) −13.0850 −0.978021 −0.489011 0.872278i \(-0.662642\pi\)
−0.489011 + 0.872278i \(0.662642\pi\)
\(180\) 0 0
\(181\) 5.13376 0.381589 0.190795 0.981630i \(-0.438894\pi\)
0.190795 + 0.981630i \(0.438894\pi\)
\(182\) −1.48483 −0.110063
\(183\) −15.6069 −1.15369
\(184\) 4.11626 0.303455
\(185\) 0 0
\(186\) 7.79970 0.571902
\(187\) −2.47946 −0.181316
\(188\) 8.26867 0.603055
\(189\) −5.53358 −0.402509
\(190\) 0 0
\(191\) −19.5123 −1.41186 −0.705932 0.708280i \(-0.749471\pi\)
−0.705932 + 0.708280i \(0.749471\pi\)
\(192\) −1.58141 −0.114128
\(193\) −2.08248 −0.149900 −0.0749501 0.997187i \(-0.523880\pi\)
−0.0749501 + 0.997187i \(0.523880\pi\)
\(194\) −14.0489 −1.00865
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 6.86555 0.489150 0.244575 0.969630i \(-0.421352\pi\)
0.244575 + 0.969630i \(0.421352\pi\)
\(198\) −1.23760 −0.0879525
\(199\) −7.97203 −0.565122 −0.282561 0.959249i \(-0.591184\pi\)
−0.282561 + 0.959249i \(0.591184\pi\)
\(200\) 0 0
\(201\) 24.9939 1.76293
\(202\) 8.31807 0.585258
\(203\) 3.24982 0.228093
\(204\) 1.58141 0.110721
\(205\) 0 0
\(206\) 16.1282 1.12370
\(207\) −2.05459 −0.142804
\(208\) 1.48483 0.102954
\(209\) −12.0334 −0.832365
\(210\) 0 0
\(211\) 9.87489 0.679815 0.339908 0.940459i \(-0.389604\pi\)
0.339908 + 0.940459i \(0.389604\pi\)
\(212\) −4.09224 −0.281056
\(213\) −18.6335 −1.27674
\(214\) 2.19983 0.150377
\(215\) 0 0
\(216\) 5.53358 0.376512
\(217\) 4.93212 0.334814
\(218\) −4.13495 −0.280054
\(219\) 16.5088 1.11556
\(220\) 0 0
\(221\) −1.48483 −0.0998803
\(222\) 14.1102 0.947013
\(223\) −0.615959 −0.0412477 −0.0206238 0.999787i \(-0.506565\pi\)
−0.0206238 + 0.999787i \(0.506565\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 3.67558 0.244496
\(227\) −13.0080 −0.863370 −0.431685 0.902025i \(-0.642081\pi\)
−0.431685 + 0.902025i \(0.642081\pi\)
\(228\) 7.67492 0.508284
\(229\) 16.7881 1.10939 0.554695 0.832054i \(-0.312835\pi\)
0.554695 + 0.832054i \(0.312835\pi\)
\(230\) 0 0
\(231\) 3.92105 0.257986
\(232\) −3.24982 −0.213361
\(233\) 7.50071 0.491388 0.245694 0.969347i \(-0.420984\pi\)
0.245694 + 0.969347i \(0.420984\pi\)
\(234\) −0.741138 −0.0484497
\(235\) 0 0
\(236\) 9.51108 0.619119
\(237\) 24.9154 1.61843
\(238\) 1.00000 0.0648204
\(239\) −7.82561 −0.506196 −0.253098 0.967441i \(-0.581450\pi\)
−0.253098 + 0.967441i \(0.581450\pi\)
\(240\) 0 0
\(241\) −22.5508 −1.45263 −0.726313 0.687364i \(-0.758768\pi\)
−0.726313 + 0.687364i \(0.758768\pi\)
\(242\) −4.85225 −0.311915
\(243\) −5.13007 −0.329094
\(244\) 9.86895 0.631795
\(245\) 0 0
\(246\) −14.8954 −0.949694
\(247\) −7.20618 −0.458519
\(248\) −4.93212 −0.313190
\(249\) 26.8824 1.70360
\(250\) 0 0
\(251\) 28.6256 1.80683 0.903417 0.428764i \(-0.141051\pi\)
0.903417 + 0.428764i \(0.141051\pi\)
\(252\) 0.499141 0.0314429
\(253\) 10.2061 0.641653
\(254\) 0.539711 0.0338645
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 9.67057 0.603233 0.301617 0.953429i \(-0.402474\pi\)
0.301617 + 0.953429i \(0.402474\pi\)
\(258\) 16.4328 1.02306
\(259\) 8.92252 0.554419
\(260\) 0 0
\(261\) 1.62212 0.100407
\(262\) −8.07474 −0.498859
\(263\) −10.5324 −0.649457 −0.324728 0.945807i \(-0.605273\pi\)
−0.324728 + 0.945807i \(0.605273\pi\)
\(264\) −3.92105 −0.241324
\(265\) 0 0
\(266\) 4.85321 0.297569
\(267\) −24.3466 −1.48999
\(268\) −15.8048 −0.965431
\(269\) −9.77949 −0.596266 −0.298133 0.954524i \(-0.596364\pi\)
−0.298133 + 0.954524i \(0.596364\pi\)
\(270\) 0 0
\(271\) −18.7381 −1.13826 −0.569130 0.822247i \(-0.692720\pi\)
−0.569130 + 0.822247i \(0.692720\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 2.34812 0.142115
\(274\) −10.1767 −0.614795
\(275\) 0 0
\(276\) −6.50950 −0.391826
\(277\) −18.3954 −1.10527 −0.552637 0.833422i \(-0.686378\pi\)
−0.552637 + 0.833422i \(0.686378\pi\)
\(278\) −17.9150 −1.07447
\(279\) 2.46182 0.147385
\(280\) 0 0
\(281\) −15.4172 −0.919711 −0.459855 0.887994i \(-0.652099\pi\)
−0.459855 + 0.887994i \(0.652099\pi\)
\(282\) −13.0762 −0.778675
\(283\) 3.20689 0.190630 0.0953150 0.995447i \(-0.469614\pi\)
0.0953150 + 0.995447i \(0.469614\pi\)
\(284\) 11.7828 0.699181
\(285\) 0 0
\(286\) 3.68158 0.217696
\(287\) −9.41904 −0.555988
\(288\) −0.499141 −0.0294121
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 22.2171 1.30239
\(292\) −10.4393 −0.610914
\(293\) 0.379629 0.0221782 0.0110891 0.999939i \(-0.496470\pi\)
0.0110891 + 0.999939i \(0.496470\pi\)
\(294\) −1.58141 −0.0922297
\(295\) 0 0
\(296\) −8.92252 −0.518611
\(297\) 13.7203 0.796133
\(298\) −5.62465 −0.325827
\(299\) 6.11194 0.353462
\(300\) 0 0
\(301\) 10.3912 0.598942
\(302\) 17.0093 0.978773
\(303\) −13.1543 −0.755694
\(304\) −4.85321 −0.278351
\(305\) 0 0
\(306\) 0.499141 0.0285340
\(307\) −5.97695 −0.341123 −0.170561 0.985347i \(-0.554558\pi\)
−0.170561 + 0.985347i \(0.554558\pi\)
\(308\) −2.47946 −0.141281
\(309\) −25.5052 −1.45094
\(310\) 0 0
\(311\) −30.5004 −1.72952 −0.864759 0.502188i \(-0.832529\pi\)
−0.864759 + 0.502188i \(0.832529\pi\)
\(312\) −2.34812 −0.132936
\(313\) 20.5359 1.16076 0.580378 0.814347i \(-0.302905\pi\)
0.580378 + 0.814347i \(0.302905\pi\)
\(314\) −8.76768 −0.494789
\(315\) 0 0
\(316\) −15.7552 −0.886298
\(317\) −9.79660 −0.550232 −0.275116 0.961411i \(-0.588716\pi\)
−0.275116 + 0.961411i \(0.588716\pi\)
\(318\) 6.47151 0.362904
\(319\) −8.05782 −0.451151
\(320\) 0 0
\(321\) −3.47883 −0.194169
\(322\) −4.11626 −0.229390
\(323\) 4.85321 0.270040
\(324\) −7.25344 −0.402969
\(325\) 0 0
\(326\) −15.9342 −0.882516
\(327\) 6.53906 0.361611
\(328\) 9.41904 0.520079
\(329\) −8.26867 −0.455867
\(330\) 0 0
\(331\) −9.38887 −0.516059 −0.258030 0.966137i \(-0.583073\pi\)
−0.258030 + 0.966137i \(0.583073\pi\)
\(332\) −16.9990 −0.932940
\(333\) 4.45359 0.244055
\(334\) −5.93877 −0.324955
\(335\) 0 0
\(336\) 1.58141 0.0862730
\(337\) 3.89003 0.211904 0.105952 0.994371i \(-0.466211\pi\)
0.105952 + 0.994371i \(0.466211\pi\)
\(338\) −10.7953 −0.587186
\(339\) −5.81260 −0.315697
\(340\) 0 0
\(341\) −12.2290 −0.662238
\(342\) 2.42243 0.130990
\(343\) −1.00000 −0.0539949
\(344\) −10.3912 −0.560259
\(345\) 0 0
\(346\) −19.9065 −1.07018
\(347\) 5.56440 0.298713 0.149356 0.988783i \(-0.452280\pi\)
0.149356 + 0.988783i \(0.452280\pi\)
\(348\) 5.13930 0.275495
\(349\) 16.9111 0.905231 0.452615 0.891706i \(-0.350491\pi\)
0.452615 + 0.891706i \(0.350491\pi\)
\(350\) 0 0
\(351\) 8.21641 0.438560
\(352\) 2.47946 0.132156
\(353\) 1.79189 0.0953729 0.0476865 0.998862i \(-0.484815\pi\)
0.0476865 + 0.998862i \(0.484815\pi\)
\(354\) −15.0409 −0.799416
\(355\) 0 0
\(356\) 15.3955 0.815961
\(357\) −1.58141 −0.0836971
\(358\) −13.0850 −0.691565
\(359\) 6.81835 0.359859 0.179929 0.983680i \(-0.442413\pi\)
0.179929 + 0.983680i \(0.442413\pi\)
\(360\) 0 0
\(361\) 4.55366 0.239667
\(362\) 5.13376 0.269824
\(363\) 7.67341 0.402749
\(364\) −1.48483 −0.0778261
\(365\) 0 0
\(366\) −15.6069 −0.815784
\(367\) −25.1760 −1.31418 −0.657089 0.753813i \(-0.728212\pi\)
−0.657089 + 0.753813i \(0.728212\pi\)
\(368\) 4.11626 0.214575
\(369\) −4.70142 −0.244746
\(370\) 0 0
\(371\) 4.09224 0.212458
\(372\) 7.79970 0.404396
\(373\) 30.7407 1.59169 0.795846 0.605499i \(-0.207026\pi\)
0.795846 + 0.605499i \(0.207026\pi\)
\(374\) −2.47946 −0.128210
\(375\) 0 0
\(376\) 8.26867 0.426424
\(377\) −4.82542 −0.248522
\(378\) −5.53358 −0.284617
\(379\) −13.1580 −0.675881 −0.337940 0.941168i \(-0.609730\pi\)
−0.337940 + 0.941168i \(0.609730\pi\)
\(380\) 0 0
\(381\) −0.853504 −0.0437264
\(382\) −19.5123 −0.998338
\(383\) −25.8537 −1.32106 −0.660532 0.750798i \(-0.729669\pi\)
−0.660532 + 0.750798i \(0.729669\pi\)
\(384\) −1.58141 −0.0807010
\(385\) 0 0
\(386\) −2.08248 −0.105995
\(387\) 5.18669 0.263654
\(388\) −14.0489 −0.713227
\(389\) 28.0199 1.42067 0.710334 0.703865i \(-0.248544\pi\)
0.710334 + 0.703865i \(0.248544\pi\)
\(390\) 0 0
\(391\) −4.11626 −0.208168
\(392\) 1.00000 0.0505076
\(393\) 12.7695 0.644135
\(394\) 6.86555 0.345881
\(395\) 0 0
\(396\) −1.23760 −0.0621918
\(397\) 22.4810 1.12829 0.564144 0.825677i \(-0.309206\pi\)
0.564144 + 0.825677i \(0.309206\pi\)
\(398\) −7.97203 −0.399602
\(399\) −7.67492 −0.384227
\(400\) 0 0
\(401\) −24.3231 −1.21464 −0.607318 0.794459i \(-0.707754\pi\)
−0.607318 + 0.794459i \(0.707754\pi\)
\(402\) 24.9939 1.24658
\(403\) −7.32334 −0.364802
\(404\) 8.31807 0.413840
\(405\) 0 0
\(406\) 3.24982 0.161286
\(407\) −22.1231 −1.09660
\(408\) 1.58141 0.0782915
\(409\) 28.8624 1.42716 0.713578 0.700576i \(-0.247073\pi\)
0.713578 + 0.700576i \(0.247073\pi\)
\(410\) 0 0
\(411\) 16.0935 0.793833
\(412\) 16.1282 0.794577
\(413\) −9.51108 −0.468010
\(414\) −2.05459 −0.100978
\(415\) 0 0
\(416\) 1.48483 0.0727997
\(417\) 28.3310 1.38738
\(418\) −12.0334 −0.588571
\(419\) 16.3304 0.797790 0.398895 0.916997i \(-0.369394\pi\)
0.398895 + 0.916997i \(0.369394\pi\)
\(420\) 0 0
\(421\) −26.6939 −1.30098 −0.650491 0.759514i \(-0.725437\pi\)
−0.650491 + 0.759514i \(0.725437\pi\)
\(422\) 9.87489 0.480702
\(423\) −4.12723 −0.200673
\(424\) −4.09224 −0.198737
\(425\) 0 0
\(426\) −18.6335 −0.902794
\(427\) −9.86895 −0.477592
\(428\) 2.19983 0.106333
\(429\) −5.82209 −0.281093
\(430\) 0 0
\(431\) −6.02989 −0.290450 −0.145225 0.989399i \(-0.546391\pi\)
−0.145225 + 0.989399i \(0.546391\pi\)
\(432\) 5.53358 0.266234
\(433\) −16.9902 −0.816497 −0.408248 0.912871i \(-0.633860\pi\)
−0.408248 + 0.912871i \(0.633860\pi\)
\(434\) 4.93212 0.236749
\(435\) 0 0
\(436\) −4.13495 −0.198028
\(437\) −19.9771 −0.955633
\(438\) 16.5088 0.788822
\(439\) −20.3664 −0.972035 −0.486018 0.873949i \(-0.661551\pi\)
−0.486018 + 0.873949i \(0.661551\pi\)
\(440\) 0 0
\(441\) −0.499141 −0.0237686
\(442\) −1.48483 −0.0706261
\(443\) −12.5581 −0.596654 −0.298327 0.954464i \(-0.596429\pi\)
−0.298327 + 0.954464i \(0.596429\pi\)
\(444\) 14.1102 0.669639
\(445\) 0 0
\(446\) −0.615959 −0.0291665
\(447\) 8.89488 0.420714
\(448\) −1.00000 −0.0472456
\(449\) 25.7519 1.21531 0.607654 0.794202i \(-0.292111\pi\)
0.607654 + 0.794202i \(0.292111\pi\)
\(450\) 0 0
\(451\) 23.3542 1.09971
\(452\) 3.67558 0.172885
\(453\) −26.8986 −1.26381
\(454\) −13.0080 −0.610495
\(455\) 0 0
\(456\) 7.67492 0.359411
\(457\) 28.4616 1.33138 0.665689 0.746229i \(-0.268138\pi\)
0.665689 + 0.746229i \(0.268138\pi\)
\(458\) 16.7881 0.784457
\(459\) −5.53358 −0.258285
\(460\) 0 0
\(461\) −3.91476 −0.182329 −0.0911643 0.995836i \(-0.529059\pi\)
−0.0911643 + 0.995836i \(0.529059\pi\)
\(462\) 3.92105 0.182424
\(463\) 24.4445 1.13603 0.568016 0.823017i \(-0.307711\pi\)
0.568016 + 0.823017i \(0.307711\pi\)
\(464\) −3.24982 −0.150869
\(465\) 0 0
\(466\) 7.50071 0.347464
\(467\) −15.8270 −0.732385 −0.366192 0.930539i \(-0.619339\pi\)
−0.366192 + 0.930539i \(0.619339\pi\)
\(468\) −0.741138 −0.0342591
\(469\) 15.8048 0.729798
\(470\) 0 0
\(471\) 13.8653 0.638879
\(472\) 9.51108 0.437783
\(473\) −25.7647 −1.18466
\(474\) 24.9154 1.14440
\(475\) 0 0
\(476\) 1.00000 0.0458349
\(477\) 2.04260 0.0935243
\(478\) −7.82561 −0.357935
\(479\) 34.7707 1.58871 0.794357 0.607452i \(-0.207808\pi\)
0.794357 + 0.607452i \(0.207808\pi\)
\(480\) 0 0
\(481\) −13.2484 −0.604076
\(482\) −22.5508 −1.02716
\(483\) 6.50950 0.296192
\(484\) −4.85225 −0.220557
\(485\) 0 0
\(486\) −5.13007 −0.232705
\(487\) −30.7487 −1.39336 −0.696679 0.717383i \(-0.745340\pi\)
−0.696679 + 0.717383i \(0.745340\pi\)
\(488\) 9.86895 0.446747
\(489\) 25.1986 1.13952
\(490\) 0 0
\(491\) 33.6199 1.51724 0.758621 0.651532i \(-0.225873\pi\)
0.758621 + 0.651532i \(0.225873\pi\)
\(492\) −14.8954 −0.671535
\(493\) 3.24982 0.146365
\(494\) −7.20618 −0.324222
\(495\) 0 0
\(496\) −4.93212 −0.221459
\(497\) −11.7828 −0.528531
\(498\) 26.8824 1.20463
\(499\) −31.2932 −1.40087 −0.700437 0.713714i \(-0.747012\pi\)
−0.700437 + 0.713714i \(0.747012\pi\)
\(500\) 0 0
\(501\) 9.39163 0.419587
\(502\) 28.6256 1.27762
\(503\) −18.5131 −0.825459 −0.412730 0.910854i \(-0.635425\pi\)
−0.412730 + 0.910854i \(0.635425\pi\)
\(504\) 0.499141 0.0222335
\(505\) 0 0
\(506\) 10.2061 0.453717
\(507\) 17.0718 0.758184
\(508\) 0.539711 0.0239458
\(509\) −16.4622 −0.729674 −0.364837 0.931071i \(-0.618875\pi\)
−0.364837 + 0.931071i \(0.618875\pi\)
\(510\) 0 0
\(511\) 10.4393 0.461807
\(512\) 1.00000 0.0441942
\(513\) −26.8556 −1.18570
\(514\) 9.67057 0.426550
\(515\) 0 0
\(516\) 16.4328 0.723415
\(517\) 20.5019 0.901672
\(518\) 8.92252 0.392033
\(519\) 31.4803 1.38183
\(520\) 0 0
\(521\) −30.6959 −1.34481 −0.672406 0.740183i \(-0.734739\pi\)
−0.672406 + 0.740183i \(0.734739\pi\)
\(522\) 1.62212 0.0709982
\(523\) 18.5329 0.810389 0.405194 0.914231i \(-0.367204\pi\)
0.405194 + 0.914231i \(0.367204\pi\)
\(524\) −8.07474 −0.352747
\(525\) 0 0
\(526\) −10.5324 −0.459235
\(527\) 4.93212 0.214846
\(528\) −3.92105 −0.170642
\(529\) −6.05641 −0.263322
\(530\) 0 0
\(531\) −4.74737 −0.206018
\(532\) 4.85321 0.210413
\(533\) 13.9857 0.605786
\(534\) −24.3466 −1.05358
\(535\) 0 0
\(536\) −15.8048 −0.682663
\(537\) 20.6928 0.892961
\(538\) −9.77949 −0.421624
\(539\) 2.47946 0.106798
\(540\) 0 0
\(541\) 25.0160 1.07552 0.537761 0.843097i \(-0.319270\pi\)
0.537761 + 0.843097i \(0.319270\pi\)
\(542\) −18.7381 −0.804872
\(543\) −8.11858 −0.348402
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) 2.34812 0.100490
\(547\) 12.0619 0.515730 0.257865 0.966181i \(-0.416981\pi\)
0.257865 + 0.966181i \(0.416981\pi\)
\(548\) −10.1767 −0.434725
\(549\) −4.92599 −0.210236
\(550\) 0 0
\(551\) 15.7721 0.671913
\(552\) −6.50950 −0.277063
\(553\) 15.7552 0.669978
\(554\) −18.3954 −0.781547
\(555\) 0 0
\(556\) −17.9150 −0.759767
\(557\) 17.5136 0.742073 0.371037 0.928618i \(-0.379002\pi\)
0.371037 + 0.928618i \(0.379002\pi\)
\(558\) 2.46182 0.104217
\(559\) −15.4292 −0.652586
\(560\) 0 0
\(561\) 3.92105 0.165547
\(562\) −15.4172 −0.650334
\(563\) −17.5043 −0.737720 −0.368860 0.929485i \(-0.620252\pi\)
−0.368860 + 0.929485i \(0.620252\pi\)
\(564\) −13.0762 −0.550606
\(565\) 0 0
\(566\) 3.20689 0.134796
\(567\) 7.25344 0.304616
\(568\) 11.7828 0.494396
\(569\) 35.7406 1.49832 0.749162 0.662387i \(-0.230457\pi\)
0.749162 + 0.662387i \(0.230457\pi\)
\(570\) 0 0
\(571\) −27.4858 −1.15024 −0.575122 0.818067i \(-0.695046\pi\)
−0.575122 + 0.818067i \(0.695046\pi\)
\(572\) 3.68158 0.153935
\(573\) 30.8570 1.28907
\(574\) −9.41904 −0.393143
\(575\) 0 0
\(576\) −0.499141 −0.0207975
\(577\) 18.4175 0.766730 0.383365 0.923597i \(-0.374765\pi\)
0.383365 + 0.923597i \(0.374765\pi\)
\(578\) 1.00000 0.0415945
\(579\) 3.29326 0.136863
\(580\) 0 0
\(581\) 16.9990 0.705236
\(582\) 22.2171 0.920930
\(583\) −10.1466 −0.420228
\(584\) −10.4393 −0.431981
\(585\) 0 0
\(586\) 0.379629 0.0156823
\(587\) 39.8719 1.64569 0.822845 0.568265i \(-0.192385\pi\)
0.822845 + 0.568265i \(0.192385\pi\)
\(588\) −1.58141 −0.0652163
\(589\) 23.9366 0.986291
\(590\) 0 0
\(591\) −10.8572 −0.446608
\(592\) −8.92252 −0.366713
\(593\) 15.8586 0.651234 0.325617 0.945502i \(-0.394428\pi\)
0.325617 + 0.945502i \(0.394428\pi\)
\(594\) 13.7203 0.562951
\(595\) 0 0
\(596\) −5.62465 −0.230395
\(597\) 12.6071 0.515972
\(598\) 6.11194 0.249936
\(599\) 6.37001 0.260272 0.130136 0.991496i \(-0.458459\pi\)
0.130136 + 0.991496i \(0.458459\pi\)
\(600\) 0 0
\(601\) 4.47924 0.182712 0.0913559 0.995818i \(-0.470880\pi\)
0.0913559 + 0.995818i \(0.470880\pi\)
\(602\) 10.3912 0.423516
\(603\) 7.88881 0.321257
\(604\) 17.0093 0.692097
\(605\) 0 0
\(606\) −13.1543 −0.534356
\(607\) −5.46432 −0.221790 −0.110895 0.993832i \(-0.535372\pi\)
−0.110895 + 0.993832i \(0.535372\pi\)
\(608\) −4.85321 −0.196824
\(609\) −5.13930 −0.208255
\(610\) 0 0
\(611\) 12.2776 0.496697
\(612\) 0.499141 0.0201766
\(613\) 29.5706 1.19435 0.597173 0.802112i \(-0.296290\pi\)
0.597173 + 0.802112i \(0.296290\pi\)
\(614\) −5.97695 −0.241210
\(615\) 0 0
\(616\) −2.47946 −0.0999005
\(617\) 3.08987 0.124394 0.0621968 0.998064i \(-0.480189\pi\)
0.0621968 + 0.998064i \(0.480189\pi\)
\(618\) −25.5052 −1.02597
\(619\) −33.1577 −1.33272 −0.666361 0.745629i \(-0.732149\pi\)
−0.666361 + 0.745629i \(0.732149\pi\)
\(620\) 0 0
\(621\) 22.7776 0.914035
\(622\) −30.5004 −1.22295
\(623\) −15.3955 −0.616808
\(624\) −2.34812 −0.0940001
\(625\) 0 0
\(626\) 20.5359 0.820778
\(627\) 19.0297 0.759973
\(628\) −8.76768 −0.349869
\(629\) 8.92252 0.355764
\(630\) 0 0
\(631\) −9.39738 −0.374104 −0.187052 0.982350i \(-0.559893\pi\)
−0.187052 + 0.982350i \(0.559893\pi\)
\(632\) −15.7552 −0.626707
\(633\) −15.6162 −0.620690
\(634\) −9.79660 −0.389073
\(635\) 0 0
\(636\) 6.47151 0.256612
\(637\) 1.48483 0.0588310
\(638\) −8.05782 −0.319012
\(639\) −5.88128 −0.232660
\(640\) 0 0
\(641\) 41.7840 1.65037 0.825185 0.564862i \(-0.191071\pi\)
0.825185 + 0.564862i \(0.191071\pi\)
\(642\) −3.47883 −0.137298
\(643\) −0.121038 −0.00477329 −0.00238664 0.999997i \(-0.500760\pi\)
−0.00238664 + 0.999997i \(0.500760\pi\)
\(644\) −4.11626 −0.162203
\(645\) 0 0
\(646\) 4.85321 0.190947
\(647\) 15.0998 0.593633 0.296817 0.954934i \(-0.404075\pi\)
0.296817 + 0.954934i \(0.404075\pi\)
\(648\) −7.25344 −0.284942
\(649\) 23.5824 0.925690
\(650\) 0 0
\(651\) −7.79970 −0.305694
\(652\) −15.9342 −0.624033
\(653\) −30.3759 −1.18870 −0.594350 0.804206i \(-0.702591\pi\)
−0.594350 + 0.804206i \(0.702591\pi\)
\(654\) 6.53906 0.255698
\(655\) 0 0
\(656\) 9.41904 0.367752
\(657\) 5.21068 0.203288
\(658\) −8.26867 −0.322346
\(659\) −26.6257 −1.03719 −0.518596 0.855020i \(-0.673545\pi\)
−0.518596 + 0.855020i \(0.673545\pi\)
\(660\) 0 0
\(661\) −37.2936 −1.45055 −0.725276 0.688458i \(-0.758288\pi\)
−0.725276 + 0.688458i \(0.758288\pi\)
\(662\) −9.38887 −0.364909
\(663\) 2.34812 0.0911935
\(664\) −16.9990 −0.659688
\(665\) 0 0
\(666\) 4.45359 0.172573
\(667\) −13.3771 −0.517964
\(668\) −5.93877 −0.229778
\(669\) 0.974084 0.0376603
\(670\) 0 0
\(671\) 24.4697 0.944643
\(672\) 1.58141 0.0610042
\(673\) −20.4641 −0.788835 −0.394417 0.918931i \(-0.629054\pi\)
−0.394417 + 0.918931i \(0.629054\pi\)
\(674\) 3.89003 0.149838
\(675\) 0 0
\(676\) −10.7953 −0.415203
\(677\) −35.0668 −1.34773 −0.673864 0.738856i \(-0.735366\pi\)
−0.673864 + 0.738856i \(0.735366\pi\)
\(678\) −5.81260 −0.223231
\(679\) 14.0489 0.539149
\(680\) 0 0
\(681\) 20.5709 0.788280
\(682\) −12.2290 −0.468273
\(683\) −9.05059 −0.346311 −0.173156 0.984894i \(-0.555396\pi\)
−0.173156 + 0.984894i \(0.555396\pi\)
\(684\) 2.42243 0.0926241
\(685\) 0 0
\(686\) −1.00000 −0.0381802
\(687\) −26.5489 −1.01290
\(688\) −10.3912 −0.396163
\(689\) −6.07627 −0.231487
\(690\) 0 0
\(691\) −38.3558 −1.45912 −0.729562 0.683914i \(-0.760276\pi\)
−0.729562 + 0.683914i \(0.760276\pi\)
\(692\) −19.9065 −0.756731
\(693\) 1.23760 0.0470126
\(694\) 5.56440 0.211222
\(695\) 0 0
\(696\) 5.13930 0.194805
\(697\) −9.41904 −0.356772
\(698\) 16.9111 0.640095
\(699\) −11.8617 −0.448651
\(700\) 0 0
\(701\) −38.0045 −1.43541 −0.717706 0.696347i \(-0.754808\pi\)
−0.717706 + 0.696347i \(0.754808\pi\)
\(702\) 8.21641 0.310108
\(703\) 43.3029 1.63320
\(704\) 2.47946 0.0934483
\(705\) 0 0
\(706\) 1.79189 0.0674389
\(707\) −8.31807 −0.312833
\(708\) −15.0409 −0.565273
\(709\) 31.3781 1.17843 0.589214 0.807977i \(-0.299438\pi\)
0.589214 + 0.807977i \(0.299438\pi\)
\(710\) 0 0
\(711\) 7.86405 0.294925
\(712\) 15.3955 0.576971
\(713\) −20.3019 −0.760311
\(714\) −1.58141 −0.0591828
\(715\) 0 0
\(716\) −13.0850 −0.489011
\(717\) 12.3755 0.462171
\(718\) 6.81835 0.254459
\(719\) 41.6679 1.55395 0.776975 0.629531i \(-0.216753\pi\)
0.776975 + 0.629531i \(0.216753\pi\)
\(720\) 0 0
\(721\) −16.1282 −0.600644
\(722\) 4.55366 0.169470
\(723\) 35.6621 1.32629
\(724\) 5.13376 0.190795
\(725\) 0 0
\(726\) 7.67341 0.284787
\(727\) 29.0321 1.07674 0.538371 0.842708i \(-0.319040\pi\)
0.538371 + 0.842708i \(0.319040\pi\)
\(728\) −1.48483 −0.0550314
\(729\) 29.8731 1.10641
\(730\) 0 0
\(731\) 10.3912 0.384334
\(732\) −15.6069 −0.576846
\(733\) −14.3941 −0.531659 −0.265829 0.964020i \(-0.585646\pi\)
−0.265829 + 0.964020i \(0.585646\pi\)
\(734\) −25.1760 −0.929264
\(735\) 0 0
\(736\) 4.11626 0.151727
\(737\) −39.1874 −1.44349
\(738\) −4.70142 −0.173062
\(739\) −23.5565 −0.866539 −0.433270 0.901264i \(-0.642640\pi\)
−0.433270 + 0.901264i \(0.642640\pi\)
\(740\) 0 0
\(741\) 11.3959 0.418640
\(742\) 4.09224 0.150231
\(743\) 10.5929 0.388614 0.194307 0.980941i \(-0.437754\pi\)
0.194307 + 0.980941i \(0.437754\pi\)
\(744\) 7.79970 0.285951
\(745\) 0 0
\(746\) 30.7407 1.12550
\(747\) 8.48488 0.310446
\(748\) −2.47946 −0.0906582
\(749\) −2.19983 −0.0803799
\(750\) 0 0
\(751\) −11.2811 −0.411653 −0.205827 0.978588i \(-0.565988\pi\)
−0.205827 + 0.978588i \(0.565988\pi\)
\(752\) 8.26867 0.301528
\(753\) −45.2689 −1.64969
\(754\) −4.82542 −0.175732
\(755\) 0 0
\(756\) −5.53358 −0.201254
\(757\) −13.9885 −0.508420 −0.254210 0.967149i \(-0.581815\pi\)
−0.254210 + 0.967149i \(0.581815\pi\)
\(758\) −13.1580 −0.477920
\(759\) −16.1401 −0.585847
\(760\) 0 0
\(761\) 23.9575 0.868460 0.434230 0.900802i \(-0.357021\pi\)
0.434230 + 0.900802i \(0.357021\pi\)
\(762\) −0.853504 −0.0309192
\(763\) 4.13495 0.149695
\(764\) −19.5123 −0.705932
\(765\) 0 0
\(766\) −25.8537 −0.934133
\(767\) 14.1223 0.509927
\(768\) −1.58141 −0.0570642
\(769\) 14.8024 0.533789 0.266895 0.963726i \(-0.414002\pi\)
0.266895 + 0.963726i \(0.414002\pi\)
\(770\) 0 0
\(771\) −15.2931 −0.550769
\(772\) −2.08248 −0.0749501
\(773\) −13.8809 −0.499262 −0.249631 0.968341i \(-0.580309\pi\)
−0.249631 + 0.968341i \(0.580309\pi\)
\(774\) 5.18669 0.186432
\(775\) 0 0
\(776\) −14.0489 −0.504327
\(777\) −14.1102 −0.506200
\(778\) 28.0199 1.00456
\(779\) −45.7126 −1.63782
\(780\) 0 0
\(781\) 29.2151 1.04540
\(782\) −4.11626 −0.147197
\(783\) −17.9831 −0.642665
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) 12.7695 0.455472
\(787\) −12.2264 −0.435823 −0.217912 0.975968i \(-0.569924\pi\)
−0.217912 + 0.975968i \(0.569924\pi\)
\(788\) 6.86555 0.244575
\(789\) 16.6561 0.592972
\(790\) 0 0
\(791\) −3.67558 −0.130688
\(792\) −1.23760 −0.0439763
\(793\) 14.6537 0.520368
\(794\) 22.4810 0.797820
\(795\) 0 0
\(796\) −7.97203 −0.282561
\(797\) 32.2049 1.14076 0.570378 0.821382i \(-0.306797\pi\)
0.570378 + 0.821382i \(0.306797\pi\)
\(798\) −7.67492 −0.271689
\(799\) −8.26867 −0.292525
\(800\) 0 0
\(801\) −7.68453 −0.271519
\(802\) −24.3231 −0.858877
\(803\) −25.8839 −0.913422
\(804\) 24.9939 0.881466
\(805\) 0 0
\(806\) −7.32334 −0.257954
\(807\) 15.4654 0.544408
\(808\) 8.31807 0.292629
\(809\) 5.71907 0.201072 0.100536 0.994933i \(-0.467944\pi\)
0.100536 + 0.994933i \(0.467944\pi\)
\(810\) 0 0
\(811\) 53.4561 1.87710 0.938549 0.345146i \(-0.112171\pi\)
0.938549 + 0.345146i \(0.112171\pi\)
\(812\) 3.24982 0.114046
\(813\) 29.6327 1.03926
\(814\) −22.1231 −0.775414
\(815\) 0 0
\(816\) 1.58141 0.0553604
\(817\) 50.4309 1.76435
\(818\) 28.8624 1.00915
\(819\) 0.741138 0.0258975
\(820\) 0 0
\(821\) 46.8617 1.63548 0.817742 0.575585i \(-0.195226\pi\)
0.817742 + 0.575585i \(0.195226\pi\)
\(822\) 16.0935 0.561325
\(823\) −42.3243 −1.47533 −0.737666 0.675166i \(-0.764072\pi\)
−0.737666 + 0.675166i \(0.764072\pi\)
\(824\) 16.1282 0.561851
\(825\) 0 0
\(826\) −9.51108 −0.330933
\(827\) 50.2887 1.74871 0.874354 0.485289i \(-0.161285\pi\)
0.874354 + 0.485289i \(0.161285\pi\)
\(828\) −2.05459 −0.0714020
\(829\) 27.5620 0.957269 0.478634 0.878014i \(-0.341132\pi\)
0.478634 + 0.878014i \(0.341132\pi\)
\(830\) 0 0
\(831\) 29.0907 1.00915
\(832\) 1.48483 0.0514771
\(833\) −1.00000 −0.0346479
\(834\) 28.3310 0.981023
\(835\) 0 0
\(836\) −12.0334 −0.416183
\(837\) −27.2922 −0.943358
\(838\) 16.3304 0.564123
\(839\) 14.6191 0.504707 0.252353 0.967635i \(-0.418795\pi\)
0.252353 + 0.967635i \(0.418795\pi\)
\(840\) 0 0
\(841\) −18.4387 −0.635816
\(842\) −26.6939 −0.919934
\(843\) 24.3809 0.839722
\(844\) 9.87489 0.339908
\(845\) 0 0
\(846\) −4.12723 −0.141897
\(847\) 4.85225 0.166725
\(848\) −4.09224 −0.140528
\(849\) −5.07142 −0.174051
\(850\) 0 0
\(851\) −36.7274 −1.25900
\(852\) −18.6335 −0.638372
\(853\) 26.4546 0.905788 0.452894 0.891564i \(-0.350392\pi\)
0.452894 + 0.891564i \(0.350392\pi\)
\(854\) −9.86895 −0.337709
\(855\) 0 0
\(856\) 2.19983 0.0751885
\(857\) −0.294081 −0.0100456 −0.00502280 0.999987i \(-0.501599\pi\)
−0.00502280 + 0.999987i \(0.501599\pi\)
\(858\) −5.82209 −0.198763
\(859\) 16.6946 0.569612 0.284806 0.958585i \(-0.408071\pi\)
0.284806 + 0.958585i \(0.408071\pi\)
\(860\) 0 0
\(861\) 14.8954 0.507633
\(862\) −6.02989 −0.205379
\(863\) −7.15399 −0.243525 −0.121762 0.992559i \(-0.538855\pi\)
−0.121762 + 0.992559i \(0.538855\pi\)
\(864\) 5.53358 0.188256
\(865\) 0 0
\(866\) −16.9902 −0.577350
\(867\) −1.58141 −0.0537075
\(868\) 4.93212 0.167407
\(869\) −39.0644 −1.32517
\(870\) 0 0
\(871\) −23.4674 −0.795163
\(872\) −4.13495 −0.140027
\(873\) 7.01239 0.237334
\(874\) −19.9771 −0.675735
\(875\) 0 0
\(876\) 16.5088 0.557781
\(877\) 19.9502 0.673670 0.336835 0.941564i \(-0.390644\pi\)
0.336835 + 0.941564i \(0.390644\pi\)
\(878\) −20.3664 −0.687333
\(879\) −0.600349 −0.0202493
\(880\) 0 0
\(881\) 57.6910 1.94366 0.971829 0.235685i \(-0.0757334\pi\)
0.971829 + 0.235685i \(0.0757334\pi\)
\(882\) −0.499141 −0.0168069
\(883\) −1.74844 −0.0588396 −0.0294198 0.999567i \(-0.509366\pi\)
−0.0294198 + 0.999567i \(0.509366\pi\)
\(884\) −1.48483 −0.0499402
\(885\) 0 0
\(886\) −12.5581 −0.421898
\(887\) 5.63604 0.189240 0.0946199 0.995513i \(-0.469836\pi\)
0.0946199 + 0.995513i \(0.469836\pi\)
\(888\) 14.1102 0.473506
\(889\) −0.539711 −0.0181013
\(890\) 0 0
\(891\) −17.9846 −0.602508
\(892\) −0.615959 −0.0206238
\(893\) −40.1296 −1.34289
\(894\) 8.89488 0.297489
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) −9.66548 −0.322721
\(898\) 25.7519 0.859353
\(899\) 16.0285 0.534580
\(900\) 0 0
\(901\) 4.09224 0.136332
\(902\) 23.3542 0.777609
\(903\) −16.4328 −0.546850
\(904\) 3.67558 0.122248
\(905\) 0 0
\(906\) −26.8986 −0.893647
\(907\) −38.5509 −1.28006 −0.640031 0.768349i \(-0.721079\pi\)
−0.640031 + 0.768349i \(0.721079\pi\)
\(908\) −13.0080 −0.431685
\(909\) −4.15189 −0.137709
\(910\) 0 0
\(911\) 2.35799 0.0781237 0.0390618 0.999237i \(-0.487563\pi\)
0.0390618 + 0.999237i \(0.487563\pi\)
\(912\) 7.67492 0.254142
\(913\) −42.1484 −1.39491
\(914\) 28.4616 0.941426
\(915\) 0 0
\(916\) 16.7881 0.554695
\(917\) 8.07474 0.266651
\(918\) −5.53358 −0.182635
\(919\) 47.1055 1.55387 0.776934 0.629582i \(-0.216774\pi\)
0.776934 + 0.629582i \(0.216774\pi\)
\(920\) 0 0
\(921\) 9.45202 0.311455
\(922\) −3.91476 −0.128926
\(923\) 17.4955 0.575870
\(924\) 3.92105 0.128993
\(925\) 0 0
\(926\) 24.4445 0.803296
\(927\) −8.05022 −0.264404
\(928\) −3.24982 −0.106681
\(929\) −1.58032 −0.0518487 −0.0259243 0.999664i \(-0.508253\pi\)
−0.0259243 + 0.999664i \(0.508253\pi\)
\(930\) 0 0
\(931\) −4.85321 −0.159058
\(932\) 7.50071 0.245694
\(933\) 48.2336 1.57910
\(934\) −15.8270 −0.517874
\(935\) 0 0
\(936\) −0.741138 −0.0242248
\(937\) −32.8668 −1.07371 −0.536856 0.843674i \(-0.680388\pi\)
−0.536856 + 0.843674i \(0.680388\pi\)
\(938\) 15.8048 0.516045
\(939\) −32.4756 −1.05980
\(940\) 0 0
\(941\) 7.67130 0.250077 0.125039 0.992152i \(-0.460095\pi\)
0.125039 + 0.992152i \(0.460095\pi\)
\(942\) 13.8653 0.451756
\(943\) 38.7712 1.26256
\(944\) 9.51108 0.309559
\(945\) 0 0
\(946\) −25.7647 −0.837684
\(947\) −43.5425 −1.41494 −0.707470 0.706744i \(-0.750163\pi\)
−0.707470 + 0.706744i \(0.750163\pi\)
\(948\) 24.9154 0.809215
\(949\) −15.5006 −0.503170
\(950\) 0 0
\(951\) 15.4924 0.502377
\(952\) 1.00000 0.0324102
\(953\) 40.6687 1.31739 0.658694 0.752411i \(-0.271109\pi\)
0.658694 + 0.752411i \(0.271109\pi\)
\(954\) 2.04260 0.0661317
\(955\) 0 0
\(956\) −7.82561 −0.253098
\(957\) 12.7427 0.411914
\(958\) 34.7707 1.12339
\(959\) 10.1767 0.328622
\(960\) 0 0
\(961\) −6.67423 −0.215298
\(962\) −13.2484 −0.427146
\(963\) −1.09802 −0.0353833
\(964\) −22.5508 −0.726313
\(965\) 0 0
\(966\) 6.50950 0.209440
\(967\) −29.1570 −0.937625 −0.468813 0.883298i \(-0.655318\pi\)
−0.468813 + 0.883298i \(0.655318\pi\)
\(968\) −4.85225 −0.155957
\(969\) −7.67492 −0.246554
\(970\) 0 0
\(971\) 36.8404 1.18227 0.591133 0.806574i \(-0.298681\pi\)
0.591133 + 0.806574i \(0.298681\pi\)
\(972\) −5.13007 −0.164547
\(973\) 17.9150 0.574330
\(974\) −30.7487 −0.985252
\(975\) 0 0
\(976\) 9.86895 0.315897
\(977\) −11.2487 −0.359876 −0.179938 0.983678i \(-0.557590\pi\)
−0.179938 + 0.983678i \(0.557590\pi\)
\(978\) 25.1986 0.805762
\(979\) 38.1726 1.22000
\(980\) 0 0
\(981\) 2.06392 0.0658960
\(982\) 33.6199 1.07285
\(983\) 34.7209 1.10743 0.553713 0.832708i \(-0.313211\pi\)
0.553713 + 0.832708i \(0.313211\pi\)
\(984\) −14.8954 −0.474847
\(985\) 0 0
\(986\) 3.24982 0.103495
\(987\) 13.0762 0.416219
\(988\) −7.20618 −0.229259
\(989\) −42.7731 −1.36010
\(990\) 0 0
\(991\) 9.11416 0.289521 0.144760 0.989467i \(-0.453759\pi\)
0.144760 + 0.989467i \(0.453759\pi\)
\(992\) −4.93212 −0.156595
\(993\) 14.8477 0.471176
\(994\) −11.7828 −0.373728
\(995\) 0 0
\(996\) 26.8824 0.851800
\(997\) 23.6110 0.747768 0.373884 0.927476i \(-0.378026\pi\)
0.373884 + 0.927476i \(0.378026\pi\)
\(998\) −31.2932 −0.990568
\(999\) −49.3735 −1.56211
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5950.2.a.cc.1.3 7
5.2 odd 4 1190.2.e.g.239.12 yes 14
5.3 odd 4 1190.2.e.g.239.3 14
5.4 even 2 5950.2.a.cb.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.e.g.239.3 14 5.3 odd 4
1190.2.e.g.239.12 yes 14 5.2 odd 4
5950.2.a.cb.1.5 7 5.4 even 2
5950.2.a.cc.1.3 7 1.1 even 1 trivial