Properties

Label 2-1190-5.4-c1-0-20
Degree $2$
Conductor $1190$
Sign $0.291 - 0.956i$
Analytic cond. $9.50219$
Root an. cond. $3.08256$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + 1.58i·3-s − 4-s + (−2.13 − 0.651i)5-s − 1.58·6-s i·7-s i·8-s + 0.499·9-s + (0.651 − 2.13i)10-s + 2.47·11-s − 1.58i·12-s − 1.48i·13-s + 14-s + (1.02 − 3.38i)15-s + 16-s i·17-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.913i·3-s − 0.5·4-s + (−0.956 − 0.291i)5-s − 0.645·6-s − 0.377i·7-s − 0.353i·8-s + 0.166·9-s + (0.205 − 0.676i)10-s + 0.747·11-s − 0.456i·12-s − 0.411i·13-s + 0.267·14-s + (0.265 − 0.873i)15-s + 0.250·16-s − 0.242i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.291 - 0.956i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.291 - 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1190\)    =    \(2 \cdot 5 \cdot 7 \cdot 17\)
Sign: $0.291 - 0.956i$
Analytic conductor: \(9.50219\)
Root analytic conductor: \(3.08256\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1190} (239, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1190,\ (\ :1/2),\ 0.291 - 0.956i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.403550901\)
\(L(\frac12)\) \(\approx\) \(1.403550901\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
5 \( 1 + (2.13 + 0.651i)T \)
7 \( 1 + iT \)
17 \( 1 + iT \)
good3 \( 1 - 1.58iT - 3T^{2} \)
11 \( 1 - 2.47T + 11T^{2} \)
13 \( 1 + 1.48iT - 13T^{2} \)
19 \( 1 - 4.85T + 19T^{2} \)
23 \( 1 + 4.11iT - 23T^{2} \)
29 \( 1 - 3.24T + 29T^{2} \)
31 \( 1 + 4.93T + 31T^{2} \)
37 \( 1 + 8.92iT - 37T^{2} \)
41 \( 1 - 9.41T + 41T^{2} \)
43 \( 1 - 10.3iT - 43T^{2} \)
47 \( 1 - 8.26iT - 47T^{2} \)
53 \( 1 - 4.09iT - 53T^{2} \)
59 \( 1 + 9.51T + 59T^{2} \)
61 \( 1 - 9.86T + 61T^{2} \)
67 \( 1 + 15.8iT - 67T^{2} \)
71 \( 1 - 11.7T + 71T^{2} \)
73 \( 1 - 10.4iT - 73T^{2} \)
79 \( 1 - 15.7T + 79T^{2} \)
83 \( 1 - 16.9iT - 83T^{2} \)
89 \( 1 + 15.3T + 89T^{2} \)
97 \( 1 + 14.0iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.527955687915654784707436466814, −9.316309028095978431779710522651, −8.172235281342471735073592716267, −7.51511549105425910758102837039, −6.74228991711210345760737747005, −5.57045580706686372250952659789, −4.62008955099790559163656054715, −4.09363417902726841328024424600, −3.19956390619743792427154581203, −0.908124392278879679092600143990, 0.952330962302198965540440821541, 2.06850922923517315346902717270, 3.32743027787136869246194298226, 4.09790129312164655676070301210, 5.24508420394466476768606258398, 6.46245063853352091345259217443, 7.19923467861710920100385644068, 7.905078207066046419110495596544, 8.781108548164108670878561884189, 9.594083990544641718135709675152

Graph of the $Z$-function along the critical line