Properties

Label 119.5.d.a.118.3
Level $119$
Weight $5$
Character 119.118
Self dual yes
Analytic conductor $12.301$
Analytic rank $0$
Dimension $5$
CM discriminant -119
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [119,5,Mod(118,119)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("119.118"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(119, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 119.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,80,0,-235] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3010256070\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.44253125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 10x^{3} + 20x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 118.3
Root \(-2.63923\) of defining polynomial
Character \(\chi\) \(=\) 119.118

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.794362 q^{2} +12.4018 q^{3} -15.3690 q^{4} +25.8998 q^{5} +9.85151 q^{6} +49.0000 q^{7} -24.9183 q^{8} +72.8042 q^{9} +20.5738 q^{10} -190.603 q^{12} +38.9238 q^{14} +321.204 q^{15} +226.110 q^{16} +289.000 q^{17} +57.8329 q^{18} -398.054 q^{20} +607.687 q^{21} -309.032 q^{24} +45.7995 q^{25} -101.643 q^{27} -753.080 q^{28} +255.152 q^{30} +1062.38 q^{31} +578.306 q^{32} +229.571 q^{34} +1269.09 q^{35} -1118.93 q^{36} -645.380 q^{40} +116.933 q^{41} +482.724 q^{42} -2454.86 q^{43} +1885.61 q^{45} +2804.16 q^{48} +2401.00 q^{49} +36.3814 q^{50} +3584.11 q^{51} -1301.69 q^{53} -80.7410 q^{54} -1221.00 q^{56} -4936.58 q^{60} -7293.40 q^{61} +843.912 q^{62} +3567.41 q^{63} -3158.37 q^{64} -8519.10 q^{67} -4441.64 q^{68} +1008.12 q^{70} -1814.16 q^{72} -5897.40 q^{73} +567.996 q^{75} +5856.19 q^{80} -7157.69 q^{81} +92.8875 q^{82} -9339.54 q^{84} +7485.04 q^{85} -1950.05 q^{86} +1497.86 q^{90} +13175.4 q^{93} +7172.03 q^{96} -39.2350 q^{97} +1907.26 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 80 q^{4} - 235 q^{6} + 245 q^{7} + 405 q^{9} + 1280 q^{16} + 1445 q^{17} - 1355 q^{20} - 3760 q^{24} + 3125 q^{25} + 3920 q^{28} + 8405 q^{30} + 4885 q^{32} + 4565 q^{36} + 10645 q^{40} - 11515 q^{42}+ \cdots - 60160 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/119\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.794362 0.198591 0.0992953 0.995058i \(-0.468341\pi\)
0.0992953 + 0.995058i \(0.468341\pi\)
\(3\) 12.4018 1.37798 0.688988 0.724773i \(-0.258055\pi\)
0.688988 + 0.724773i \(0.258055\pi\)
\(4\) −15.3690 −0.960562
\(5\) 25.8998 1.03599 0.517996 0.855383i \(-0.326678\pi\)
0.517996 + 0.855383i \(0.326678\pi\)
\(6\) 9.85151 0.273653
\(7\) 49.0000 1.00000
\(8\) −24.9183 −0.389349
\(9\) 72.8042 0.898817
\(10\) 20.5738 0.205738
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) −190.603 −1.32363
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 38.9238 0.198591
\(15\) 321.204 1.42757
\(16\) 226.110 0.883241
\(17\) 289.000 1.00000
\(18\) 57.8329 0.178497
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −398.054 −0.995134
\(21\) 607.687 1.37798
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −309.032 −0.536514
\(25\) 45.7995 0.0732792
\(26\) 0 0
\(27\) −101.643 −0.139427
\(28\) −753.080 −0.960562
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 255.152 0.283502
\(31\) 1062.38 1.10549 0.552745 0.833350i \(-0.313580\pi\)
0.552745 + 0.833350i \(0.313580\pi\)
\(32\) 578.306 0.564752
\(33\) 0 0
\(34\) 229.571 0.198591
\(35\) 1269.09 1.03599
\(36\) −1118.93 −0.863369
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −645.380 −0.403363
\(41\) 116.933 0.0695618 0.0347809 0.999395i \(-0.488927\pi\)
0.0347809 + 0.999395i \(0.488927\pi\)
\(42\) 482.724 0.273653
\(43\) −2454.86 −1.32767 −0.663833 0.747881i \(-0.731072\pi\)
−0.663833 + 0.747881i \(0.731072\pi\)
\(44\) 0 0
\(45\) 1885.61 0.931167
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 2804.16 1.21708
\(49\) 2401.00 1.00000
\(50\) 36.3814 0.0145526
\(51\) 3584.11 1.37798
\(52\) 0 0
\(53\) −1301.69 −0.463399 −0.231700 0.972787i \(-0.574429\pi\)
−0.231700 + 0.972787i \(0.574429\pi\)
\(54\) −80.7410 −0.0276890
\(55\) 0 0
\(56\) −1221.00 −0.389349
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −4936.58 −1.37127
\(61\) −7293.40 −1.96006 −0.980032 0.198839i \(-0.936283\pi\)
−0.980032 + 0.198839i \(0.936283\pi\)
\(62\) 843.912 0.219540
\(63\) 3567.41 0.898817
\(64\) −3158.37 −0.771086
\(65\) 0 0
\(66\) 0 0
\(67\) −8519.10 −1.89777 −0.948887 0.315617i \(-0.897789\pi\)
−0.948887 + 0.315617i \(0.897789\pi\)
\(68\) −4441.64 −0.960562
\(69\) 0 0
\(70\) 1008.12 0.205738
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −1814.16 −0.349954
\(73\) −5897.40 −1.10666 −0.553330 0.832962i \(-0.686643\pi\)
−0.553330 + 0.832962i \(0.686643\pi\)
\(74\) 0 0
\(75\) 567.996 0.100977
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 5856.19 0.915030
\(81\) −7157.69 −1.09094
\(82\) 92.8875 0.0138143
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) −9339.54 −1.32363
\(85\) 7485.04 1.03599
\(86\) −1950.05 −0.263662
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 1497.86 0.184921
\(91\) 0 0
\(92\) 0 0
\(93\) 13175.4 1.52334
\(94\) 0 0
\(95\) 0 0
\(96\) 7172.03 0.778215
\(97\) −39.2350 −0.00416995 −0.00208497 0.999998i \(-0.500664\pi\)
−0.00208497 + 0.999998i \(0.500664\pi\)
\(98\) 1907.26 0.198591
\(99\) 0 0
\(100\) −703.892 −0.0703892
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 2847.09 0.273653
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 15739.0 1.42757
\(106\) −1034.01 −0.0920267
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 1562.14 0.133929
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 11079.4 0.883241
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 14161.0 1.00000
\(120\) −8003.86 −0.555824
\(121\) 14641.0 1.00000
\(122\) −5793.60 −0.389250
\(123\) 1450.18 0.0958545
\(124\) −16327.6 −1.06189
\(125\) −15001.2 −0.960075
\(126\) 2833.81 0.178497
\(127\) 30747.4 1.90634 0.953172 0.302428i \(-0.0977972\pi\)
0.953172 + 0.302428i \(0.0977972\pi\)
\(128\) −11761.8 −0.717883
\(129\) −30444.6 −1.82949
\(130\) 0 0
\(131\) −34222.0 −1.99417 −0.997086 0.0762803i \(-0.975696\pi\)
−0.997086 + 0.0762803i \(0.975696\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −6767.26 −0.376880
\(135\) −2632.52 −0.144446
\(136\) −7201.40 −0.389349
\(137\) 24351.7 1.29744 0.648720 0.761027i \(-0.275304\pi\)
0.648720 + 0.761027i \(0.275304\pi\)
\(138\) 0 0
\(139\) 30042.9 1.55493 0.777467 0.628923i \(-0.216504\pi\)
0.777467 + 0.628923i \(0.216504\pi\)
\(140\) −19504.6 −0.995134
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 16461.7 0.793872
\(145\) 0 0
\(146\) −4684.67 −0.219772
\(147\) 29776.7 1.37798
\(148\) 0 0
\(149\) −41345.3 −1.86232 −0.931158 0.364615i \(-0.881200\pi\)
−0.931158 + 0.364615i \(0.881200\pi\)
\(150\) 451.194 0.0200531
\(151\) 44743.9 1.96237 0.981183 0.193082i \(-0.0618482\pi\)
0.981183 + 0.193082i \(0.0618482\pi\)
\(152\) 0 0
\(153\) 21040.4 0.898817
\(154\) 0 0
\(155\) 27515.3 1.14528
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) −16143.3 −0.638553
\(160\) 14978.0 0.585079
\(161\) 0 0
\(162\) −5685.80 −0.216651
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −1797.15 −0.0668184
\(165\) 0 0
\(166\) 0 0
\(167\) 55550.1 1.99183 0.995914 0.0903095i \(-0.0287856\pi\)
0.995914 + 0.0903095i \(0.0287856\pi\)
\(168\) −15142.6 −0.536514
\(169\) 28561.0 1.00000
\(170\) 5945.84 0.205738
\(171\) 0 0
\(172\) 37728.6 1.27531
\(173\) 22434.3 0.749584 0.374792 0.927109i \(-0.377714\pi\)
0.374792 + 0.927109i \(0.377714\pi\)
\(174\) 0 0
\(175\) 2244.18 0.0732792
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −58146.3 −1.81475 −0.907374 0.420324i \(-0.861916\pi\)
−0.907374 + 0.420324i \(0.861916\pi\)
\(180\) −28980.0 −0.894444
\(181\) −3022.00 −0.0922438 −0.0461219 0.998936i \(-0.514686\pi\)
−0.0461219 + 0.998936i \(0.514686\pi\)
\(182\) 0 0
\(183\) −90451.1 −2.70092
\(184\) 0 0
\(185\) 0 0
\(186\) 10466.0 0.302521
\(187\) 0 0
\(188\) 0 0
\(189\) −4980.49 −0.139427
\(190\) 0 0
\(191\) −65532.2 −1.79634 −0.898169 0.439651i \(-0.855102\pi\)
−0.898169 + 0.439651i \(0.855102\pi\)
\(192\) −39169.4 −1.06254
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) −31.1668 −0.000828112 0
\(195\) 0 0
\(196\) −36900.9 −0.960562
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 38909.3 0.982534 0.491267 0.871009i \(-0.336534\pi\)
0.491267 + 0.871009i \(0.336534\pi\)
\(200\) −1141.25 −0.0285312
\(201\) −105652. −2.61509
\(202\) 0 0
\(203\) 0 0
\(204\) −55084.2 −1.32363
\(205\) 3028.55 0.0720655
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 12502.5 0.283502
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 20005.6 0.445124
\(213\) 0 0
\(214\) 0 0
\(215\) −63580.3 −1.37545
\(216\) 2532.76 0.0542859
\(217\) 52056.4 1.10549
\(218\) 0 0
\(219\) −73138.2 −1.52495
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 28337.0 0.564752
\(225\) 3334.40 0.0658646
\(226\) 0 0
\(227\) 102825. 1.99547 0.997737 0.0672347i \(-0.0214176\pi\)
0.997737 + 0.0672347i \(0.0214176\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 11249.0 0.198591
\(239\) 16135.2 0.282474 0.141237 0.989976i \(-0.454892\pi\)
0.141237 + 0.989976i \(0.454892\pi\)
\(240\) 72627.2 1.26089
\(241\) −95660.6 −1.64702 −0.823510 0.567301i \(-0.807988\pi\)
−0.823510 + 0.567301i \(0.807988\pi\)
\(242\) 11630.3 0.198591
\(243\) −80535.0 −1.36387
\(244\) 112092. 1.88276
\(245\) 62185.4 1.03599
\(246\) 1151.97 0.0190358
\(247\) 0 0
\(248\) −26472.7 −0.430422
\(249\) 0 0
\(250\) −11916.4 −0.190662
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −54827.4 −0.863369
\(253\) 0 0
\(254\) 24424.6 0.378582
\(255\) 92827.9 1.42757
\(256\) 41190.8 0.628521
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) −24184.0 −0.363320
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −27184.7 −0.396024
\(263\) −135838. −1.96386 −0.981928 0.189253i \(-0.939393\pi\)
−0.981928 + 0.189253i \(0.939393\pi\)
\(264\) 0 0
\(265\) −33713.5 −0.480078
\(266\) 0 0
\(267\) 0 0
\(268\) 130930. 1.82293
\(269\) 76178.0 1.05275 0.526375 0.850253i \(-0.323551\pi\)
0.526375 + 0.850253i \(0.323551\pi\)
\(270\) −2091.18 −0.0286856
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 65345.7 0.883241
\(273\) 0 0
\(274\) 19344.0 0.257660
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 23864.9 0.308795
\(279\) 77345.4 0.993634
\(280\) −31623.6 −0.403363
\(281\) 141526. 1.79235 0.896177 0.443697i \(-0.146333\pi\)
0.896177 + 0.443697i \(0.146333\pi\)
\(282\) 0 0
\(283\) −94677.5 −1.18215 −0.591077 0.806615i \(-0.701297\pi\)
−0.591077 + 0.806615i \(0.701297\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5729.74 0.0695618
\(288\) 42103.1 0.507609
\(289\) 83521.0 1.00000
\(290\) 0 0
\(291\) −486.584 −0.00574608
\(292\) 90637.0 1.06302
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 23653.5 0.273653
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −32843.1 −0.369839
\(299\) 0 0
\(300\) −8729.52 −0.0969947
\(301\) −120288. −1.32767
\(302\) 35542.9 0.389707
\(303\) 0 0
\(304\) 0 0
\(305\) −188898. −2.03061
\(306\) 16713.7 0.178497
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 21857.1 0.227442
\(311\) −187327. −1.93677 −0.968386 0.249455i \(-0.919749\pi\)
−0.968386 + 0.249455i \(0.919749\pi\)
\(312\) 0 0
\(313\) 50454.4 0.515004 0.257502 0.966278i \(-0.417101\pi\)
0.257502 + 0.966278i \(0.417101\pi\)
\(314\) 0 0
\(315\) 92395.1 0.931167
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) −12823.6 −0.126811
\(319\) 0 0
\(320\) −81801.1 −0.798839
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 110006. 1.04792
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) −2913.79 −0.0270838
\(329\) 0 0
\(330\) 0 0
\(331\) 21001.9 0.191691 0.0958457 0.995396i \(-0.469444\pi\)
0.0958457 + 0.995396i \(0.469444\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 44126.9 0.395558
\(335\) −220643. −1.96608
\(336\) 137404. 1.21708
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 22687.8 0.198591
\(339\) 0 0
\(340\) −115038. −0.995134
\(341\) 0 0
\(342\) 0 0
\(343\) 117649. 1.00000
\(344\) 61170.9 0.516926
\(345\) 0 0
\(346\) 17821.0 0.148860
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 1782.69 0.0145526
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 175622. 1.37798
\(358\) −46189.3 −0.360392
\(359\) −239486. −1.85820 −0.929099 0.369832i \(-0.879415\pi\)
−0.929099 + 0.369832i \(0.879415\pi\)
\(360\) −46986.4 −0.362549
\(361\) 130321. 1.00000
\(362\) −2400.56 −0.0183188
\(363\) 181574. 1.37798
\(364\) 0 0
\(365\) −152741. −1.14649
\(366\) −71851.0 −0.536377
\(367\) −126442. −0.938772 −0.469386 0.882993i \(-0.655525\pi\)
−0.469386 + 0.882993i \(0.655525\pi\)
\(368\) 0 0
\(369\) 8513.25 0.0625234
\(370\) 0 0
\(371\) −63782.7 −0.463399
\(372\) −202492. −1.46326
\(373\) 87331.3 0.627700 0.313850 0.949473i \(-0.398381\pi\)
0.313850 + 0.949473i \(0.398381\pi\)
\(374\) 0 0
\(375\) −186041. −1.32296
\(376\) 0 0
\(377\) 0 0
\(378\) −3956.31 −0.0276890
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 381323. 2.62690
\(382\) −52056.3 −0.356736
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) −145867. −0.989225
\(385\) 0 0
\(386\) 0 0
\(387\) −178724. −1.19333
\(388\) 603.002 0.00400549
\(389\) 300785. 1.98773 0.993863 0.110617i \(-0.0352826\pi\)
0.993863 + 0.110617i \(0.0352826\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −59828.9 −0.389349
\(393\) −424414. −2.74792
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 308116. 1.95494 0.977471 0.211071i \(-0.0676952\pi\)
0.977471 + 0.211071i \(0.0676952\pi\)
\(398\) 30908.1 0.195122
\(399\) 0 0
\(400\) 10355.7 0.0647232
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) −83926.0 −0.519331
\(403\) 0 0
\(404\) 0 0
\(405\) −185383. −1.13021
\(406\) 0 0
\(407\) 0 0
\(408\) −89310.2 −0.536514
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 2405.77 0.0143115
\(411\) 302004. 1.78784
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 372585. 2.14266
\(418\) 0 0
\(419\) −195169. −1.11169 −0.555845 0.831286i \(-0.687605\pi\)
−0.555845 + 0.831286i \(0.687605\pi\)
\(420\) −241892. −1.37127
\(421\) 267676. 1.51024 0.755120 0.655587i \(-0.227579\pi\)
0.755120 + 0.655587i \(0.227579\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 32435.9 0.180424
\(425\) 13236.1 0.0732792
\(426\) 0 0
\(427\) −357377. −1.96006
\(428\) 0 0
\(429\) 0 0
\(430\) −50505.8 −0.273152
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −22982.4 −0.123148
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 41351.7 0.219540
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −58098.2 −0.302841
\(439\) −373549. −1.93829 −0.969144 0.246495i \(-0.920721\pi\)
−0.969144 + 0.246495i \(0.920721\pi\)
\(440\) 0 0
\(441\) 174803. 0.898817
\(442\) 0 0
\(443\) −224398. −1.14344 −0.571718 0.820451i \(-0.693723\pi\)
−0.571718 + 0.820451i \(0.693723\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −512755. −2.56623
\(448\) −154760. −0.771086
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 2648.72 0.0130801
\(451\) 0 0
\(452\) 0 0
\(453\) 554904. 2.70409
\(454\) 81680.2 0.396282
\(455\) 0 0
\(456\) 0 0
\(457\) 82598.7 0.395495 0.197747 0.980253i \(-0.436637\pi\)
0.197747 + 0.980253i \(0.436637\pi\)
\(458\) 0 0
\(459\) −29374.7 −0.139427
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 400145. 1.86662 0.933309 0.359075i \(-0.116908\pi\)
0.933309 + 0.359075i \(0.116908\pi\)
\(464\) 0 0
\(465\) 341239. 1.57817
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) −417436. −1.89777
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −217640. −0.960562
\(477\) −94768.4 −0.416511
\(478\) 12817.2 0.0560966
\(479\) −32806.6 −0.142985 −0.0714925 0.997441i \(-0.522776\pi\)
−0.0714925 + 0.997441i \(0.522776\pi\)
\(480\) 185754. 0.806225
\(481\) 0 0
\(482\) −75989.2 −0.327083
\(483\) 0 0
\(484\) −225017. −0.960562
\(485\) −1016.18 −0.00432003
\(486\) −63974.0 −0.270851
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 181739. 0.763149
\(489\) 0 0
\(490\) 49397.8 0.205738
\(491\) 331542. 1.37523 0.687615 0.726075i \(-0.258658\pi\)
0.687615 + 0.726075i \(0.258658\pi\)
\(492\) −22287.8 −0.0920742
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 240213. 0.976414
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 230553. 0.922212
\(501\) 688920. 2.74469
\(502\) 0 0
\(503\) −377553. −1.49225 −0.746126 0.665804i \(-0.768089\pi\)
−0.746126 + 0.665804i \(0.768089\pi\)
\(504\) −88893.8 −0.349954
\(505\) 0 0
\(506\) 0 0
\(507\) 354207. 1.37798
\(508\) −472557. −1.83116
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 73739.0 0.283502
\(511\) −288972. −1.10666
\(512\) 220909. 0.842701
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 467902. 1.75734
\(517\) 0 0
\(518\) 0 0
\(519\) 278225. 1.03291
\(520\) 0 0
\(521\) 517415. 1.90618 0.953090 0.302687i \(-0.0978837\pi\)
0.953090 + 0.302687i \(0.0978837\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 525958. 1.91553
\(525\) 27831.8 0.100977
\(526\) −107905. −0.390003
\(527\) 307027. 1.10549
\(528\) 0 0
\(529\) 279841. 1.00000
\(530\) −26780.7 −0.0953389
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 212282. 0.738896
\(537\) −721118. −2.50068
\(538\) 60512.9 0.209066
\(539\) 0 0
\(540\) 40459.2 0.138749
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −37478.2 −0.127110
\(544\) 167131. 0.564752
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −374261. −1.24627
\(549\) −530990. −1.76174
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −461729. −1.49361
\(557\) 3602.00 0.0116100 0.00580501 0.999983i \(-0.498152\pi\)
0.00580501 + 0.999983i \(0.498152\pi\)
\(558\) 61440.3 0.197326
\(559\) 0 0
\(560\) 286953. 0.915030
\(561\) 0 0
\(562\) 112423. 0.355945
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −75208.3 −0.234765
\(567\) −350727. −1.09094
\(568\) 0 0
\(569\) 550541. 1.70045 0.850227 0.526417i \(-0.176465\pi\)
0.850227 + 0.526417i \(0.176465\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −812716. −2.47531
\(574\) 4551.49 0.0138143
\(575\) 0 0
\(576\) −229943. −0.693066
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 66345.9 0.198591
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) −386.524 −0.00114112
\(583\) 0 0
\(584\) 146953. 0.430877
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −457637. −1.32363
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 366767. 1.03599
\(596\) 635435. 1.78887
\(597\) 482545. 1.35391
\(598\) 0 0
\(599\) −685678. −1.91102 −0.955512 0.294951i \(-0.904697\pi\)
−0.955512 + 0.294951i \(0.904697\pi\)
\(600\) −14153.5 −0.0393153
\(601\) −374302. −1.03627 −0.518135 0.855299i \(-0.673374\pi\)
−0.518135 + 0.855299i \(0.673374\pi\)
\(602\) −95552.2 −0.263662
\(603\) −620227. −1.70575
\(604\) −687668. −1.88497
\(605\) 379199. 1.03599
\(606\) 0 0
\(607\) 717666. 1.94780 0.973901 0.226972i \(-0.0728827\pi\)
0.973901 + 0.226972i \(0.0728827\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −150053. −0.403260
\(611\) 0 0
\(612\) −323370. −0.863369
\(613\) −711553. −1.89359 −0.946796 0.321834i \(-0.895701\pi\)
−0.946796 + 0.321834i \(0.895701\pi\)
\(614\) 0 0
\(615\) 37559.4 0.0993045
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 697778. 1.82111 0.910555 0.413389i \(-0.135655\pi\)
0.910555 + 0.413389i \(0.135655\pi\)
\(620\) −422883. −1.10011
\(621\) 0 0
\(622\) −148805. −0.384625
\(623\) 0 0
\(624\) 0 0
\(625\) −417152. −1.06791
\(626\) 40079.1 0.102275
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 73395.2 0.184921
\(631\) −35713.1 −0.0896951 −0.0448476 0.998994i \(-0.514280\pi\)
−0.0448476 + 0.998994i \(0.514280\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 796352. 1.97496
\(636\) 248105. 0.613369
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −304628. −0.743721
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 247312. 0.598169 0.299084 0.954227i \(-0.403319\pi\)
0.299084 + 0.954227i \(0.403319\pi\)
\(644\) 0 0
\(645\) −788509. −1.89534
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 178358. 0.424758
\(649\) 0 0
\(650\) 0 0
\(651\) 645593. 1.52334
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) −886343. −2.06595
\(656\) 26439.8 0.0614398
\(657\) −429355. −0.994686
\(658\) 0 0
\(659\) 393554. 0.906220 0.453110 0.891455i \(-0.350315\pi\)
0.453110 + 0.891455i \(0.350315\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 16683.1 0.0380681
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −853748. −1.91327
\(669\) 0 0
\(670\) −175271. −0.390445
\(671\) 0 0
\(672\) 351430. 0.778215
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −4655.18 −0.0102171
\(676\) −438954. −0.960562
\(677\) −796942. −1.73880 −0.869399 0.494110i \(-0.835494\pi\)
−0.869399 + 0.494110i \(0.835494\pi\)
\(678\) 0 0
\(679\) −1922.52 −0.00416995
\(680\) −186515. −0.403363
\(681\) 1.27521e6 2.74972
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 630703. 1.34414
\(686\) 93455.9 0.198591
\(687\) 0 0
\(688\) −555066. −1.17265
\(689\) 0 0
\(690\) 0 0
\(691\) 897878. 1.88045 0.940223 0.340559i \(-0.110616\pi\)
0.940223 + 0.340559i \(0.110616\pi\)
\(692\) −344793. −0.720022
\(693\) 0 0
\(694\) 0 0
\(695\) 778105. 1.61090
\(696\) 0 0
\(697\) 33793.8 0.0695618
\(698\) 0 0
\(699\) 0 0
\(700\) −34490.7 −0.0703892
\(701\) −730798. −1.48717 −0.743586 0.668640i \(-0.766877\pi\)
−0.743586 + 0.668640i \(0.766877\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 139507. 0.273653
\(715\) 0 0
\(716\) 893651. 1.74318
\(717\) 200105. 0.389242
\(718\) −190239. −0.369021
\(719\) −962148. −1.86116 −0.930581 0.366087i \(-0.880697\pi\)
−0.930581 + 0.366087i \(0.880697\pi\)
\(720\) 426355. 0.822445
\(721\) 0 0
\(722\) 103522. 0.198591
\(723\) −1.18636e6 −2.26955
\(724\) 46445.1 0.0886059
\(725\) 0 0
\(726\) 144236. 0.273653
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −419005. −0.788432
\(730\) −121332. −0.227682
\(731\) −709453. −1.32767
\(732\) 1.39014e6 2.59440
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) −100441. −0.186431
\(735\) 771210. 1.42757
\(736\) 0 0
\(737\) 0 0
\(738\) 6762.60 0.0124166
\(739\) 588249. 1.07714 0.538570 0.842581i \(-0.318965\pi\)
0.538570 + 0.842581i \(0.318965\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −50666.6 −0.0920267
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) −328308. −0.593111
\(745\) −1.07083e6 −1.92934
\(746\) 69372.7 0.124655
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −147784. −0.262727
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.15886e6 2.03299
\(756\) 76545.0 0.133929
\(757\) −717449. −1.25199 −0.625993 0.779829i \(-0.715306\pi\)
−0.625993 + 0.779829i \(0.715306\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 302909. 0.521677
\(763\) 0 0
\(764\) 1.00716e6 1.72549
\(765\) 544942. 0.931167
\(766\) 0 0
\(767\) 0 0
\(768\) 510839. 0.866087
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) −141971. −0.236984
\(775\) 48656.3 0.0810095
\(776\) 977.672 0.00162356
\(777\) 0 0
\(778\) 238932. 0.394744
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 542889. 0.883241
\(785\) 0 0
\(786\) −337138. −0.545711
\(787\) −474862. −0.766687 −0.383343 0.923606i \(-0.625227\pi\)
−0.383343 + 0.923606i \(0.625227\pi\)
\(788\) 0 0
\(789\) −1.68463e6 −2.70615
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 244756. 0.388233
\(795\) −418107. −0.661536
\(796\) −597997. −0.943784
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 26486.2 0.0413846
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 1.62377e6 2.51195
\(805\) 0 0
\(806\) 0 0
\(807\) 944743. 1.45066
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −147261. −0.224449
\(811\) −1.21641e6 −1.84943 −0.924713 0.380665i \(-0.875695\pi\)
−0.924713 + 0.380665i \(0.875695\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 810403. 1.21708
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) −46545.8 −0.0692234
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 239901. 0.355049
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 693889. 1.00000
\(834\) 295968. 0.425513
\(835\) 1.43874e6 2.06352
\(836\) 0 0
\(837\) −107983. −0.154136
\(838\) −155035. −0.220771
\(839\) −1.05974e6 −1.50548 −0.752742 0.658315i \(-0.771269\pi\)
−0.752742 + 0.658315i \(0.771269\pi\)
\(840\) −392189. −0.555824
\(841\) 707281. 1.00000
\(842\) 212632. 0.299919
\(843\) 1.75518e6 2.46982
\(844\) 0 0
\(845\) 739724. 1.03599
\(846\) 0 0
\(847\) 717409. 1.00000
\(848\) −294324. −0.409293
\(849\) −1.17417e6 −1.62898
\(850\) 10514.2 0.0145526
\(851\) 0 0
\(852\) 0 0
\(853\) −258382. −0.355111 −0.177556 0.984111i \(-0.556819\pi\)
−0.177556 + 0.984111i \(0.556819\pi\)
\(854\) −283886. −0.389250
\(855\) 0 0
\(856\) 0 0
\(857\) 836196. 1.13854 0.569268 0.822152i \(-0.307227\pi\)
0.569268 + 0.822152i \(0.307227\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 977164. 1.32121
\(861\) 71059.0 0.0958545
\(862\) 0 0
\(863\) −1.25341e6 −1.68295 −0.841474 0.540298i \(-0.818312\pi\)
−0.841474 + 0.540298i \(0.818312\pi\)
\(864\) −58780.6 −0.0787420
\(865\) 581044. 0.776563
\(866\) 0 0
\(867\) 1.03581e6 1.37798
\(868\) −800055. −1.06189
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −2856.47 −0.00374802
\(874\) 0 0
\(875\) −735058. −0.960075
\(876\) 1.12406e6 1.46481
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) −296733. −0.384926
\(879\) 0 0
\(880\) 0 0
\(881\) 1.45267e6 1.87160 0.935802 0.352525i \(-0.114677\pi\)
0.935802 + 0.352525i \(0.114677\pi\)
\(882\) 138857. 0.178497
\(883\) 1.33158e6 1.70784 0.853919 0.520405i \(-0.174219\pi\)
0.853919 + 0.520405i \(0.174219\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −178253. −0.227075
\(887\) −1.57066e6 −1.99635 −0.998173 0.0604136i \(-0.980758\pi\)
−0.998173 + 0.0604136i \(0.980758\pi\)
\(888\) 0 0
\(889\) 1.50662e6 1.90634
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) −407313. −0.509629
\(895\) −1.50598e6 −1.88006
\(896\) −576328. −0.717883
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −51246.3 −0.0632671
\(901\) −376188. −0.463399
\(902\) 0 0
\(903\) −1.49178e6 −1.82949
\(904\) 0 0
\(905\) −78269.2 −0.0955639
\(906\) 440795. 0.537007
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) −1.58031e6 −1.91678
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 65613.3 0.0785416
\(915\) −2.34267e6 −2.79813
\(916\) 0 0
\(917\) −1.67688e6 −1.99417
\(918\) −23334.2 −0.0276890
\(919\) −1.64895e6 −1.95243 −0.976217 0.216795i \(-0.930440\pi\)
−0.976217 + 0.216795i \(0.930440\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 317860. 0.370693
\(927\) 0 0
\(928\) 0 0
\(929\) −953984. −1.10537 −0.552687 0.833389i \(-0.686398\pi\)
−0.552687 + 0.833389i \(0.686398\pi\)
\(930\) 271067. 0.313409
\(931\) 0 0
\(932\) 0 0
\(933\) −2.32318e6 −2.66883
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) −331596. −0.376880
\(939\) 625725. 0.709663
\(940\) 0 0
\(941\) −118646. −0.133990 −0.0669952 0.997753i \(-0.521341\pi\)
−0.0669952 + 0.997753i \(0.521341\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −128994. −0.144446
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) −352869. −0.389349
\(953\) −1.79467e6 −1.97605 −0.988025 0.154292i \(-0.950690\pi\)
−0.988025 + 0.154292i \(0.950690\pi\)
\(954\) −75280.4 −0.0827152
\(955\) −1.69727e6 −1.86099
\(956\) −247981. −0.271333
\(957\) 0 0
\(958\) −26060.4 −0.0283955
\(959\) 1.19323e6 1.29744
\(960\) −1.01448e6 −1.10078
\(961\) 205122. 0.222109
\(962\) 0 0
\(963\) 0 0
\(964\) 1.47021e6 1.58207
\(965\) 0 0
\(966\) 0 0
\(967\) 670146. 0.716666 0.358333 0.933594i \(-0.383345\pi\)
0.358333 + 0.933594i \(0.383345\pi\)
\(968\) −364829. −0.389349
\(969\) 0 0
\(970\) −807.214 −0.000857917 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 1.23774e6 1.31008
\(973\) 1.47210e6 1.55493
\(974\) 0 0
\(975\) 0 0
\(976\) −1.64911e6 −1.73121
\(977\) 1.81534e6 1.90182 0.950908 0.309473i \(-0.100153\pi\)
0.950908 + 0.309473i \(0.100153\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −955727. −0.995134
\(981\) 0 0
\(982\) 263364. 0.273108
\(983\) 1.17633e6 1.21737 0.608684 0.793413i \(-0.291698\pi\)
0.608684 + 0.793413i \(0.291698\pi\)
\(984\) −36136.2 −0.0373209
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 614379. 0.624328
\(993\) 260461. 0.264146
\(994\) 0 0
\(995\) 1.00774e6 1.01790
\(996\) 0 0
\(997\) 895508. 0.900905 0.450453 0.892800i \(-0.351263\pi\)
0.450453 + 0.892800i \(0.351263\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 119.5.d.a.118.3 5
7.6 odd 2 119.5.d.b.118.3 yes 5
17.16 even 2 119.5.d.b.118.3 yes 5
119.118 odd 2 CM 119.5.d.a.118.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.5.d.a.118.3 5 1.1 even 1 trivial
119.5.d.a.118.3 5 119.118 odd 2 CM
119.5.d.b.118.3 yes 5 7.6 odd 2
119.5.d.b.118.3 yes 5 17.16 even 2