Defining parameters
| Level: | \( N \) | \(=\) | \( 119 = 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 5 \) |
| Character orbit: | \([\chi]\) | \(=\) | 119.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 119 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(60\) | ||
| Trace bound: | \(6\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(119, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 50 | 50 | 0 |
| Cusp forms | 46 | 46 | 0 |
| Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(119, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 119.5.d.a | $5$ | $12.301$ | 5.5.44253125.1 | \(\Q(\sqrt{-119}) \) | \(0\) | \(0\) | \(0\) | \(245\) | \(q+(\beta _{1}+\beta _{4})q^{2}+(-6\beta _{1}-\beta _{4})q^{3}+(2^{4}+\cdots)q^{4}+\cdots\) |
| 119.5.d.b | $5$ | $12.301$ | 5.5.44253125.1 | \(\Q(\sqrt{-119}) \) | \(0\) | \(0\) | \(0\) | \(-245\) | \(q+(\beta _{1}+\beta _{4})q^{2}+(6\beta _{1}+\beta _{4})q^{3}+(2^{4}+\cdots)q^{4}+\cdots\) |
| 119.5.d.c | $36$ | $12.301$ | None | \(-4\) | \(0\) | \(0\) | \(0\) | ||