Properties

Label 119.5.d
Level $119$
Weight $5$
Character orbit 119.d
Rep. character $\chi_{119}(118,\cdot)$
Character field $\Q$
Dimension $46$
Newform subspaces $3$
Sturm bound $60$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 119.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 119 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(60\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(119, [\chi])\).

Total New Old
Modular forms 50 50 0
Cusp forms 46 46 0
Eisenstein series 4 4 0

Trace form

\( 46 q - 4 q^{2} + 348 q^{4} - 68 q^{8} + 1062 q^{9} - 776 q^{15} + 1388 q^{16} - 2004 q^{18} - 504 q^{21} + 4774 q^{25} + 7970 q^{30} + 1398 q^{32} - 3184 q^{35} + 6534 q^{36} - 10822 q^{42} + 608 q^{43}+ \cdots - 15340 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(119, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
119.5.d.a 119.d 119.d $5$ $12.301$ 5.5.44253125.1 \(\Q(\sqrt{-119}) \) 119.5.d.a \(0\) \(0\) \(0\) \(245\) $\mathrm{U}(1)[D_{2}]$ \(q+(\beta _{1}+\beta _{4})q^{2}+(-6\beta _{1}-\beta _{4})q^{3}+(2^{4}+\cdots)q^{4}+\cdots\)
119.5.d.b 119.d 119.d $5$ $12.301$ 5.5.44253125.1 \(\Q(\sqrt{-119}) \) 119.5.d.a \(0\) \(0\) \(0\) \(-245\) $\mathrm{U}(1)[D_{2}]$ \(q+(\beta _{1}+\beta _{4})q^{2}+(6\beta _{1}+\beta _{4})q^{3}+(2^{4}+\cdots)q^{4}+\cdots\)
119.5.d.c 119.d 119.d $36$ $12.301$ None 119.5.d.c \(-4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$