Properties

Label 119.5.d.a
Level $119$
Weight $5$
Character orbit 119.d
Self dual yes
Analytic conductor $12.301$
Analytic rank $0$
Dimension $5$
CM discriminant -119
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [119,5,Mod(118,119)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("119.118"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(119, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 119.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,80,0,-235] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3010256070\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.44253125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 10x^{3} + 20x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} + \beta_1) q^{2} + ( - \beta_{4} - 6 \beta_1) q^{3} + (3 \beta_{3} - 8 \beta_{2} + 16) q^{4} + ( - 9 \beta_{3} + \beta_{2}) q^{5} + ( - 13 \beta_{3} + 8 \beta_{2} - 47) q^{6} + 49 q^{7}+ \cdots + (2401 \beta_{4} + 2401 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 80 q^{4} - 235 q^{6} + 245 q^{7} + 405 q^{9} + 1280 q^{16} + 1445 q^{17} - 1355 q^{20} - 3760 q^{24} + 3125 q^{25} + 3920 q^{28} + 8405 q^{30} + 4885 q^{32} + 4565 q^{36} + 10645 q^{40} - 11515 q^{42}+ \cdots - 60160 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 10x^{3} + 20x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 6\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 8\nu^{2} - \nu + 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 8\beta_{2} + \beta _1 + 24 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/119\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
118.1
−1.78288
1.53735
−2.63923
2.73301
0.151743
−7.32538 16.2398 37.6612 −46.0925 −118.962 49.0000 −158.676 182.730 337.645
118.2 −5.32170 −2.36506 12.3204 48.6794 12.5861 49.0000 19.5815 −75.4065 −259.057
118.3 0.794362 12.4018 −15.3690 25.8998 9.85151 49.0000 −24.9183 72.8042 20.5738
118.4 4.03639 −17.7014 0.292450 −32.6724 −71.4500 49.0000 −63.4018 232.341 −131.879
118.5 7.81632 −8.57504 45.0949 4.18570 −67.0253 49.0000 227.415 −7.46873 32.7168
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 118.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
119.d odd 2 1 CM by \(\Q(\sqrt{-119}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 119.5.d.a 5
7.b odd 2 1 119.5.d.b yes 5
17.b even 2 1 119.5.d.b yes 5
119.d odd 2 1 CM 119.5.d.a 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
119.5.d.a 5 1.a even 1 1 trivial
119.5.d.a 5 119.d odd 2 1 CM
119.5.d.b yes 5 7.b odd 2 1
119.5.d.b yes 5 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{5}^{\mathrm{new}}(119, [\chi])\):

\( T_{2}^{5} - 80T_{2}^{3} + 1280T_{2} - 977 \) Copy content Toggle raw display
\( T_{3}^{5} - 405T_{3}^{3} + 32805T_{3} + 72302 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 80 T^{3} + \cdots - 977 \) Copy content Toggle raw display
$3$ \( T^{5} - 405 T^{3} + \cdots + 72302 \) Copy content Toggle raw display
$5$ \( T^{5} - 3125 T^{3} + \cdots - 7947314 \) Copy content Toggle raw display
$7$ \( (T - 49)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} \) Copy content Toggle raw display
$13$ \( T^{5} \) Copy content Toggle raw display
$17$ \( (T - 289)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} \) Copy content Toggle raw display
$23$ \( T^{5} \) Copy content Toggle raw display
$29$ \( T^{5} \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 347038462375298 \) Copy content Toggle raw display
$37$ \( T^{5} \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 46\!\cdots\!98 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 20\!\cdots\!02 \) Copy content Toggle raw display
$47$ \( T^{5} \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 32\!\cdots\!98 \) Copy content Toggle raw display
$59$ \( T^{5} \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 76\!\cdots\!02 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 12\!\cdots\!02 \) Copy content Toggle raw display
$71$ \( T^{5} \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 17\!\cdots\!02 \) Copy content Toggle raw display
$79$ \( T^{5} \) Copy content Toggle raw display
$83$ \( T^{5} \) Copy content Toggle raw display
$89$ \( T^{5} \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 15\!\cdots\!02 \) Copy content Toggle raw display
show more
show less