Properties

Label 2-119-119.118-c4-0-24
Degree $2$
Conductor $119$
Sign $1$
Analytic cond. $12.3010$
Root an. cond. $3.50728$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.32·2-s − 2.36·3-s + 12.3·4-s + 48.6·5-s + 12.5·6-s + 49·7-s + 19.5·8-s − 75.4·9-s − 259.·10-s − 29.1·12-s − 260.·14-s − 115.·15-s − 301.·16-s + 289·17-s + 401.·18-s + 599.·20-s − 115.·21-s − 46.3·24-s + 1.74e3·25-s + 369.·27-s + 603.·28-s + 612.·30-s − 1.19e3·31-s + 1.29e3·32-s − 1.53e3·34-s + 2.38e3·35-s − 929.·36-s + ⋯
L(s)  = 1  − 1.33·2-s − 0.262·3-s + 0.770·4-s + 1.94·5-s + 0.349·6-s + 0.999·7-s + 0.305·8-s − 0.930·9-s − 2.59·10-s − 0.202·12-s − 1.33·14-s − 0.511·15-s − 1.17·16-s + 17-s + 1.23·18-s + 1.49·20-s − 0.262·21-s − 0.0804·24-s + 2.79·25-s + 0.507·27-s + 0.770·28-s + 0.680·30-s − 1.24·31-s + 1.26·32-s − 1.33·34-s + 1.94·35-s − 0.716·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(119\)    =    \(7 \cdot 17\)
Sign: $1$
Analytic conductor: \(12.3010\)
Root analytic conductor: \(3.50728\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{119} (118, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 119,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.210600354\)
\(L(\frac12)\) \(\approx\) \(1.210600354\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 49T \)
17 \( 1 - 289T \)
good2 \( 1 + 5.32T + 16T^{2} \)
3 \( 1 + 2.36T + 81T^{2} \)
5 \( 1 - 48.6T + 625T^{2} \)
11 \( 1 - 1.46e4T^{2} \)
13 \( 1 - 2.85e4T^{2} \)
19 \( 1 - 1.30e5T^{2} \)
23 \( 1 - 2.79e5T^{2} \)
29 \( 1 - 7.07e5T^{2} \)
31 \( 1 + 1.19e3T + 9.23e5T^{2} \)
37 \( 1 - 1.87e6T^{2} \)
41 \( 1 - 1.88e3T + 2.82e6T^{2} \)
43 \( 1 - 3.61e3T + 3.41e6T^{2} \)
47 \( 1 - 4.87e6T^{2} \)
53 \( 1 + 5.59e3T + 7.89e6T^{2} \)
59 \( 1 - 1.21e7T^{2} \)
61 \( 1 - 5.03e3T + 1.38e7T^{2} \)
67 \( 1 - 62.3T + 2.01e7T^{2} \)
71 \( 1 - 2.54e7T^{2} \)
73 \( 1 + 447.T + 2.83e7T^{2} \)
79 \( 1 - 3.89e7T^{2} \)
83 \( 1 - 4.74e7T^{2} \)
89 \( 1 - 6.27e7T^{2} \)
97 \( 1 - 1.78e4T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.77245277583608150885006658924, −11.21615532934697301172407805729, −10.51013388386865680761349838759, −9.498417398762011321949886783573, −8.790540826467837749698268582037, −7.59400528826169043530229664057, −6.06201440997441937226512756729, −5.13589916581228588106923377757, −2.30499547896858713097240513864, −1.13228314430001149775983219335, 1.13228314430001149775983219335, 2.30499547896858713097240513864, 5.13589916581228588106923377757, 6.06201440997441937226512756729, 7.59400528826169043530229664057, 8.790540826467837749698268582037, 9.498417398762011321949886783573, 10.51013388386865680761349838759, 11.21615532934697301172407805729, 12.77245277583608150885006658924

Graph of the $Z$-function along the critical line