Properties

Label 119.5.d.a.118.1
Level $119$
Weight $5$
Character 119.118
Self dual yes
Analytic conductor $12.301$
Analytic rank $0$
Dimension $5$
CM discriminant -119
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [119,5,Mod(118,119)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("119.118"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(119, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 119.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,80,0,-235] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3010256070\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.44253125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 10x^{3} + 20x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 118.1
Root \(-1.78288\) of defining polynomial
Character \(\chi\) \(=\) 119.118

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.32538 q^{2} +16.2398 q^{3} +37.6612 q^{4} -46.0925 q^{5} -118.962 q^{6} +49.0000 q^{7} -158.676 q^{8} +182.730 q^{9} +337.645 q^{10} +611.609 q^{12} -358.944 q^{14} -748.530 q^{15} +559.786 q^{16} +289.000 q^{17} -1338.57 q^{18} -1735.90 q^{20} +795.748 q^{21} -2576.87 q^{24} +1499.51 q^{25} +1652.07 q^{27} +1845.40 q^{28} +5483.27 q^{30} +81.9749 q^{31} -1561.82 q^{32} -2117.03 q^{34} -2258.53 q^{35} +6881.82 q^{36} +7313.79 q^{40} +3231.65 q^{41} -5829.16 q^{42} +1871.71 q^{43} -8422.47 q^{45} +9090.79 q^{48} +2401.00 q^{49} -10984.5 q^{50} +4693.29 q^{51} +4265.40 q^{53} -12102.0 q^{54} -7775.15 q^{56} -28190.5 q^{60} -3661.12 q^{61} -600.498 q^{62} +8953.76 q^{63} +2484.37 q^{64} +5226.55 q^{67} +10884.1 q^{68} +16544.6 q^{70} -28994.9 q^{72} -10265.6 q^{73} +24351.8 q^{75} -25801.9 q^{80} +12028.1 q^{81} -23673.1 q^{82} +29968.8 q^{84} -13320.7 q^{85} -13711.0 q^{86} +61697.8 q^{90} +1331.25 q^{93} -25363.6 q^{96} -11029.2 q^{97} -17588.2 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 80 q^{4} - 235 q^{6} + 245 q^{7} + 405 q^{9} + 1280 q^{16} + 1445 q^{17} - 1355 q^{20} - 3760 q^{24} + 3125 q^{25} + 3920 q^{28} + 8405 q^{30} + 4885 q^{32} + 4565 q^{36} + 10645 q^{40} - 11515 q^{42}+ \cdots - 60160 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/119\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −7.32538 −1.83134 −0.915672 0.401925i \(-0.868341\pi\)
−0.915672 + 0.401925i \(0.868341\pi\)
\(3\) 16.2398 1.80442 0.902209 0.431299i \(-0.141945\pi\)
0.902209 + 0.431299i \(0.141945\pi\)
\(4\) 37.6612 2.35382
\(5\) −46.0925 −1.84370 −0.921849 0.387549i \(-0.873322\pi\)
−0.921849 + 0.387549i \(0.873322\pi\)
\(6\) −118.962 −3.30451
\(7\) 49.0000 1.00000
\(8\) −158.676 −2.47932
\(9\) 182.730 2.25592
\(10\) 337.645 3.37645
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 611.609 4.24728
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −358.944 −1.83134
\(15\) −748.530 −3.32680
\(16\) 559.786 2.18666
\(17\) 289.000 1.00000
\(18\) −1338.57 −4.13137
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −1735.90 −4.33974
\(21\) 795.748 1.80442
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −2576.87 −4.47373
\(25\) 1499.51 2.39922
\(26\) 0 0
\(27\) 1652.07 2.26621
\(28\) 1845.40 2.35382
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 5483.27 6.09252
\(31\) 81.9749 0.0853017 0.0426508 0.999090i \(-0.486420\pi\)
0.0426508 + 0.999090i \(0.486420\pi\)
\(32\) −1561.82 −1.52522
\(33\) 0 0
\(34\) −2117.03 −1.83134
\(35\) −2258.53 −1.84370
\(36\) 6881.82 5.31005
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 7313.79 4.57112
\(41\) 3231.65 1.92246 0.961229 0.275751i \(-0.0889267\pi\)
0.961229 + 0.275751i \(0.0889267\pi\)
\(42\) −5829.16 −3.30451
\(43\) 1871.71 1.01228 0.506141 0.862451i \(-0.331072\pi\)
0.506141 + 0.862451i \(0.331072\pi\)
\(44\) 0 0
\(45\) −8422.47 −4.15924
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 9090.79 3.94566
\(49\) 2401.00 1.00000
\(50\) −10984.5 −4.39380
\(51\) 4693.29 1.80442
\(52\) 0 0
\(53\) 4265.40 1.51848 0.759239 0.650812i \(-0.225571\pi\)
0.759239 + 0.650812i \(0.225571\pi\)
\(54\) −12102.0 −4.15021
\(55\) 0 0
\(56\) −7775.15 −2.47932
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −28190.5 −7.83071
\(61\) −3661.12 −0.983908 −0.491954 0.870621i \(-0.663717\pi\)
−0.491954 + 0.870621i \(0.663717\pi\)
\(62\) −600.498 −0.156217
\(63\) 8953.76 2.25592
\(64\) 2484.37 0.606535
\(65\) 0 0
\(66\) 0 0
\(67\) 5226.55 1.16430 0.582150 0.813081i \(-0.302211\pi\)
0.582150 + 0.813081i \(0.302211\pi\)
\(68\) 10884.1 2.35382
\(69\) 0 0
\(70\) 16544.6 3.37645
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −28994.9 −5.59316
\(73\) −10265.6 −1.92636 −0.963182 0.268849i \(-0.913357\pi\)
−0.963182 + 0.268849i \(0.913357\pi\)
\(74\) 0 0
\(75\) 24351.8 4.32920
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −25801.9 −4.03155
\(81\) 12028.1 1.83327
\(82\) −23673.1 −3.52068
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 29968.8 4.24728
\(85\) −13320.7 −1.84370
\(86\) −13711.0 −1.85384
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 61697.8 7.61701
\(91\) 0 0
\(92\) 0 0
\(93\) 1331.25 0.153920
\(94\) 0 0
\(95\) 0 0
\(96\) −25363.6 −2.75213
\(97\) −11029.2 −1.17219 −0.586097 0.810241i \(-0.699336\pi\)
−0.586097 + 0.810241i \(0.699336\pi\)
\(98\) −17588.2 −1.83134
\(99\) 0 0
\(100\) 56473.5 5.64735
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −34380.1 −3.30451
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) −36678.0 −3.32680
\(106\) −31245.7 −2.78086
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 62218.8 5.33426
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 27429.5 2.18666
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 14161.0 1.00000
\(120\) 118774. 8.24820
\(121\) 14641.0 1.00000
\(122\) 26819.1 1.80188
\(123\) 52481.3 3.46892
\(124\) 3087.27 0.200785
\(125\) −40308.5 −2.57974
\(126\) −65589.7 −4.13137
\(127\) −19140.9 −1.18674 −0.593370 0.804930i \(-0.702203\pi\)
−0.593370 + 0.804930i \(0.702203\pi\)
\(128\) 6790.23 0.414442
\(129\) 30396.1 1.82658
\(130\) 0 0
\(131\) −34222.0 −1.99417 −0.997086 0.0762803i \(-0.975696\pi\)
−0.997086 + 0.0762803i \(0.975696\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −38286.4 −2.13224
\(135\) −76147.9 −4.17821
\(136\) −45857.5 −2.47932
\(137\) −19644.2 −1.04663 −0.523314 0.852140i \(-0.675304\pi\)
−0.523314 + 0.852140i \(0.675304\pi\)
\(138\) 0 0
\(139\) −10020.3 −0.518625 −0.259312 0.965794i \(-0.583496\pi\)
−0.259312 + 0.965794i \(0.583496\pi\)
\(140\) −85058.9 −4.33974
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 102290. 4.93295
\(145\) 0 0
\(146\) 75199.4 3.52784
\(147\) 38991.7 1.80442
\(148\) 0 0
\(149\) −28173.7 −1.26903 −0.634514 0.772912i \(-0.718800\pi\)
−0.634514 + 0.772912i \(0.718800\pi\)
\(150\) −178386. −7.92826
\(151\) 5452.66 0.239141 0.119571 0.992826i \(-0.461848\pi\)
0.119571 + 0.992826i \(0.461848\pi\)
\(152\) 0 0
\(153\) 52808.9 2.25592
\(154\) 0 0
\(155\) −3778.43 −0.157271
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 69269.1 2.73997
\(160\) 71988.3 2.81204
\(161\) 0 0
\(162\) −88110.2 −3.35735
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 121708. 4.52513
\(165\) 0 0
\(166\) 0 0
\(167\) 12375.2 0.443730 0.221865 0.975077i \(-0.428786\pi\)
0.221865 + 0.975077i \(0.428786\pi\)
\(168\) −126266. −4.47373
\(169\) 28561.0 1.00000
\(170\) 97579.3 3.37645
\(171\) 0 0
\(172\) 70490.8 2.38273
\(173\) −45846.2 −1.53183 −0.765916 0.642941i \(-0.777714\pi\)
−0.765916 + 0.642941i \(0.777714\pi\)
\(174\) 0 0
\(175\) 73476.2 2.39922
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7648.69 0.238716 0.119358 0.992851i \(-0.461916\pi\)
0.119358 + 0.992851i \(0.461916\pi\)
\(180\) −317200. −9.79013
\(181\) −3022.00 −0.0922438 −0.0461219 0.998936i \(-0.514686\pi\)
−0.0461219 + 0.998936i \(0.514686\pi\)
\(182\) 0 0
\(183\) −59455.8 −1.77538
\(184\) 0 0
\(185\) 0 0
\(186\) −9751.94 −0.281880
\(187\) 0 0
\(188\) 0 0
\(189\) 80951.3 2.26621
\(190\) 0 0
\(191\) 71871.5 1.97011 0.985054 0.172245i \(-0.0551020\pi\)
0.985054 + 0.172245i \(0.0551020\pi\)
\(192\) 40345.5 1.09444
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 80792.9 2.14669
\(195\) 0 0
\(196\) 90424.5 2.35382
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −53585.6 −1.35314 −0.676569 0.736379i \(-0.736534\pi\)
−0.676569 + 0.736379i \(0.736534\pi\)
\(200\) −237938. −5.94844
\(201\) 84877.9 2.10089
\(202\) 0 0
\(203\) 0 0
\(204\) 176755. 4.24728
\(205\) −148955. −3.54443
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 268680. 6.09252
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 160640. 3.57423
\(213\) 0 0
\(214\) 0 0
\(215\) −86271.7 −1.86634
\(216\) −262144. −5.61866
\(217\) 4016.77 0.0853017
\(218\) 0 0
\(219\) −166711. −3.47597
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −76529.3 −1.52522
\(225\) 274006. 5.41246
\(226\) 0 0
\(227\) −87259.8 −1.69341 −0.846706 0.532061i \(-0.821418\pi\)
−0.846706 + 0.532061i \(0.821418\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) −103735. −1.83134
\(239\) 112548. 1.97034 0.985168 0.171595i \(-0.0548921\pi\)
0.985168 + 0.171595i \(0.0548921\pi\)
\(240\) −419017. −7.27460
\(241\) 116125. 1.99937 0.999685 0.0250910i \(-0.00798756\pi\)
0.999685 + 0.0250910i \(0.00798756\pi\)
\(242\) −107251. −1.83134
\(243\) 61515.5 1.04177
\(244\) −137882. −2.31595
\(245\) −110668. −1.84370
\(246\) −384445. −6.35278
\(247\) 0 0
\(248\) −13007.5 −0.211490
\(249\) 0 0
\(250\) 295275. 4.72440
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 337209. 5.31005
\(253\) 0 0
\(254\) 140215. 2.17333
\(255\) −216325. −3.32680
\(256\) −89490.9 −1.36552
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) −222663. −3.34510
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 250689. 3.65202
\(263\) −135838. −1.96386 −0.981928 0.189253i \(-0.939393\pi\)
−0.981928 + 0.189253i \(0.939393\pi\)
\(264\) 0 0
\(265\) −196603. −2.79962
\(266\) 0 0
\(267\) 0 0
\(268\) 196838. 2.74056
\(269\) 76178.0 1.05275 0.526375 0.850253i \(-0.323551\pi\)
0.526375 + 0.850253i \(0.323551\pi\)
\(270\) 557812. 7.65174
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 161778. 2.18666
\(273\) 0 0
\(274\) 143901. 1.91674
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 73402.8 0.949780
\(279\) 14979.3 0.192434
\(280\) 358376. 4.57112
\(281\) −155683. −1.97164 −0.985821 0.167802i \(-0.946333\pi\)
−0.985821 + 0.167802i \(0.946333\pi\)
\(282\) 0 0
\(283\) 652.685 0.00814950 0.00407475 0.999992i \(-0.498703\pi\)
0.00407475 + 0.999992i \(0.498703\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 158351. 1.92246
\(288\) −285392. −3.44077
\(289\) 83521.0 1.00000
\(290\) 0 0
\(291\) −179111. −2.11513
\(292\) −386615. −4.53432
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) −285629. −3.30451
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 206383. 2.32403
\(299\) 0 0
\(300\) 917116. 10.1902
\(301\) 91713.7 1.01228
\(302\) −39942.8 −0.437950
\(303\) 0 0
\(304\) 0 0
\(305\) 168750. 1.81403
\(306\) −386845. −4.13137
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 27678.4 0.288017
\(311\) 179914. 1.86013 0.930067 0.367390i \(-0.119749\pi\)
0.930067 + 0.367390i \(0.119749\pi\)
\(312\) 0 0
\(313\) 70467.2 0.719281 0.359640 0.933091i \(-0.382899\pi\)
0.359640 + 0.933091i \(0.382899\pi\)
\(314\) 0 0
\(315\) −412701. −4.15924
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) −507423. −5.01783
\(319\) 0 0
\(320\) −114511. −1.11827
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 452991. 4.31519
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) −512787. −4.76639
\(329\) 0 0
\(330\) 0 0
\(331\) 111213. 1.01508 0.507538 0.861629i \(-0.330556\pi\)
0.507538 + 0.861629i \(0.330556\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −90652.9 −0.812622
\(335\) −240904. −2.14662
\(336\) 445449. 3.94566
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −209220. −1.83134
\(339\) 0 0
\(340\) −501674. −4.33974
\(341\) 0 0
\(342\) 0 0
\(343\) 117649. 1.00000
\(344\) −296996. −2.50977
\(345\) 0 0
\(346\) 335841. 2.80531
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −538241. −4.39380
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 229971. 1.80442
\(358\) −56029.6 −0.437171
\(359\) 249781. 1.93808 0.969038 0.246910i \(-0.0794153\pi\)
0.969038 + 0.246910i \(0.0794153\pi\)
\(360\) 1.33645e6 10.3121
\(361\) 130321. 1.00000
\(362\) 22137.3 0.168930
\(363\) 237766. 1.80442
\(364\) 0 0
\(365\) 473167. 3.55163
\(366\) 435536. 3.25134
\(367\) −265290. −1.96965 −0.984825 0.173553i \(-0.944475\pi\)
−0.984825 + 0.173553i \(0.944475\pi\)
\(368\) 0 0
\(369\) 590519. 4.33692
\(370\) 0 0
\(371\) 209005. 1.51848
\(372\) 50136.6 0.362300
\(373\) −224281. −1.61203 −0.806017 0.591892i \(-0.798381\pi\)
−0.806017 + 0.591892i \(0.798381\pi\)
\(374\) 0 0
\(375\) −654601. −4.65494
\(376\) 0 0
\(377\) 0 0
\(378\) −592999. −4.15021
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) −310844. −2.14137
\(382\) −526486. −3.60795
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 110272. 0.747827
\(385\) 0 0
\(386\) 0 0
\(387\) 342017. 2.28363
\(388\) −415372. −2.75914
\(389\) −223662. −1.47807 −0.739033 0.673669i \(-0.764717\pi\)
−0.739033 + 0.673669i \(0.764717\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −380982. −2.47932
\(393\) −555757. −3.59832
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −288379. −1.82971 −0.914855 0.403783i \(-0.867695\pi\)
−0.914855 + 0.403783i \(0.867695\pi\)
\(398\) 392535. 2.47806
\(399\) 0 0
\(400\) 839407. 5.24630
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) −621763. −3.84745
\(403\) 0 0
\(404\) 0 0
\(405\) −554403. −3.37999
\(406\) 0 0
\(407\) 0 0
\(408\) −744715. −4.47373
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 1.09115e6 6.49108
\(411\) −319016. −1.88855
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −162728. −0.935815
\(418\) 0 0
\(419\) 329460. 1.87661 0.938306 0.345807i \(-0.112395\pi\)
0.938306 + 0.345807i \(0.112395\pi\)
\(420\) −1.38134e6 −7.83071
\(421\) −138303. −0.780311 −0.390155 0.920749i \(-0.627579\pi\)
−0.390155 + 0.920749i \(0.627579\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −676819. −3.76479
\(425\) 433360. 2.39922
\(426\) 0 0
\(427\) −179395. −0.983908
\(428\) 0 0
\(429\) 0 0
\(430\) 631973. 3.41792
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 924805. 4.95544
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) −29424.4 −0.156217
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 1.22122e6 6.36569
\(439\) −205792. −1.06782 −0.533912 0.845540i \(-0.679279\pi\)
−0.533912 + 0.845540i \(0.679279\pi\)
\(440\) 0 0
\(441\) 438734. 2.25592
\(442\) 0 0
\(443\) −224398. −1.14344 −0.571718 0.820451i \(-0.693723\pi\)
−0.571718 + 0.820451i \(0.693723\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −457534. −2.28986
\(448\) 121734. 0.606535
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −2.00720e6 −9.91209
\(451\) 0 0
\(452\) 0 0
\(453\) 88549.9 0.431511
\(454\) 639211. 3.10122
\(455\) 0 0
\(456\) 0 0
\(457\) −307492. −1.47232 −0.736159 0.676808i \(-0.763363\pi\)
−0.736159 + 0.676808i \(0.763363\pi\)
\(458\) 0 0
\(459\) 477448. 2.26621
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 270066. 1.25982 0.629909 0.776669i \(-0.283092\pi\)
0.629909 + 0.776669i \(0.283092\pi\)
\(464\) 0 0
\(465\) −61360.7 −0.283782
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 256101. 1.16430
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 533320. 2.35382
\(477\) 779417. 3.42557
\(478\) −824453. −3.60836
\(479\) −445444. −1.94143 −0.970715 0.240233i \(-0.922776\pi\)
−0.970715 + 0.240233i \(0.922776\pi\)
\(480\) 1.16907e6 5.07410
\(481\) 0 0
\(482\) −850663. −3.66154
\(483\) 0 0
\(484\) 551397. 2.35382
\(485\) 508362. 2.16117
\(486\) −450624. −1.90784
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 580934. 2.43942
\(489\) 0 0
\(490\) 810685. 3.37645
\(491\) −473998. −1.96614 −0.983069 0.183237i \(-0.941342\pi\)
−0.983069 + 0.183237i \(0.941342\pi\)
\(492\) 1.97651e6 8.16522
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 45888.4 0.186526
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −1.51807e6 −6.07227
\(501\) 200970. 0.800674
\(502\) 0 0
\(503\) 503477. 1.98996 0.994979 0.100085i \(-0.0319115\pi\)
0.994979 + 0.100085i \(0.0319115\pi\)
\(504\) −1.42075e6 −5.59316
\(505\) 0 0
\(506\) 0 0
\(507\) 463824. 1.80442
\(508\) −720870. −2.79338
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 1.58466e6 6.09252
\(511\) −503014. −1.92636
\(512\) 546911. 2.08630
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 1.14475e6 4.29945
\(517\) 0 0
\(518\) 0 0
\(519\) −744531. −2.76406
\(520\) 0 0
\(521\) 3609.29 0.0132968 0.00664838 0.999978i \(-0.497884\pi\)
0.00664838 + 0.999978i \(0.497884\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) −1.28884e6 −4.69393
\(525\) 1.19324e6 4.32920
\(526\) 995065. 3.59650
\(527\) 23690.8 0.0853017
\(528\) 0 0
\(529\) 279841. 1.00000
\(530\) 1.44019e6 5.12706
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −829330. −2.88667
\(537\) 124213. 0.430743
\(538\) −558033. −1.92795
\(539\) 0 0
\(540\) −2.86782e6 −9.83477
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −49076.6 −0.166446
\(544\) −451367. −1.52522
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −739822. −2.46358
\(549\) −668996. −2.21962
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −377378. −1.22075
\(557\) 3602.00 0.0116100 0.00580501 0.999983i \(-0.498152\pi\)
0.00580501 + 0.999983i \(0.498152\pi\)
\(558\) −109729. −0.352413
\(559\) 0 0
\(560\) −1.26429e6 −4.03155
\(561\) 0 0
\(562\) 1.14044e6 3.61076
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −4781.17 −0.0149245
\(567\) 589375. 1.83327
\(568\) 0 0
\(569\) 494310. 1.52677 0.763387 0.645942i \(-0.223535\pi\)
0.763387 + 0.645942i \(0.223535\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 1.16718e6 3.55490
\(574\) −1.15998e6 −3.52068
\(575\) 0 0
\(576\) 453968. 1.36830
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −611823. −1.83134
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 1.31206e6 3.87353
\(583\) 0 0
\(584\) 1.62891e6 4.77607
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 1.46847e6 4.24728
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) −652715. −1.84370
\(596\) −1.06105e6 −2.98707
\(597\) −870218. −2.44163
\(598\) 0 0
\(599\) −10588.1 −0.0295097 −0.0147548 0.999891i \(-0.504697\pi\)
−0.0147548 + 0.999891i \(0.504697\pi\)
\(600\) −3.86405e6 −10.7335
\(601\) −374302. −1.03627 −0.518135 0.855299i \(-0.673374\pi\)
−0.518135 + 0.855299i \(0.673374\pi\)
\(602\) −671838. −1.85384
\(603\) 955046. 2.62657
\(604\) 205354. 0.562897
\(605\) −674840. −1.84370
\(606\) 0 0
\(607\) −678914. −1.84263 −0.921314 0.388820i \(-0.872883\pi\)
−0.921314 + 0.388820i \(0.872883\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −1.23616e6 −3.32211
\(611\) 0 0
\(612\) 1.98885e6 5.31005
\(613\) 717827. 1.91029 0.955144 0.296143i \(-0.0957006\pi\)
0.955144 + 0.296143i \(0.0957006\pi\)
\(614\) 0 0
\(615\) −2.41899e6 −6.39564
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 697778. 1.82111 0.910555 0.413389i \(-0.135655\pi\)
0.910555 + 0.413389i \(0.135655\pi\)
\(620\) −142300. −0.370187
\(621\) 0 0
\(622\) −1.31794e6 −3.40655
\(623\) 0 0
\(624\) 0 0
\(625\) 920722. 2.35705
\(626\) −516199. −1.31725
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 3.02319e6 7.61701
\(631\) −438703. −1.10182 −0.550911 0.834564i \(-0.685720\pi\)
−0.550911 + 0.834564i \(0.685720\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 882252. 2.18799
\(636\) 2.60876e6 6.44940
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −312978. −0.764107
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 826853. 1.99989 0.999946 0.0104262i \(-0.00331883\pi\)
0.999946 + 0.0104262i \(0.00331883\pi\)
\(644\) 0 0
\(645\) −1.40103e6 −3.36766
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −1.90857e6 −4.54526
\(649\) 0 0
\(650\) 0 0
\(651\) 65231.4 0.153920
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 1.57738e6 3.67665
\(656\) 1.80903e6 4.20377
\(657\) −1.87583e6 −4.34573
\(658\) 0 0
\(659\) 136721. 0.314821 0.157410 0.987533i \(-0.449685\pi\)
0.157410 + 0.987533i \(0.449685\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) −814676. −1.85896
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 466064. 1.04446
\(669\) 0 0
\(670\) 1.76472e6 3.93120
\(671\) 0 0
\(672\) −1.24282e6 −2.75213
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 2.47730e6 5.43715
\(676\) 1.07564e6 2.35382
\(677\) −796942. −1.73880 −0.869399 0.494110i \(-0.835494\pi\)
−0.869399 + 0.494110i \(0.835494\pi\)
\(678\) 0 0
\(679\) −540430. −1.17219
\(680\) 2.11368e6 4.57112
\(681\) −1.41708e6 −3.05562
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 905447. 1.92967
\(686\) −861824. −1.83134
\(687\) 0 0
\(688\) 1.04776e6 2.21352
\(689\) 0 0
\(690\) 0 0
\(691\) −31843.6 −0.0666909 −0.0333454 0.999444i \(-0.510616\pi\)
−0.0333454 + 0.999444i \(0.510616\pi\)
\(692\) −1.72662e6 −3.60566
\(693\) 0 0
\(694\) 0 0
\(695\) 461862. 0.956187
\(696\) 0 0
\(697\) 933947. 1.92246
\(698\) 0 0
\(699\) 0 0
\(700\) 2.76720e6 5.64735
\(701\) −730798. −1.48717 −0.743586 0.668640i \(-0.766877\pi\)
−0.743586 + 0.668640i \(0.766877\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) −1.68463e6 −3.30451
\(715\) 0 0
\(716\) 288059. 0.561895
\(717\) 1.82774e6 3.55531
\(718\) −1.82974e6 −3.54929
\(719\) 62660.2 0.121209 0.0606044 0.998162i \(-0.480697\pi\)
0.0606044 + 0.998162i \(0.480697\pi\)
\(720\) −4.71478e6 −9.09487
\(721\) 0 0
\(722\) −954651. −1.83134
\(723\) 1.88585e6 3.60770
\(724\) −113812. −0.217126
\(725\) 0 0
\(726\) −1.74173e6 −3.30451
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 24723.2 0.0465210
\(730\) −3.46612e6 −6.50427
\(731\) 540924. 1.01228
\(732\) −2.23917e6 −4.17894
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 1.94335e6 3.60711
\(735\) −1.79722e6 −3.32680
\(736\) 0 0
\(737\) 0 0
\(738\) −4.32578e6 −7.94239
\(739\) −693480. −1.26983 −0.634915 0.772582i \(-0.718965\pi\)
−0.634915 + 0.772582i \(0.718965\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.53104e6 −2.78086
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) −211239. −0.381617
\(745\) 1.29859e6 2.33970
\(746\) 1.64294e6 2.95219
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 4.79520e6 8.52480
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −251327. −0.440904
\(756\) 3.04872e6 5.33426
\(757\) −1.07172e6 −1.87021 −0.935104 0.354374i \(-0.884694\pi\)
−0.935104 + 0.354374i \(0.884694\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 2.27705e6 3.92159
\(763\) 0 0
\(764\) 2.70677e6 4.63729
\(765\) −2.43409e6 −4.15924
\(766\) 0 0
\(767\) 0 0
\(768\) −1.45331e6 −2.46397
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) −2.50540e6 −4.18212
\(775\) 122923. 0.204658
\(776\) 1.75007e6 2.90624
\(777\) 0 0
\(778\) 1.63841e6 2.70685
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.34405e6 2.18666
\(785\) 0 0
\(786\) 4.07113e6 6.58977
\(787\) −474862. −0.766687 −0.383343 0.923606i \(-0.625227\pi\)
−0.383343 + 0.923606i \(0.625227\pi\)
\(788\) 0 0
\(789\) −2.20598e6 −3.54362
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 2.11248e6 3.35083
\(795\) −3.19279e6 −5.05168
\(796\) −2.01810e6 −3.18505
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2.34198e6 −3.65934
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 3.19660e6 4.94511
\(805\) 0 0
\(806\) 0 0
\(807\) 1.23711e6 1.89960
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 4.06121e6 6.18993
\(811\) 100345. 0.152564 0.0762821 0.997086i \(-0.475695\pi\)
0.0762821 + 0.997086i \(0.475695\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 2.62724e6 3.94566
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) −5.60981e6 −8.34297
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 2.33692e6 3.45859
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 693889. 1.00000
\(834\) 1.19204e6 1.71380
\(835\) −570402. −0.818104
\(836\) 0 0
\(837\) 135428. 0.193312
\(838\) −2.41342e6 −3.43672
\(839\) −1.05974e6 −1.50548 −0.752742 0.658315i \(-0.771269\pi\)
−0.752742 + 0.658315i \(0.771269\pi\)
\(840\) 5.81993e6 8.24820
\(841\) 707281. 1.00000
\(842\) 1.01312e6 1.42902
\(843\) −2.52825e6 −3.55767
\(844\) 0 0
\(845\) −1.31645e6 −1.84370
\(846\) 0 0
\(847\) 717409. 1.00000
\(848\) 2.38771e6 3.32040
\(849\) 10599.5 0.0147051
\(850\) −3.17452e6 −4.39380
\(851\) 0 0
\(852\) 0 0
\(853\) −258382. −0.355111 −0.177556 0.984111i \(-0.556819\pi\)
−0.177556 + 0.984111i \(0.556819\pi\)
\(854\) 1.31414e6 1.80188
\(855\) 0 0
\(856\) 0 0
\(857\) −1.38634e6 −1.88759 −0.943796 0.330528i \(-0.892773\pi\)
−0.943796 + 0.330528i \(0.892773\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) −3.24909e6 −4.39304
\(861\) 2.57158e6 3.46892
\(862\) 0 0
\(863\) 540982. 0.726376 0.363188 0.931716i \(-0.381688\pi\)
0.363188 + 0.931716i \(0.381688\pi\)
\(864\) −2.58024e6 −3.45647
\(865\) 2.11316e6 2.82424
\(866\) 0 0
\(867\) 1.35636e6 1.80442
\(868\) 151276. 0.200785
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −2.01536e6 −2.64438
\(874\) 0 0
\(875\) −1.97512e6 −2.57974
\(876\) −6.27853e6 −8.18181
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 1.50751e6 1.95556
\(879\) 0 0
\(880\) 0 0
\(881\) −1.49689e6 −1.92858 −0.964289 0.264852i \(-0.914677\pi\)
−0.964289 + 0.264852i \(0.914677\pi\)
\(882\) −3.21390e6 −4.13137
\(883\) −1.55427e6 −1.99344 −0.996722 0.0809045i \(-0.974219\pi\)
−0.996722 + 0.0809045i \(0.974219\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.64380e6 2.09402
\(887\) 1.21482e6 1.54406 0.772029 0.635587i \(-0.219242\pi\)
0.772029 + 0.635587i \(0.219242\pi\)
\(888\) 0 0
\(889\) −937905. −1.18674
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 3.35161e6 4.19351
\(895\) −352547. −0.440120
\(896\) 332721. 0.414442
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.03194e7 12.7400
\(901\) 1.23270e6 1.51848
\(902\) 0 0
\(903\) 1.48941e6 1.82658
\(904\) 0 0
\(905\) 139291. 0.170070
\(906\) −648662. −0.790245
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) −3.28631e6 −3.98599
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 2.25250e6 2.69632
\(915\) 2.74046e6 3.27327
\(916\) 0 0
\(917\) −1.67688e6 −1.99417
\(918\) −3.49749e6 −4.15021
\(919\) −161284. −0.190968 −0.0954838 0.995431i \(-0.530440\pi\)
−0.0954838 + 0.995431i \(0.530440\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −1.97833e6 −2.30716
\(927\) 0 0
\(928\) 0 0
\(929\) −73738.6 −0.0854405 −0.0427202 0.999087i \(-0.513602\pi\)
−0.0427202 + 0.999087i \(0.513602\pi\)
\(930\) 449491. 0.519702
\(931\) 0 0
\(932\) 0 0
\(933\) 2.92176e6 3.35646
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) −1.87604e6 −2.13224
\(939\) 1.14437e6 1.29788
\(940\) 0 0
\(941\) 1.64384e6 1.85643 0.928217 0.372039i \(-0.121341\pi\)
0.928217 + 0.372039i \(0.121341\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −3.73125e6 −4.17821
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) −2.24702e6 −2.47932
\(953\) 1.61665e6 1.78004 0.890020 0.455922i \(-0.150690\pi\)
0.890020 + 0.455922i \(0.150690\pi\)
\(954\) −5.70952e6 −6.27340
\(955\) −3.31273e6 −3.63229
\(956\) 4.23867e6 4.63782
\(957\) 0 0
\(958\) 3.26304e6 3.55543
\(959\) −962564. −1.04663
\(960\) −1.85963e6 −2.01782
\(961\) −916801. −0.992724
\(962\) 0 0
\(963\) 0 0
\(964\) 4.37342e6 4.70617
\(965\) 0 0
\(966\) 0 0
\(967\) 1.86762e6 1.99726 0.998632 0.0522984i \(-0.0166547\pi\)
0.998632 + 0.0522984i \(0.0166547\pi\)
\(968\) −2.32318e6 −2.47932
\(969\) 0 0
\(970\) −3.72394e6 −3.95785
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 2.31675e6 2.45214
\(973\) −490997. −0.518625
\(974\) 0 0
\(975\) 0 0
\(976\) −2.04945e6 −2.15148
\(977\) −1.81590e6 −1.90241 −0.951205 0.308561i \(-0.900153\pi\)
−0.951205 + 0.308561i \(0.900153\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −4.16789e6 −4.33974
\(981\) 0 0
\(982\) 3.47222e6 3.60068
\(983\) −50399.5 −0.0521577 −0.0260789 0.999660i \(-0.508302\pi\)
−0.0260789 + 0.999660i \(0.508302\pi\)
\(984\) −8.32754e6 −8.60055
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −128030. −0.130104
\(993\) 1.80607e6 1.83162
\(994\) 0 0
\(995\) 2.46989e6 2.49478
\(996\) 0 0
\(997\) 1.96476e6 1.97660 0.988301 0.152516i \(-0.0487374\pi\)
0.988301 + 0.152516i \(0.0487374\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 119.5.d.a.118.1 5
7.6 odd 2 119.5.d.b.118.1 yes 5
17.16 even 2 119.5.d.b.118.1 yes 5
119.118 odd 2 CM 119.5.d.a.118.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.5.d.a.118.1 5 1.1 even 1 trivial
119.5.d.a.118.1 5 119.118 odd 2 CM
119.5.d.b.118.1 yes 5 7.6 odd 2
119.5.d.b.118.1 yes 5 17.16 even 2