Properties

Label 1188.3.e.c.485.2
Level $1188$
Weight $3$
Character 1188.485
Analytic conductor $32.371$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1188,3,Mod(485,1188)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1188, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1188.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1188 = 2^{2} \cdot 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1188.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3706554060\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 46x^{6} + 637x^{4} + 2880x^{2} + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 11 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 485.2
Root \(4.98184i\) of defining polynomial
Character \(\chi\) \(=\) 1188.485
Dual form 1188.3.e.c.485.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.30468i q^{5} -0.564603 q^{7} -3.31662i q^{11} +19.8624 q^{13} +9.16530i q^{17} -2.84379 q^{19} -28.1995i q^{23} -3.13959 q^{25} +13.6044i q^{29} +31.1872 q^{31} +2.99504i q^{35} +11.9564 q^{37} +15.0484i q^{41} +0.558376 q^{43} -70.4155i q^{47} -48.6812 q^{49} -43.3730i q^{53} -17.5936 q^{55} -35.2353i q^{59} -56.4788 q^{61} -105.364i q^{65} +37.3372 q^{67} -100.568i q^{71} -101.202 q^{73} +1.87258i q^{77} +31.2293 q^{79} -14.3919i q^{83} +48.6190 q^{85} +50.1036i q^{89} -11.2144 q^{91} +15.0854i q^{95} +45.8208 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} - 20 q^{13} + 16 q^{19} - 12 q^{25} - 32 q^{31} - 20 q^{37} - 48 q^{43} + 84 q^{49} + 36 q^{61} + 16 q^{67} + 200 q^{73} - 28 q^{79} - 60 q^{85} - 228 q^{91} - 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1188\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(541\) \(595\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 5.30468i − 1.06094i −0.847705 0.530468i \(-0.822016\pi\)
0.847705 0.530468i \(-0.177984\pi\)
\(6\) 0 0
\(7\) −0.564603 −0.0806575 −0.0403288 0.999186i \(-0.512841\pi\)
−0.0403288 + 0.999186i \(0.512841\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 3.31662i − 0.301511i
\(12\) 0 0
\(13\) 19.8624 1.52788 0.763939 0.645288i \(-0.223263\pi\)
0.763939 + 0.645288i \(0.223263\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 9.16530i 0.539136i 0.962981 + 0.269568i \(0.0868808\pi\)
−0.962981 + 0.269568i \(0.913119\pi\)
\(18\) 0 0
\(19\) −2.84379 −0.149673 −0.0748366 0.997196i \(-0.523844\pi\)
−0.0748366 + 0.997196i \(0.523844\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 28.1995i − 1.22606i −0.790058 0.613032i \(-0.789950\pi\)
0.790058 0.613032i \(-0.210050\pi\)
\(24\) 0 0
\(25\) −3.13959 −0.125584
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 13.6044i 0.469117i 0.972102 + 0.234558i \(0.0753644\pi\)
−0.972102 + 0.234558i \(0.924636\pi\)
\(30\) 0 0
\(31\) 31.1872 1.00604 0.503020 0.864275i \(-0.332222\pi\)
0.503020 + 0.864275i \(0.332222\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.99504i 0.0855724i
\(36\) 0 0
\(37\) 11.9564 0.323145 0.161573 0.986861i \(-0.448343\pi\)
0.161573 + 0.986861i \(0.448343\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 15.0484i 0.367035i 0.983016 + 0.183518i \(0.0587484\pi\)
−0.983016 + 0.183518i \(0.941252\pi\)
\(42\) 0 0
\(43\) 0.558376 0.0129855 0.00649274 0.999979i \(-0.497933\pi\)
0.00649274 + 0.999979i \(0.497933\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 70.4155i − 1.49820i −0.662455 0.749101i \(-0.730486\pi\)
0.662455 0.749101i \(-0.269514\pi\)
\(48\) 0 0
\(49\) −48.6812 −0.993494
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 43.3730i − 0.818358i −0.912454 0.409179i \(-0.865815\pi\)
0.912454 0.409179i \(-0.134185\pi\)
\(54\) 0 0
\(55\) −17.5936 −0.319884
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 35.2353i − 0.597209i −0.954377 0.298604i \(-0.903479\pi\)
0.954377 0.298604i \(-0.0965211\pi\)
\(60\) 0 0
\(61\) −56.4788 −0.925883 −0.462941 0.886389i \(-0.653206\pi\)
−0.462941 + 0.886389i \(0.653206\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 105.364i − 1.62098i
\(66\) 0 0
\(67\) 37.3372 0.557272 0.278636 0.960397i \(-0.410118\pi\)
0.278636 + 0.960397i \(0.410118\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 100.568i − 1.41644i −0.705990 0.708222i \(-0.749498\pi\)
0.705990 0.708222i \(-0.250502\pi\)
\(72\) 0 0
\(73\) −101.202 −1.38632 −0.693161 0.720783i \(-0.743783\pi\)
−0.693161 + 0.720783i \(0.743783\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.87258i 0.0243192i
\(78\) 0 0
\(79\) 31.2293 0.395307 0.197654 0.980272i \(-0.436668\pi\)
0.197654 + 0.980272i \(0.436668\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 14.3919i − 0.173396i −0.996235 0.0866981i \(-0.972368\pi\)
0.996235 0.0866981i \(-0.0276316\pi\)
\(84\) 0 0
\(85\) 48.6190 0.571988
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 50.1036i 0.562961i 0.959567 + 0.281481i \(0.0908255\pi\)
−0.959567 + 0.281481i \(0.909174\pi\)
\(90\) 0 0
\(91\) −11.2144 −0.123235
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 15.0854i 0.158794i
\(96\) 0 0
\(97\) 45.8208 0.472380 0.236190 0.971707i \(-0.424101\pi\)
0.236190 + 0.971707i \(0.424101\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 149.138i − 1.47662i −0.674464 0.738308i \(-0.735625\pi\)
0.674464 0.738308i \(-0.264375\pi\)
\(102\) 0 0
\(103\) 77.8057 0.755395 0.377698 0.925929i \(-0.376716\pi\)
0.377698 + 0.925929i \(0.376716\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 20.4889i − 0.191485i −0.995406 0.0957425i \(-0.969477\pi\)
0.995406 0.0957425i \(-0.0305225\pi\)
\(108\) 0 0
\(109\) −159.379 −1.46219 −0.731096 0.682275i \(-0.760991\pi\)
−0.731096 + 0.682275i \(0.760991\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 75.9415i 0.672049i 0.941853 + 0.336025i \(0.109083\pi\)
−0.941853 + 0.336025i \(0.890917\pi\)
\(114\) 0 0
\(115\) −149.589 −1.30077
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 5.17476i − 0.0434853i
\(120\) 0 0
\(121\) −11.0000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 115.962i − 0.927699i
\(126\) 0 0
\(127\) 152.251 1.19883 0.599414 0.800439i \(-0.295400\pi\)
0.599414 + 0.800439i \(0.295400\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.2673i 0.0936433i 0.998903 + 0.0468217i \(0.0149092\pi\)
−0.998903 + 0.0468217i \(0.985091\pi\)
\(132\) 0 0
\(133\) 1.60561 0.0120723
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 225.242i − 1.64410i −0.569415 0.822051i \(-0.692830\pi\)
0.569415 0.822051i \(-0.307170\pi\)
\(138\) 0 0
\(139\) −5.08546 −0.0365860 −0.0182930 0.999833i \(-0.505823\pi\)
−0.0182930 + 0.999833i \(0.505823\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 65.8762i − 0.460673i
\(144\) 0 0
\(145\) 72.1669 0.497703
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 80.6159i 0.541047i 0.962713 + 0.270523i \(0.0871967\pi\)
−0.962713 + 0.270523i \(0.912803\pi\)
\(150\) 0 0
\(151\) 35.0789 0.232310 0.116155 0.993231i \(-0.462943\pi\)
0.116155 + 0.993231i \(0.462943\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 165.438i − 1.06734i
\(156\) 0 0
\(157\) −62.4163 −0.397556 −0.198778 0.980045i \(-0.563697\pi\)
−0.198778 + 0.980045i \(0.563697\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 15.9215i 0.0988913i
\(162\) 0 0
\(163\) 61.6952 0.378498 0.189249 0.981929i \(-0.439395\pi\)
0.189249 + 0.981929i \(0.439395\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 294.745i − 1.76494i −0.470370 0.882469i \(-0.655879\pi\)
0.470370 0.882469i \(-0.344121\pi\)
\(168\) 0 0
\(169\) 225.516 1.33441
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 55.4345i 0.320431i 0.987082 + 0.160215i \(0.0512189\pi\)
−0.987082 + 0.160215i \(0.948781\pi\)
\(174\) 0 0
\(175\) 1.77262 0.0101293
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 99.7982i 0.557532i 0.960359 + 0.278766i \(0.0899253\pi\)
−0.960359 + 0.278766i \(0.910075\pi\)
\(180\) 0 0
\(181\) 295.847 1.63451 0.817256 0.576275i \(-0.195494\pi\)
0.817256 + 0.576275i \(0.195494\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 63.4247i − 0.342836i
\(186\) 0 0
\(187\) 30.3979 0.162555
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 214.856i − 1.12490i −0.826830 0.562451i \(-0.809858\pi\)
0.826830 0.562451i \(-0.190142\pi\)
\(192\) 0 0
\(193\) −118.089 −0.611859 −0.305930 0.952054i \(-0.598967\pi\)
−0.305930 + 0.952054i \(0.598967\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 281.424i 1.42855i 0.699867 + 0.714273i \(0.253243\pi\)
−0.699867 + 0.714273i \(0.746757\pi\)
\(198\) 0 0
\(199\) 54.1057 0.271888 0.135944 0.990717i \(-0.456593\pi\)
0.135944 + 0.990717i \(0.456593\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 7.68108i − 0.0378378i
\(204\) 0 0
\(205\) 79.8271 0.389400
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.43179i 0.0451282i
\(210\) 0 0
\(211\) 26.0405 0.123415 0.0617075 0.998094i \(-0.480345\pi\)
0.0617075 + 0.998094i \(0.480345\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 2.96200i − 0.0137768i
\(216\) 0 0
\(217\) −17.6084 −0.0811447
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 182.045i 0.823734i
\(222\) 0 0
\(223\) −216.866 −0.972494 −0.486247 0.873821i \(-0.661635\pi\)
−0.486247 + 0.873821i \(0.661635\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 310.745i − 1.36892i −0.729049 0.684461i \(-0.760038\pi\)
0.729049 0.684461i \(-0.239962\pi\)
\(228\) 0 0
\(229\) −327.571 −1.43044 −0.715220 0.698900i \(-0.753673\pi\)
−0.715220 + 0.698900i \(0.753673\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 194.165i 0.833326i 0.909061 + 0.416663i \(0.136800\pi\)
−0.909061 + 0.416663i \(0.863200\pi\)
\(234\) 0 0
\(235\) −373.532 −1.58950
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 378.856i 1.58517i 0.609760 + 0.792586i \(0.291266\pi\)
−0.609760 + 0.792586i \(0.708734\pi\)
\(240\) 0 0
\(241\) 148.542 0.616357 0.308179 0.951328i \(-0.400281\pi\)
0.308179 + 0.951328i \(0.400281\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 258.238i 1.05403i
\(246\) 0 0
\(247\) −56.4846 −0.228682
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 110.768i 0.441306i 0.975352 + 0.220653i \(0.0708189\pi\)
−0.975352 + 0.220653i \(0.929181\pi\)
\(252\) 0 0
\(253\) −93.5270 −0.369672
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 186.962i 0.727480i 0.931501 + 0.363740i \(0.118500\pi\)
−0.931501 + 0.363740i \(0.881500\pi\)
\(258\) 0 0
\(259\) −6.75061 −0.0260641
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 235.994i − 0.897317i −0.893703 0.448659i \(-0.851902\pi\)
0.893703 0.448659i \(-0.148098\pi\)
\(264\) 0 0
\(265\) −230.080 −0.868225
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 190.384i − 0.707747i −0.935293 0.353874i \(-0.884864\pi\)
0.935293 0.353874i \(-0.115136\pi\)
\(270\) 0 0
\(271\) 494.840 1.82598 0.912989 0.407983i \(-0.133768\pi\)
0.912989 + 0.407983i \(0.133768\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.4129i 0.0378649i
\(276\) 0 0
\(277\) −56.1559 −0.202729 −0.101364 0.994849i \(-0.532321\pi\)
−0.101364 + 0.994849i \(0.532321\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 121.371i 0.431924i 0.976402 + 0.215962i \(0.0692888\pi\)
−0.976402 + 0.215962i \(0.930711\pi\)
\(282\) 0 0
\(283\) −6.76598 −0.0239081 −0.0119540 0.999929i \(-0.503805\pi\)
−0.0119540 + 0.999929i \(0.503805\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 8.49639i − 0.0296041i
\(288\) 0 0
\(289\) 204.997 0.709333
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 576.251i 1.96673i 0.181651 + 0.983363i \(0.441856\pi\)
−0.181651 + 0.983363i \(0.558144\pi\)
\(294\) 0 0
\(295\) −186.912 −0.633600
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 560.110i − 1.87328i
\(300\) 0 0
\(301\) −0.315261 −0.00104738
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 299.602i 0.982302i
\(306\) 0 0
\(307\) −488.407 −1.59090 −0.795451 0.606018i \(-0.792766\pi\)
−0.795451 + 0.606018i \(0.792766\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 249.127i 0.801052i 0.916285 + 0.400526i \(0.131173\pi\)
−0.916285 + 0.400526i \(0.868827\pi\)
\(312\) 0 0
\(313\) 81.3321 0.259847 0.129923 0.991524i \(-0.458527\pi\)
0.129923 + 0.991524i \(0.458527\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 327.067i − 1.03176i −0.856661 0.515879i \(-0.827465\pi\)
0.856661 0.515879i \(-0.172535\pi\)
\(318\) 0 0
\(319\) 45.1207 0.141444
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 26.0642i − 0.0806941i
\(324\) 0 0
\(325\) −62.3599 −0.191877
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 39.7568i 0.120841i
\(330\) 0 0
\(331\) −406.079 −1.22682 −0.613412 0.789763i \(-0.710204\pi\)
−0.613412 + 0.789763i \(0.710204\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 198.062i − 0.591230i
\(336\) 0 0
\(337\) 451.688 1.34032 0.670160 0.742217i \(-0.266225\pi\)
0.670160 + 0.742217i \(0.266225\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 103.436i − 0.303333i
\(342\) 0 0
\(343\) 55.1511 0.160790
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 345.330i 0.995187i 0.867410 + 0.497594i \(0.165783\pi\)
−0.867410 + 0.497594i \(0.834217\pi\)
\(348\) 0 0
\(349\) 409.992 1.17476 0.587381 0.809310i \(-0.300159\pi\)
0.587381 + 0.809310i \(0.300159\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 314.931i 0.892156i 0.894994 + 0.446078i \(0.147180\pi\)
−0.894994 + 0.446078i \(0.852820\pi\)
\(354\) 0 0
\(355\) −533.478 −1.50276
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 660.887i 1.84091i 0.390847 + 0.920455i \(0.372182\pi\)
−0.390847 + 0.920455i \(0.627818\pi\)
\(360\) 0 0
\(361\) −352.913 −0.977598
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 536.841i 1.47080i
\(366\) 0 0
\(367\) 15.9186 0.0433748 0.0216874 0.999765i \(-0.493096\pi\)
0.0216874 + 0.999765i \(0.493096\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 24.4885i 0.0660068i
\(372\) 0 0
\(373\) 253.307 0.679108 0.339554 0.940587i \(-0.389724\pi\)
0.339554 + 0.940587i \(0.389724\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 270.216i 0.716754i
\(378\) 0 0
\(379\) 315.972 0.833699 0.416850 0.908975i \(-0.363134\pi\)
0.416850 + 0.908975i \(0.363134\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 131.220i 0.342611i 0.985218 + 0.171305i \(0.0547985\pi\)
−0.985218 + 0.171305i \(0.945202\pi\)
\(384\) 0 0
\(385\) 9.93341 0.0258011
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 452.761i 1.16391i 0.813221 + 0.581955i \(0.197712\pi\)
−0.813221 + 0.581955i \(0.802288\pi\)
\(390\) 0 0
\(391\) 258.457 0.661014
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 165.661i − 0.419395i
\(396\) 0 0
\(397\) 227.897 0.574048 0.287024 0.957923i \(-0.407334\pi\)
0.287024 + 0.957923i \(0.407334\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 192.027i 0.478870i 0.970912 + 0.239435i \(0.0769622\pi\)
−0.970912 + 0.239435i \(0.923038\pi\)
\(402\) 0 0
\(403\) 619.454 1.53711
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 39.6548i − 0.0974320i
\(408\) 0 0
\(409\) 100.235 0.245074 0.122537 0.992464i \(-0.460897\pi\)
0.122537 + 0.992464i \(0.460897\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 19.8940i 0.0481694i
\(414\) 0 0
\(415\) −76.3443 −0.183962
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 64.1202i 0.153031i 0.997068 + 0.0765157i \(0.0243795\pi\)
−0.997068 + 0.0765157i \(0.975620\pi\)
\(420\) 0 0
\(421\) −410.137 −0.974196 −0.487098 0.873347i \(-0.661945\pi\)
−0.487098 + 0.873347i \(0.661945\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 28.7753i − 0.0677067i
\(426\) 0 0
\(427\) 31.8881 0.0746794
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 409.896i 0.951035i 0.879706 + 0.475517i \(0.157739\pi\)
−0.879706 + 0.475517i \(0.842261\pi\)
\(432\) 0 0
\(433\) 254.402 0.587533 0.293766 0.955877i \(-0.405091\pi\)
0.293766 + 0.955877i \(0.405091\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 80.1934i 0.183509i
\(438\) 0 0
\(439\) −90.6491 −0.206490 −0.103245 0.994656i \(-0.532923\pi\)
−0.103245 + 0.994656i \(0.532923\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 735.324i − 1.65987i −0.557857 0.829937i \(-0.688376\pi\)
0.557857 0.829937i \(-0.311624\pi\)
\(444\) 0 0
\(445\) 265.783 0.597266
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 747.700i 1.66526i 0.553832 + 0.832628i \(0.313165\pi\)
−0.553832 + 0.832628i \(0.686835\pi\)
\(450\) 0 0
\(451\) 49.9100 0.110665
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 59.4887i 0.130744i
\(456\) 0 0
\(457\) −96.9797 −0.212209 −0.106105 0.994355i \(-0.533838\pi\)
−0.106105 + 0.994355i \(0.533838\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 242.338i 0.525680i 0.964839 + 0.262840i \(0.0846591\pi\)
−0.964839 + 0.262840i \(0.915341\pi\)
\(462\) 0 0
\(463\) 241.667 0.521960 0.260980 0.965344i \(-0.415954\pi\)
0.260980 + 0.965344i \(0.415954\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 284.779i 0.609805i 0.952384 + 0.304903i \(0.0986239\pi\)
−0.952384 + 0.304903i \(0.901376\pi\)
\(468\) 0 0
\(469\) −21.0807 −0.0449482
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 1.85192i − 0.00391527i
\(474\) 0 0
\(475\) 8.92835 0.0187965
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 17.7155i − 0.0369843i −0.999829 0.0184921i \(-0.994113\pi\)
0.999829 0.0184921i \(-0.00588656\pi\)
\(480\) 0 0
\(481\) 237.483 0.493727
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 243.065i − 0.501164i
\(486\) 0 0
\(487\) −475.591 −0.976572 −0.488286 0.872684i \(-0.662378\pi\)
−0.488286 + 0.872684i \(0.662378\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 551.069i − 1.12234i −0.827700 0.561170i \(-0.810351\pi\)
0.827700 0.561170i \(-0.189649\pi\)
\(492\) 0 0
\(493\) −124.688 −0.252918
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 56.7807i 0.114247i
\(498\) 0 0
\(499\) 749.533 1.50207 0.751035 0.660262i \(-0.229555\pi\)
0.751035 + 0.660262i \(0.229555\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 439.461i 0.873681i 0.899539 + 0.436840i \(0.143903\pi\)
−0.899539 + 0.436840i \(0.856097\pi\)
\(504\) 0 0
\(505\) −791.130 −1.56659
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 172.832i − 0.339553i −0.985483 0.169776i \(-0.945695\pi\)
0.985483 0.169776i \(-0.0543046\pi\)
\(510\) 0 0
\(511\) 57.1387 0.111817
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 412.734i − 0.801426i
\(516\) 0 0
\(517\) −233.542 −0.451725
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 843.421i − 1.61885i −0.587223 0.809425i \(-0.699779\pi\)
0.587223 0.809425i \(-0.300221\pi\)
\(522\) 0 0
\(523\) −117.956 −0.225538 −0.112769 0.993621i \(-0.535972\pi\)
−0.112769 + 0.993621i \(0.535972\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 285.841i 0.542392i
\(528\) 0 0
\(529\) −266.210 −0.503232
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 298.898i 0.560785i
\(534\) 0 0
\(535\) −108.687 −0.203153
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 161.457i 0.299550i
\(540\) 0 0
\(541\) −83.6365 −0.154596 −0.0772980 0.997008i \(-0.524629\pi\)
−0.0772980 + 0.997008i \(0.524629\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 845.454i 1.55129i
\(546\) 0 0
\(547\) 90.6732 0.165765 0.0828823 0.996559i \(-0.473587\pi\)
0.0828823 + 0.996559i \(0.473587\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 38.6880i − 0.0702142i
\(552\) 0 0
\(553\) −17.6321 −0.0318845
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 126.065i 0.226328i 0.993576 + 0.113164i \(0.0360985\pi\)
−0.993576 + 0.113164i \(0.963901\pi\)
\(558\) 0 0
\(559\) 11.0907 0.0198402
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 574.544i − 1.02050i −0.860025 0.510252i \(-0.829552\pi\)
0.860025 0.510252i \(-0.170448\pi\)
\(564\) 0 0
\(565\) 402.845 0.713001
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 411.936i − 0.723964i −0.932185 0.361982i \(-0.882100\pi\)
0.932185 0.361982i \(-0.117900\pi\)
\(570\) 0 0
\(571\) −421.300 −0.737828 −0.368914 0.929464i \(-0.620270\pi\)
−0.368914 + 0.929464i \(0.620270\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 88.5349i 0.153974i
\(576\) 0 0
\(577\) −377.236 −0.653788 −0.326894 0.945061i \(-0.606002\pi\)
−0.326894 + 0.945061i \(0.606002\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8.12570i 0.0139857i
\(582\) 0 0
\(583\) −143.852 −0.246744
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 417.587i 0.711391i 0.934602 + 0.355696i \(0.115756\pi\)
−0.934602 + 0.355696i \(0.884244\pi\)
\(588\) 0 0
\(589\) −88.6900 −0.150577
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 575.043i 0.969718i 0.874592 + 0.484859i \(0.161129\pi\)
−0.874592 + 0.484859i \(0.838871\pi\)
\(594\) 0 0
\(595\) −27.4504 −0.0461351
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 170.090i − 0.283957i −0.989870 0.141978i \(-0.954654\pi\)
0.989870 0.141978i \(-0.0453464\pi\)
\(600\) 0 0
\(601\) −226.671 −0.377156 −0.188578 0.982058i \(-0.560388\pi\)
−0.188578 + 0.982058i \(0.560388\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 58.3514i 0.0964487i
\(606\) 0 0
\(607\) 961.338 1.58375 0.791876 0.610681i \(-0.209104\pi\)
0.791876 + 0.610681i \(0.209104\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 1398.62i − 2.28907i
\(612\) 0 0
\(613\) 854.731 1.39434 0.697171 0.716905i \(-0.254442\pi\)
0.697171 + 0.716905i \(0.254442\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 497.960i 0.807066i 0.914965 + 0.403533i \(0.132218\pi\)
−0.914965 + 0.403533i \(0.867782\pi\)
\(618\) 0 0
\(619\) −833.541 −1.34659 −0.673297 0.739373i \(-0.735122\pi\)
−0.673297 + 0.739373i \(0.735122\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 28.2886i − 0.0454071i
\(624\) 0 0
\(625\) −693.633 −1.10981
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 109.584i 0.174219i
\(630\) 0 0
\(631\) 504.769 0.799950 0.399975 0.916526i \(-0.369019\pi\)
0.399975 + 0.916526i \(0.369019\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 807.643i − 1.27188i
\(636\) 0 0
\(637\) −966.927 −1.51794
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 168.339i 0.262619i 0.991341 + 0.131309i \(0.0419181\pi\)
−0.991341 + 0.131309i \(0.958082\pi\)
\(642\) 0 0
\(643\) −760.587 −1.18287 −0.591436 0.806352i \(-0.701439\pi\)
−0.591436 + 0.806352i \(0.701439\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 886.660i 1.37042i 0.728347 + 0.685209i \(0.240289\pi\)
−0.728347 + 0.685209i \(0.759711\pi\)
\(648\) 0 0
\(649\) −116.862 −0.180065
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 882.562i 1.35155i 0.737108 + 0.675775i \(0.236191\pi\)
−0.737108 + 0.675775i \(0.763809\pi\)
\(654\) 0 0
\(655\) 65.0739 0.0993495
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 1082.97i − 1.64335i −0.569956 0.821675i \(-0.693040\pi\)
0.569956 0.821675i \(-0.306960\pi\)
\(660\) 0 0
\(661\) −0.939382 −0.00142115 −0.000710576 1.00000i \(-0.500226\pi\)
−0.000710576 1.00000i \(0.500226\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 8.51725i − 0.0128079i
\(666\) 0 0
\(667\) 383.636 0.575167
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 187.319i 0.279164i
\(672\) 0 0
\(673\) 801.952 1.19161 0.595804 0.803130i \(-0.296834\pi\)
0.595804 + 0.803130i \(0.296834\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 679.226i 1.00329i 0.865074 + 0.501644i \(0.167271\pi\)
−0.865074 + 0.501644i \(0.832729\pi\)
\(678\) 0 0
\(679\) −25.8706 −0.0381010
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 633.610i − 0.927686i −0.885917 0.463843i \(-0.846470\pi\)
0.885917 0.463843i \(-0.153530\pi\)
\(684\) 0 0
\(685\) −1194.84 −1.74428
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 861.493i − 1.25035i
\(690\) 0 0
\(691\) 613.990 0.888552 0.444276 0.895890i \(-0.353461\pi\)
0.444276 + 0.895890i \(0.353461\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 26.9767i 0.0388154i
\(696\) 0 0
\(697\) −137.924 −0.197882
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 1243.75i − 1.77425i −0.461533 0.887123i \(-0.652701\pi\)
0.461533 0.887123i \(-0.347299\pi\)
\(702\) 0 0
\(703\) −34.0014 −0.0483662
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 84.2039i 0.119100i
\(708\) 0 0
\(709\) −319.728 −0.450956 −0.225478 0.974248i \(-0.572394\pi\)
−0.225478 + 0.974248i \(0.572394\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 879.463i − 1.23347i
\(714\) 0 0
\(715\) −349.452 −0.488744
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 1172.26i − 1.63040i −0.579178 0.815201i \(-0.696626\pi\)
0.579178 0.815201i \(-0.303374\pi\)
\(720\) 0 0
\(721\) −43.9293 −0.0609283
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 42.7123i − 0.0589135i
\(726\) 0 0
\(727\) 1013.77 1.39446 0.697229 0.716848i \(-0.254416\pi\)
0.697229 + 0.716848i \(0.254416\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.11768i 0.00700094i
\(732\) 0 0
\(733\) 817.660 1.11550 0.557749 0.830010i \(-0.311665\pi\)
0.557749 + 0.830010i \(0.311665\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 123.834i − 0.168024i
\(738\) 0 0
\(739\) 388.311 0.525454 0.262727 0.964870i \(-0.415378\pi\)
0.262727 + 0.964870i \(0.415378\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 1399.55i − 1.88365i −0.336105 0.941824i \(-0.609110\pi\)
0.336105 0.941824i \(-0.390890\pi\)
\(744\) 0 0
\(745\) 427.641 0.574015
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11.5681i 0.0154447i
\(750\) 0 0
\(751\) −540.976 −0.720341 −0.360170 0.932887i \(-0.617281\pi\)
−0.360170 + 0.932887i \(0.617281\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 186.082i − 0.246466i
\(756\) 0 0
\(757\) 1242.72 1.64164 0.820820 0.571187i \(-0.193517\pi\)
0.820820 + 0.571187i \(0.193517\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 61.0013i 0.0801594i 0.999196 + 0.0400797i \(0.0127612\pi\)
−0.999196 + 0.0400797i \(0.987239\pi\)
\(762\) 0 0
\(763\) 89.9858 0.117937
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 699.859i − 0.912463i
\(768\) 0 0
\(769\) −275.424 −0.358159 −0.179080 0.983835i \(-0.557312\pi\)
−0.179080 + 0.983835i \(0.557312\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 508.827i − 0.658250i −0.944286 0.329125i \(-0.893246\pi\)
0.944286 0.329125i \(-0.106754\pi\)
\(774\) 0 0
\(775\) −97.9153 −0.126342
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 42.7946i − 0.0549353i
\(780\) 0 0
\(781\) −333.545 −0.427074
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 331.098i 0.421781i
\(786\) 0 0
\(787\) −72.1748 −0.0917088 −0.0458544 0.998948i \(-0.514601\pi\)
−0.0458544 + 0.998948i \(0.514601\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 42.8768i − 0.0542058i
\(792\) 0 0
\(793\) −1121.81 −1.41464
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 302.879i 0.380024i 0.981782 + 0.190012i \(0.0608527\pi\)
−0.981782 + 0.190012i \(0.939147\pi\)
\(798\) 0 0
\(799\) 645.380 0.807734
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 335.648i 0.417992i
\(804\) 0 0
\(805\) 84.4584 0.104917
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 870.791i − 1.07638i −0.842824 0.538190i \(-0.819108\pi\)
0.842824 0.538190i \(-0.180892\pi\)
\(810\) 0 0
\(811\) 1169.49 1.44204 0.721018 0.692917i \(-0.243675\pi\)
0.721018 + 0.692917i \(0.243675\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 327.273i − 0.401562i
\(816\) 0 0
\(817\) −1.58790 −0.00194358
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 1086.31i − 1.32315i −0.749879 0.661575i \(-0.769888\pi\)
0.749879 0.661575i \(-0.230112\pi\)
\(822\) 0 0
\(823\) −729.935 −0.886920 −0.443460 0.896294i \(-0.646249\pi\)
−0.443460 + 0.896294i \(0.646249\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1365.26i 1.65086i 0.564503 + 0.825431i \(0.309068\pi\)
−0.564503 + 0.825431i \(0.690932\pi\)
\(828\) 0 0
\(829\) 1261.78 1.52205 0.761024 0.648724i \(-0.224697\pi\)
0.761024 + 0.648724i \(0.224697\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 446.178i − 0.535628i
\(834\) 0 0
\(835\) −1563.53 −1.87249
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 144.807i 0.172595i 0.996269 + 0.0862973i \(0.0275035\pi\)
−0.996269 + 0.0862973i \(0.972497\pi\)
\(840\) 0 0
\(841\) 655.921 0.779929
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 1196.29i − 1.41573i
\(846\) 0 0
\(847\) 6.21063 0.00733250
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 337.163i − 0.396197i
\(852\) 0 0
\(853\) −64.1119 −0.0751605 −0.0375802 0.999294i \(-0.511965\pi\)
−0.0375802 + 0.999294i \(0.511965\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1104.09i 1.28832i 0.764891 + 0.644160i \(0.222793\pi\)
−0.764891 + 0.644160i \(0.777207\pi\)
\(858\) 0 0
\(859\) 920.695 1.07182 0.535911 0.844274i \(-0.319968\pi\)
0.535911 + 0.844274i \(0.319968\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1289.42i 1.49411i 0.664763 + 0.747055i \(0.268533\pi\)
−0.664763 + 0.747055i \(0.731467\pi\)
\(864\) 0 0
\(865\) 294.062 0.339956
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 103.576i − 0.119190i
\(870\) 0 0
\(871\) 741.608 0.851444
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 65.4727i 0.0748259i
\(876\) 0 0
\(877\) −715.659 −0.816030 −0.408015 0.912975i \(-0.633779\pi\)
−0.408015 + 0.912975i \(0.633779\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 723.537i − 0.821267i −0.911800 0.410634i \(-0.865307\pi\)
0.911800 0.410634i \(-0.134693\pi\)
\(882\) 0 0
\(883\) −474.053 −0.536866 −0.268433 0.963298i \(-0.586506\pi\)
−0.268433 + 0.963298i \(0.586506\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 445.907i − 0.502713i −0.967895 0.251357i \(-0.919123\pi\)
0.967895 0.251357i \(-0.0808767\pi\)
\(888\) 0 0
\(889\) −85.9614 −0.0966945
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 200.247i 0.224241i
\(894\) 0 0
\(895\) 529.397 0.591505
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 424.283i 0.471950i
\(900\) 0 0
\(901\) 397.527 0.441206
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 1569.37i − 1.73411i
\(906\) 0 0
\(907\) 1273.61 1.40420 0.702100 0.712078i \(-0.252246\pi\)
0.702100 + 0.712078i \(0.252246\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 968.407i 1.06302i 0.847054 + 0.531508i \(0.178374\pi\)
−0.847054 + 0.531508i \(0.821626\pi\)
\(912\) 0 0
\(913\) −47.7325 −0.0522809
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 6.92614i − 0.00755304i
\(918\) 0 0
\(919\) −1445.48 −1.57288 −0.786442 0.617664i \(-0.788079\pi\)
−0.786442 + 0.617664i \(0.788079\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 1997.51i − 2.16415i
\(924\) 0 0
\(925\) −37.5382 −0.0405818
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1029.02i 1.10766i 0.832629 + 0.553832i \(0.186835\pi\)
−0.832629 + 0.553832i \(0.813165\pi\)
\(930\) 0 0
\(931\) 138.439 0.148699
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 161.251i − 0.172461i
\(936\) 0 0
\(937\) 960.013 1.02456 0.512280 0.858818i \(-0.328801\pi\)
0.512280 + 0.858818i \(0.328801\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 698.272i − 0.742053i −0.928622 0.371027i \(-0.879006\pi\)
0.928622 0.371027i \(-0.120994\pi\)
\(942\) 0 0
\(943\) 424.358 0.450008
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 50.9442i − 0.0537954i −0.999638 0.0268977i \(-0.991437\pi\)
0.999638 0.0268977i \(-0.00856283\pi\)
\(948\) 0 0
\(949\) −2010.11 −2.11813
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 120.929i 0.126893i 0.997985 + 0.0634467i \(0.0202093\pi\)
−0.997985 + 0.0634467i \(0.979791\pi\)
\(954\) 0 0
\(955\) −1139.74 −1.19345
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 127.172i 0.132609i
\(960\) 0 0
\(961\) 11.6442 0.0121167
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 626.423i 0.649143i
\(966\) 0 0
\(967\) −1331.55 −1.37699 −0.688496 0.725240i \(-0.741729\pi\)
−0.688496 + 0.725240i \(0.741729\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 755.114i − 0.777666i −0.921308 0.388833i \(-0.872878\pi\)
0.921308 0.388833i \(-0.127122\pi\)
\(972\) 0 0
\(973\) 2.87126 0.00295094
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1177.46i − 1.20517i −0.798053 0.602587i \(-0.794137\pi\)
0.798053 0.602587i \(-0.205863\pi\)
\(978\) 0 0
\(979\) 166.175 0.169739
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 830.282i 0.844641i 0.906446 + 0.422321i \(0.138784\pi\)
−0.906446 + 0.422321i \(0.861216\pi\)
\(984\) 0 0
\(985\) 1492.86 1.51560
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 15.7459i − 0.0159210i
\(990\) 0 0
\(991\) −1659.37 −1.67444 −0.837220 0.546866i \(-0.815821\pi\)
−0.837220 + 0.546866i \(0.815821\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 287.013i − 0.288455i
\(996\) 0 0
\(997\) 878.060 0.880702 0.440351 0.897826i \(-0.354854\pi\)
0.440351 + 0.897826i \(0.354854\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1188.3.e.c.485.2 8
3.2 odd 2 inner 1188.3.e.c.485.7 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1188.3.e.c.485.2 8 1.1 even 1 trivial
1188.3.e.c.485.7 yes 8 3.2 odd 2 inner