Properties

Label 1184.2.i.a.417.1
Level $1184$
Weight $2$
Character 1184.417
Analytic conductor $9.454$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1184,2,Mod(417,1184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1184, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1184.417"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1184 = 2^{5} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1184.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,3,0,2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.45428759932\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 417.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1184.417
Dual form 1184.2.i.a.1025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{3} +(1.50000 + 2.59808i) q^{5} +(1.00000 + 1.73205i) q^{7} +(-0.500000 + 0.866025i) q^{9} -4.00000 q^{11} +(1.00000 + 1.73205i) q^{13} +(3.00000 - 5.19615i) q^{15} +(-3.50000 + 6.06218i) q^{17} +(2.00000 - 3.46410i) q^{21} +2.00000 q^{23} +(-2.00000 + 3.46410i) q^{25} -4.00000 q^{27} -3.00000 q^{29} -8.00000 q^{31} +(4.00000 + 6.92820i) q^{33} +(-3.00000 + 5.19615i) q^{35} +(-5.50000 - 2.59808i) q^{37} +(2.00000 - 3.46410i) q^{39} +(0.500000 + 0.866025i) q^{41} -10.0000 q^{43} -3.00000 q^{45} +8.00000 q^{47} +(1.50000 - 2.59808i) q^{49} +14.0000 q^{51} +(-5.00000 + 8.66025i) q^{53} +(-6.00000 - 10.3923i) q^{55} +(2.00000 - 3.46410i) q^{59} +(1.50000 + 2.59808i) q^{61} -2.00000 q^{63} +(-3.00000 + 5.19615i) q^{65} +(2.00000 + 3.46410i) q^{67} +(-2.00000 - 3.46410i) q^{69} +(7.00000 + 12.1244i) q^{71} -2.00000 q^{73} +8.00000 q^{75} +(-4.00000 - 6.92820i) q^{77} +(8.00000 + 13.8564i) q^{79} +(5.50000 + 9.52628i) q^{81} +(1.00000 - 1.73205i) q^{83} -21.0000 q^{85} +(3.00000 + 5.19615i) q^{87} +(0.500000 - 0.866025i) q^{89} +(-2.00000 + 3.46410i) q^{91} +(8.00000 + 13.8564i) q^{93} +19.0000 q^{97} +(2.00000 - 3.46410i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 3 q^{5} + 2 q^{7} - q^{9} - 8 q^{11} + 2 q^{13} + 6 q^{15} - 7 q^{17} + 4 q^{21} + 4 q^{23} - 4 q^{25} - 8 q^{27} - 6 q^{29} - 16 q^{31} + 8 q^{33} - 6 q^{35} - 11 q^{37} + 4 q^{39} + q^{41}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1184\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(705\) \(741\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 1.73205i −0.577350 1.00000i −0.995782 0.0917517i \(-0.970753\pi\)
0.418432 0.908248i \(-0.362580\pi\)
\(4\) 0 0
\(5\) 1.50000 + 2.59808i 0.670820 + 1.16190i 0.977672 + 0.210138i \(0.0673912\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 0 0
\(7\) 1.00000 + 1.73205i 0.377964 + 0.654654i 0.990766 0.135583i \(-0.0432908\pi\)
−0.612801 + 0.790237i \(0.709957\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 1.00000 + 1.73205i 0.277350 + 0.480384i 0.970725 0.240192i \(-0.0772105\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 3.00000 5.19615i 0.774597 1.34164i
\(16\) 0 0
\(17\) −3.50000 + 6.06218i −0.848875 + 1.47029i 0.0333386 + 0.999444i \(0.489386\pi\)
−0.882213 + 0.470850i \(0.843947\pi\)
\(18\) 0 0
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) 0 0
\(21\) 2.00000 3.46410i 0.436436 0.755929i
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 4.00000 + 6.92820i 0.696311 + 1.20605i
\(34\) 0 0
\(35\) −3.00000 + 5.19615i −0.507093 + 0.878310i
\(36\) 0 0
\(37\) −5.50000 2.59808i −0.904194 0.427121i
\(38\) 0 0
\(39\) 2.00000 3.46410i 0.320256 0.554700i
\(40\) 0 0
\(41\) 0.500000 + 0.866025i 0.0780869 + 0.135250i 0.902424 0.430848i \(-0.141786\pi\)
−0.824338 + 0.566099i \(0.808452\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) −3.00000 −0.447214
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) 0 0
\(51\) 14.0000 1.96039
\(52\) 0 0
\(53\) −5.00000 + 8.66025i −0.686803 + 1.18958i 0.286064 + 0.958211i \(0.407653\pi\)
−0.972867 + 0.231367i \(0.925680\pi\)
\(54\) 0 0
\(55\) −6.00000 10.3923i −0.809040 1.40130i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.00000 3.46410i 0.260378 0.450988i −0.705965 0.708247i \(-0.749486\pi\)
0.966342 + 0.257260i \(0.0828195\pi\)
\(60\) 0 0
\(61\) 1.50000 + 2.59808i 0.192055 + 0.332650i 0.945931 0.324367i \(-0.105151\pi\)
−0.753876 + 0.657017i \(0.771818\pi\)
\(62\) 0 0
\(63\) −2.00000 −0.251976
\(64\) 0 0
\(65\) −3.00000 + 5.19615i −0.372104 + 0.644503i
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) 0 0
\(69\) −2.00000 3.46410i −0.240772 0.417029i
\(70\) 0 0
\(71\) 7.00000 + 12.1244i 0.830747 + 1.43890i 0.897447 + 0.441123i \(0.145420\pi\)
−0.0666994 + 0.997773i \(0.521247\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 8.00000 0.923760
\(76\) 0 0
\(77\) −4.00000 6.92820i −0.455842 0.789542i
\(78\) 0 0
\(79\) 8.00000 + 13.8564i 0.900070 + 1.55897i 0.827401 + 0.561611i \(0.189818\pi\)
0.0726692 + 0.997356i \(0.476848\pi\)
\(80\) 0 0
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 0 0
\(83\) 1.00000 1.73205i 0.109764 0.190117i −0.805910 0.592037i \(-0.798324\pi\)
0.915675 + 0.401920i \(0.131657\pi\)
\(84\) 0 0
\(85\) −21.0000 −2.27777
\(86\) 0 0
\(87\) 3.00000 + 5.19615i 0.321634 + 0.557086i
\(88\) 0 0
\(89\) 0.500000 0.866025i 0.0529999 0.0917985i −0.838308 0.545197i \(-0.816455\pi\)
0.891308 + 0.453398i \(0.149788\pi\)
\(90\) 0 0
\(91\) −2.00000 + 3.46410i −0.209657 + 0.363137i
\(92\) 0 0
\(93\) 8.00000 + 13.8564i 0.829561 + 1.43684i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 19.0000 1.92916 0.964579 0.263795i \(-0.0849741\pi\)
0.964579 + 0.263795i \(0.0849741\pi\)
\(98\) 0 0
\(99\) 2.00000 3.46410i 0.201008 0.348155i
\(100\) 0 0
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 0 0
\(105\) 12.0000 1.17108
\(106\) 0 0
\(107\) 3.00000 + 5.19615i 0.290021 + 0.502331i 0.973814 0.227345i \(-0.0730044\pi\)
−0.683793 + 0.729676i \(0.739671\pi\)
\(108\) 0 0
\(109\) 5.50000 9.52628i 0.526804 0.912452i −0.472708 0.881219i \(-0.656723\pi\)
0.999512 0.0312328i \(-0.00994332\pi\)
\(110\) 0 0
\(111\) 1.00000 + 12.1244i 0.0949158 + 1.15079i
\(112\) 0 0
\(113\) −7.00000 + 12.1244i −0.658505 + 1.14056i 0.322498 + 0.946570i \(0.395477\pi\)
−0.981003 + 0.193993i \(0.937856\pi\)
\(114\) 0 0
\(115\) 3.00000 + 5.19615i 0.279751 + 0.484544i
\(116\) 0 0
\(117\) −2.00000 −0.184900
\(118\) 0 0
\(119\) −14.0000 −1.28338
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 1.00000 1.73205i 0.0901670 0.156174i
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 5.00000 8.66025i 0.443678 0.768473i −0.554281 0.832330i \(-0.687007\pi\)
0.997959 + 0.0638564i \(0.0203400\pi\)
\(128\) 0 0
\(129\) 10.0000 + 17.3205i 0.880451 + 1.52499i
\(130\) 0 0
\(131\) −3.00000 + 5.19615i −0.262111 + 0.453990i −0.966803 0.255524i \(-0.917752\pi\)
0.704692 + 0.709514i \(0.251085\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −6.00000 10.3923i −0.516398 0.894427i
\(136\) 0 0
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) 5.00000 8.66025i 0.424094 0.734553i −0.572241 0.820086i \(-0.693926\pi\)
0.996335 + 0.0855324i \(0.0272591\pi\)
\(140\) 0 0
\(141\) −8.00000 13.8564i −0.673722 1.16692i
\(142\) 0 0
\(143\) −4.00000 6.92820i −0.334497 0.579365i
\(144\) 0 0
\(145\) −4.50000 7.79423i −0.373705 0.647275i
\(146\) 0 0
\(147\) −6.00000 −0.494872
\(148\) 0 0
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) 0 0
\(151\) 1.00000 + 1.73205i 0.0813788 + 0.140952i 0.903842 0.427865i \(-0.140734\pi\)
−0.822464 + 0.568818i \(0.807401\pi\)
\(152\) 0 0
\(153\) −3.50000 6.06218i −0.282958 0.490098i
\(154\) 0 0
\(155\) −12.0000 20.7846i −0.963863 1.66946i
\(156\) 0 0
\(157\) −2.50000 + 4.33013i −0.199522 + 0.345582i −0.948373 0.317156i \(-0.897272\pi\)
0.748852 + 0.662738i \(0.230606\pi\)
\(158\) 0 0
\(159\) 20.0000 1.58610
\(160\) 0 0
\(161\) 2.00000 + 3.46410i 0.157622 + 0.273009i
\(162\) 0 0
\(163\) −9.00000 + 15.5885i −0.704934 + 1.22098i 0.261781 + 0.965127i \(0.415690\pi\)
−0.966715 + 0.255855i \(0.917643\pi\)
\(164\) 0 0
\(165\) −12.0000 + 20.7846i −0.934199 + 1.61808i
\(166\) 0 0
\(167\) −4.00000 6.92820i −0.309529 0.536120i 0.668730 0.743505i \(-0.266838\pi\)
−0.978259 + 0.207385i \(0.933505\pi\)
\(168\) 0 0
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.50000 16.4545i 0.722272 1.25101i −0.237816 0.971310i \(-0.576431\pi\)
0.960087 0.279701i \(-0.0902353\pi\)
\(174\) 0 0
\(175\) −8.00000 −0.604743
\(176\) 0 0
\(177\) −8.00000 −0.601317
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −2.50000 4.33013i −0.185824 0.321856i 0.758030 0.652219i \(-0.226162\pi\)
−0.943854 + 0.330364i \(0.892829\pi\)
\(182\) 0 0
\(183\) 3.00000 5.19615i 0.221766 0.384111i
\(184\) 0 0
\(185\) −1.50000 18.1865i −0.110282 1.33710i
\(186\) 0 0
\(187\) 14.0000 24.2487i 1.02378 1.77324i
\(188\) 0 0
\(189\) −4.00000 6.92820i −0.290957 0.503953i
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) 7.00000 0.503871 0.251936 0.967744i \(-0.418933\pi\)
0.251936 + 0.967744i \(0.418933\pi\)
\(194\) 0 0
\(195\) 12.0000 0.859338
\(196\) 0 0
\(197\) 7.50000 12.9904i 0.534353 0.925526i −0.464841 0.885394i \(-0.653889\pi\)
0.999194 0.0401324i \(-0.0127780\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) 4.00000 6.92820i 0.282138 0.488678i
\(202\) 0 0
\(203\) −3.00000 5.19615i −0.210559 0.364698i
\(204\) 0 0
\(205\) −1.50000 + 2.59808i −0.104765 + 0.181458i
\(206\) 0 0
\(207\) −1.00000 + 1.73205i −0.0695048 + 0.120386i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −22.0000 −1.51454 −0.757271 0.653101i \(-0.773468\pi\)
−0.757271 + 0.653101i \(0.773468\pi\)
\(212\) 0 0
\(213\) 14.0000 24.2487i 0.959264 1.66149i
\(214\) 0 0
\(215\) −15.0000 25.9808i −1.02299 1.77187i
\(216\) 0 0
\(217\) −8.00000 13.8564i −0.543075 0.940634i
\(218\) 0 0
\(219\) 2.00000 + 3.46410i 0.135147 + 0.234082i
\(220\) 0 0
\(221\) −14.0000 −0.941742
\(222\) 0 0
\(223\) −14.0000 −0.937509 −0.468755 0.883328i \(-0.655297\pi\)
−0.468755 + 0.883328i \(0.655297\pi\)
\(224\) 0 0
\(225\) −2.00000 3.46410i −0.133333 0.230940i
\(226\) 0 0
\(227\) 12.0000 + 20.7846i 0.796468 + 1.37952i 0.921903 + 0.387421i \(0.126634\pi\)
−0.125435 + 0.992102i \(0.540033\pi\)
\(228\) 0 0
\(229\) −0.500000 0.866025i −0.0330409 0.0572286i 0.849032 0.528341i \(-0.177186\pi\)
−0.882073 + 0.471113i \(0.843853\pi\)
\(230\) 0 0
\(231\) −8.00000 + 13.8564i −0.526361 + 0.911685i
\(232\) 0 0
\(233\) 11.0000 0.720634 0.360317 0.932830i \(-0.382669\pi\)
0.360317 + 0.932830i \(0.382669\pi\)
\(234\) 0 0
\(235\) 12.0000 + 20.7846i 0.782794 + 1.35584i
\(236\) 0 0
\(237\) 16.0000 27.7128i 1.03931 1.80014i
\(238\) 0 0
\(239\) −7.00000 + 12.1244i −0.452792 + 0.784259i −0.998558 0.0536783i \(-0.982905\pi\)
0.545766 + 0.837938i \(0.316239\pi\)
\(240\) 0 0
\(241\) −11.0000 19.0526i −0.708572 1.22728i −0.965387 0.260822i \(-0.916006\pi\)
0.256814 0.966461i \(-0.417327\pi\)
\(242\) 0 0
\(243\) 5.00000 8.66025i 0.320750 0.555556i
\(244\) 0 0
\(245\) 9.00000 0.574989
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) −30.0000 −1.89358 −0.946792 0.321847i \(-0.895696\pi\)
−0.946792 + 0.321847i \(0.895696\pi\)
\(252\) 0 0
\(253\) −8.00000 −0.502956
\(254\) 0 0
\(255\) 21.0000 + 36.3731i 1.31507 + 2.27777i
\(256\) 0 0
\(257\) −13.5000 + 23.3827i −0.842107 + 1.45857i 0.0460033 + 0.998941i \(0.485352\pi\)
−0.888110 + 0.459631i \(0.847982\pi\)
\(258\) 0 0
\(259\) −1.00000 12.1244i −0.0621370 0.753371i
\(260\) 0 0
\(261\) 1.50000 2.59808i 0.0928477 0.160817i
\(262\) 0 0
\(263\) 6.00000 + 10.3923i 0.369976 + 0.640817i 0.989561 0.144112i \(-0.0460326\pi\)
−0.619586 + 0.784929i \(0.712699\pi\)
\(264\) 0 0
\(265\) −30.0000 −1.84289
\(266\) 0 0
\(267\) −2.00000 −0.122398
\(268\) 0 0
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) 14.0000 24.2487i 0.850439 1.47300i −0.0303728 0.999539i \(-0.509669\pi\)
0.880812 0.473466i \(-0.156997\pi\)
\(272\) 0 0
\(273\) 8.00000 0.484182
\(274\) 0 0
\(275\) 8.00000 13.8564i 0.482418 0.835573i
\(276\) 0 0
\(277\) 1.50000 + 2.59808i 0.0901263 + 0.156103i 0.907564 0.419914i \(-0.137940\pi\)
−0.817438 + 0.576017i \(0.804606\pi\)
\(278\) 0 0
\(279\) 4.00000 6.92820i 0.239474 0.414781i
\(280\) 0 0
\(281\) −9.50000 + 16.4545i −0.566722 + 0.981592i 0.430165 + 0.902750i \(0.358455\pi\)
−0.996887 + 0.0788417i \(0.974878\pi\)
\(282\) 0 0
\(283\) 7.00000 + 12.1244i 0.416107 + 0.720718i 0.995544 0.0942988i \(-0.0300609\pi\)
−0.579437 + 0.815017i \(0.696728\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.00000 + 1.73205i −0.0590281 + 0.102240i
\(288\) 0 0
\(289\) −16.0000 27.7128i −0.941176 1.63017i
\(290\) 0 0
\(291\) −19.0000 32.9090i −1.11380 1.92916i
\(292\) 0 0
\(293\) 7.50000 + 12.9904i 0.438155 + 0.758906i 0.997547 0.0699967i \(-0.0222989\pi\)
−0.559393 + 0.828903i \(0.688966\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) 16.0000 0.928414
\(298\) 0 0
\(299\) 2.00000 + 3.46410i 0.115663 + 0.200334i
\(300\) 0 0
\(301\) −10.0000 17.3205i −0.576390 0.998337i
\(302\) 0 0
\(303\) 3.00000 + 5.19615i 0.172345 + 0.298511i
\(304\) 0 0
\(305\) −4.50000 + 7.79423i −0.257669 + 0.446296i
\(306\) 0 0
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) 0 0
\(309\) 6.00000 + 10.3923i 0.341328 + 0.591198i
\(310\) 0 0
\(311\) 9.00000 15.5885i 0.510343 0.883940i −0.489585 0.871956i \(-0.662852\pi\)
0.999928 0.0119847i \(-0.00381495\pi\)
\(312\) 0 0
\(313\) 12.5000 21.6506i 0.706542 1.22377i −0.259590 0.965719i \(-0.583588\pi\)
0.966132 0.258047i \(-0.0830791\pi\)
\(314\) 0 0
\(315\) −3.00000 5.19615i −0.169031 0.292770i
\(316\) 0 0
\(317\) 11.5000 19.9186i 0.645904 1.11874i −0.338188 0.941079i \(-0.609814\pi\)
0.984092 0.177660i \(-0.0568529\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) 0 0
\(321\) 6.00000 10.3923i 0.334887 0.580042i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −8.00000 −0.443760
\(326\) 0 0
\(327\) −22.0000 −1.21660
\(328\) 0 0
\(329\) 8.00000 + 13.8564i 0.441054 + 0.763928i
\(330\) 0 0
\(331\) −16.0000 + 27.7128i −0.879440 + 1.52323i −0.0274825 + 0.999622i \(0.508749\pi\)
−0.851957 + 0.523612i \(0.824584\pi\)
\(332\) 0 0
\(333\) 5.00000 3.46410i 0.273998 0.189832i
\(334\) 0 0
\(335\) −6.00000 + 10.3923i −0.327815 + 0.567792i
\(336\) 0 0
\(337\) 6.50000 + 11.2583i 0.354078 + 0.613280i 0.986960 0.160968i \(-0.0514616\pi\)
−0.632882 + 0.774248i \(0.718128\pi\)
\(338\) 0 0
\(339\) 28.0000 1.52075
\(340\) 0 0
\(341\) 32.0000 1.73290
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 6.00000 10.3923i 0.323029 0.559503i
\(346\) 0 0
\(347\) 18.0000 0.966291 0.483145 0.875540i \(-0.339494\pi\)
0.483145 + 0.875540i \(0.339494\pi\)
\(348\) 0 0
\(349\) −4.50000 + 7.79423i −0.240879 + 0.417215i −0.960965 0.276670i \(-0.910769\pi\)
0.720086 + 0.693885i \(0.244103\pi\)
\(350\) 0 0
\(351\) −4.00000 6.92820i −0.213504 0.369800i
\(352\) 0 0
\(353\) −1.50000 + 2.59808i −0.0798369 + 0.138282i −0.903179 0.429263i \(-0.858773\pi\)
0.823343 + 0.567545i \(0.192107\pi\)
\(354\) 0 0
\(355\) −21.0000 + 36.3731i −1.11456 + 1.93048i
\(356\) 0 0
\(357\) 14.0000 + 24.2487i 0.740959 + 1.28338i
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 9.50000 16.4545i 0.500000 0.866025i
\(362\) 0 0
\(363\) −5.00000 8.66025i −0.262432 0.454545i
\(364\) 0 0
\(365\) −3.00000 5.19615i −0.157027 0.271979i
\(366\) 0 0
\(367\) −8.00000 13.8564i −0.417597 0.723299i 0.578101 0.815966i \(-0.303794\pi\)
−0.995697 + 0.0926670i \(0.970461\pi\)
\(368\) 0 0
\(369\) −1.00000 −0.0520579
\(370\) 0 0
\(371\) −20.0000 −1.03835
\(372\) 0 0
\(373\) 9.50000 + 16.4545i 0.491891 + 0.851981i 0.999956 0.00933789i \(-0.00297238\pi\)
−0.508065 + 0.861319i \(0.669639\pi\)
\(374\) 0 0
\(375\) −3.00000 5.19615i −0.154919 0.268328i
\(376\) 0 0
\(377\) −3.00000 5.19615i −0.154508 0.267615i
\(378\) 0 0
\(379\) 9.00000 15.5885i 0.462299 0.800725i −0.536776 0.843725i \(-0.680358\pi\)
0.999075 + 0.0429994i \(0.0136914\pi\)
\(380\) 0 0
\(381\) −20.0000 −1.02463
\(382\) 0 0
\(383\) −1.00000 1.73205i −0.0510976 0.0885037i 0.839345 0.543599i \(-0.182939\pi\)
−0.890443 + 0.455095i \(0.849605\pi\)
\(384\) 0 0
\(385\) 12.0000 20.7846i 0.611577 1.05928i
\(386\) 0 0
\(387\) 5.00000 8.66025i 0.254164 0.440225i
\(388\) 0 0
\(389\) 9.50000 + 16.4545i 0.481669 + 0.834275i 0.999779 0.0210389i \(-0.00669738\pi\)
−0.518110 + 0.855314i \(0.673364\pi\)
\(390\) 0 0
\(391\) −7.00000 + 12.1244i −0.354005 + 0.613155i
\(392\) 0 0
\(393\) 12.0000 0.605320
\(394\) 0 0
\(395\) −24.0000 + 41.5692i −1.20757 + 2.09157i
\(396\) 0 0
\(397\) −7.00000 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) −8.00000 13.8564i −0.398508 0.690237i
\(404\) 0 0
\(405\) −16.5000 + 28.5788i −0.819892 + 1.42009i
\(406\) 0 0
\(407\) 22.0000 + 10.3923i 1.09050 + 0.515127i
\(408\) 0 0
\(409\) −15.5000 + 26.8468i −0.766426 + 1.32749i 0.173064 + 0.984911i \(0.444633\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) −3.00000 5.19615i −0.147979 0.256307i
\(412\) 0 0
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) 6.00000 0.294528
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 0 0
\(419\) −15.0000 + 25.9808i −0.732798 + 1.26924i 0.222885 + 0.974845i \(0.428453\pi\)
−0.955683 + 0.294398i \(0.904881\pi\)
\(420\) 0 0
\(421\) −27.0000 −1.31590 −0.657950 0.753062i \(-0.728576\pi\)
−0.657950 + 0.753062i \(0.728576\pi\)
\(422\) 0 0
\(423\) −4.00000 + 6.92820i −0.194487 + 0.336861i
\(424\) 0 0
\(425\) −14.0000 24.2487i −0.679100 1.17624i
\(426\) 0 0
\(427\) −3.00000 + 5.19615i −0.145180 + 0.251459i
\(428\) 0 0
\(429\) −8.00000 + 13.8564i −0.386244 + 0.668994i
\(430\) 0 0
\(431\) 8.00000 + 13.8564i 0.385346 + 0.667440i 0.991817 0.127666i \(-0.0407486\pi\)
−0.606471 + 0.795106i \(0.707415\pi\)
\(432\) 0 0
\(433\) −21.0000 −1.00920 −0.504598 0.863355i \(-0.668359\pi\)
−0.504598 + 0.863355i \(0.668359\pi\)
\(434\) 0 0
\(435\) −9.00000 + 15.5885i −0.431517 + 0.747409i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 10.0000 + 17.3205i 0.477274 + 0.826663i 0.999661 0.0260459i \(-0.00829161\pi\)
−0.522387 + 0.852709i \(0.674958\pi\)
\(440\) 0 0
\(441\) 1.50000 + 2.59808i 0.0714286 + 0.123718i
\(442\) 0 0
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) 3.00000 0.142214
\(446\) 0 0
\(447\) −1.00000 1.73205i −0.0472984 0.0819232i
\(448\) 0 0
\(449\) −15.0000 25.9808i −0.707894 1.22611i −0.965637 0.259895i \(-0.916312\pi\)
0.257743 0.966213i \(-0.417021\pi\)
\(450\) 0 0
\(451\) −2.00000 3.46410i −0.0941763 0.163118i
\(452\) 0 0
\(453\) 2.00000 3.46410i 0.0939682 0.162758i
\(454\) 0 0
\(455\) −12.0000 −0.562569
\(456\) 0 0
\(457\) −13.5000 23.3827i −0.631503 1.09380i −0.987245 0.159211i \(-0.949105\pi\)
0.355741 0.934585i \(-0.384228\pi\)
\(458\) 0 0
\(459\) 14.0000 24.2487i 0.653464 1.13183i
\(460\) 0 0
\(461\) 1.00000 1.73205i 0.0465746 0.0806696i −0.841798 0.539792i \(-0.818503\pi\)
0.888373 + 0.459123i \(0.151836\pi\)
\(462\) 0 0
\(463\) −13.0000 22.5167i −0.604161 1.04644i −0.992183 0.124788i \(-0.960175\pi\)
0.388022 0.921650i \(-0.373158\pi\)
\(464\) 0 0
\(465\) −24.0000 + 41.5692i −1.11297 + 1.92773i
\(466\) 0 0
\(467\) 20.0000 0.925490 0.462745 0.886492i \(-0.346865\pi\)
0.462745 + 0.886492i \(0.346865\pi\)
\(468\) 0 0
\(469\) −4.00000 + 6.92820i −0.184703 + 0.319915i
\(470\) 0 0
\(471\) 10.0000 0.460776
\(472\) 0 0
\(473\) 40.0000 1.83920
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.00000 8.66025i −0.228934 0.396526i
\(478\) 0 0
\(479\) 6.00000 10.3923i 0.274147 0.474837i −0.695773 0.718262i \(-0.744938\pi\)
0.969920 + 0.243426i \(0.0782712\pi\)
\(480\) 0 0
\(481\) −1.00000 12.1244i −0.0455961 0.552823i
\(482\) 0 0
\(483\) 4.00000 6.92820i 0.182006 0.315244i
\(484\) 0 0
\(485\) 28.5000 + 49.3634i 1.29412 + 2.24148i
\(486\) 0 0
\(487\) 38.0000 1.72194 0.860972 0.508652i \(-0.169856\pi\)
0.860972 + 0.508652i \(0.169856\pi\)
\(488\) 0 0
\(489\) 36.0000 1.62798
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 10.5000 18.1865i 0.472896 0.819080i
\(494\) 0 0
\(495\) 12.0000 0.539360
\(496\) 0 0
\(497\) −14.0000 + 24.2487i −0.627986 + 1.08770i
\(498\) 0 0
\(499\) −16.0000 27.7128i −0.716258 1.24060i −0.962472 0.271380i \(-0.912520\pi\)
0.246214 0.969216i \(-0.420813\pi\)
\(500\) 0 0
\(501\) −8.00000 + 13.8564i −0.357414 + 0.619059i
\(502\) 0 0
\(503\) −6.00000 + 10.3923i −0.267527 + 0.463370i −0.968223 0.250090i \(-0.919540\pi\)
0.700696 + 0.713460i \(0.252873\pi\)
\(504\) 0 0
\(505\) −4.50000 7.79423i −0.200247 0.346839i
\(506\) 0 0
\(507\) −18.0000 −0.799408
\(508\) 0 0
\(509\) 7.50000 12.9904i 0.332432 0.575789i −0.650556 0.759458i \(-0.725464\pi\)
0.982988 + 0.183669i \(0.0587976\pi\)
\(510\) 0 0
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.00000 15.5885i −0.396587 0.686909i
\(516\) 0 0
\(517\) −32.0000 −1.40736
\(518\) 0 0
\(519\) −38.0000 −1.66801
\(520\) 0 0
\(521\) −3.00000 5.19615i −0.131432 0.227648i 0.792797 0.609486i \(-0.208624\pi\)
−0.924229 + 0.381839i \(0.875291\pi\)
\(522\) 0 0
\(523\) 13.0000 + 22.5167i 0.568450 + 0.984585i 0.996719 + 0.0809336i \(0.0257902\pi\)
−0.428269 + 0.903651i \(0.640876\pi\)
\(524\) 0 0
\(525\) 8.00000 + 13.8564i 0.349149 + 0.604743i
\(526\) 0 0
\(527\) 28.0000 48.4974i 1.21970 2.11258i
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 2.00000 + 3.46410i 0.0867926 + 0.150329i
\(532\) 0 0
\(533\) −1.00000 + 1.73205i −0.0433148 + 0.0750234i
\(534\) 0 0
\(535\) −9.00000 + 15.5885i −0.389104 + 0.673948i
\(536\) 0 0
\(537\) −12.0000 20.7846i −0.517838 0.896922i
\(538\) 0 0
\(539\) −6.00000 + 10.3923i −0.258438 + 0.447628i
\(540\) 0 0
\(541\) 5.00000 0.214967 0.107483 0.994207i \(-0.465721\pi\)
0.107483 + 0.994207i \(0.465721\pi\)
\(542\) 0 0
\(543\) −5.00000 + 8.66025i −0.214571 + 0.371647i
\(544\) 0 0
\(545\) 33.0000 1.41356
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) −3.00000 −0.128037
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −16.0000 + 27.7128i −0.680389 + 1.17847i
\(554\) 0 0
\(555\) −30.0000 + 20.7846i −1.27343 + 0.882258i
\(556\) 0 0
\(557\) 15.5000 26.8468i 0.656756 1.13753i −0.324694 0.945819i \(-0.605261\pi\)
0.981450 0.191716i \(-0.0614052\pi\)
\(558\) 0 0
\(559\) −10.0000 17.3205i −0.422955 0.732579i
\(560\) 0 0
\(561\) −56.0000 −2.36432
\(562\) 0 0
\(563\) −14.0000 −0.590030 −0.295015 0.955493i \(-0.595325\pi\)
−0.295015 + 0.955493i \(0.595325\pi\)
\(564\) 0 0
\(565\) −42.0000 −1.76695
\(566\) 0 0
\(567\) −11.0000 + 19.0526i −0.461957 + 0.800132i
\(568\) 0 0
\(569\) −33.0000 −1.38343 −0.691716 0.722170i \(-0.743145\pi\)
−0.691716 + 0.722170i \(0.743145\pi\)
\(570\) 0 0
\(571\) 13.0000 22.5167i 0.544033 0.942293i −0.454634 0.890678i \(-0.650230\pi\)
0.998667 0.0516146i \(-0.0164367\pi\)
\(572\) 0 0
\(573\) 18.0000 + 31.1769i 0.751961 + 1.30243i
\(574\) 0 0
\(575\) −4.00000 + 6.92820i −0.166812 + 0.288926i
\(576\) 0 0
\(577\) −9.00000 + 15.5885i −0.374675 + 0.648956i −0.990278 0.139100i \(-0.955579\pi\)
0.615603 + 0.788056i \(0.288912\pi\)
\(578\) 0 0
\(579\) −7.00000 12.1244i −0.290910 0.503871i
\(580\) 0 0
\(581\) 4.00000 0.165948
\(582\) 0 0
\(583\) 20.0000 34.6410i 0.828315 1.43468i
\(584\) 0 0
\(585\) −3.00000 5.19615i −0.124035 0.214834i
\(586\) 0 0
\(587\) 5.00000 + 8.66025i 0.206372 + 0.357447i 0.950569 0.310513i \(-0.100501\pi\)
−0.744197 + 0.667960i \(0.767168\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −30.0000 −1.23404
\(592\) 0 0
\(593\) −21.0000 −0.862367 −0.431183 0.902264i \(-0.641904\pi\)
−0.431183 + 0.902264i \(0.641904\pi\)
\(594\) 0 0
\(595\) −21.0000 36.3731i −0.860916 1.49115i
\(596\) 0 0
\(597\) 10.0000 + 17.3205i 0.409273 + 0.708881i
\(598\) 0 0
\(599\) −14.0000 24.2487i −0.572024 0.990775i −0.996358 0.0852695i \(-0.972825\pi\)
0.424333 0.905506i \(-0.360508\pi\)
\(600\) 0 0
\(601\) 2.50000 4.33013i 0.101977 0.176630i −0.810522 0.585708i \(-0.800816\pi\)
0.912499 + 0.409079i \(0.134150\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) 0 0
\(605\) 7.50000 + 12.9904i 0.304918 + 0.528134i
\(606\) 0 0
\(607\) 6.00000 10.3923i 0.243532 0.421811i −0.718186 0.695852i \(-0.755027\pi\)
0.961718 + 0.274041i \(0.0883604\pi\)
\(608\) 0 0
\(609\) −6.00000 + 10.3923i −0.243132 + 0.421117i
\(610\) 0 0
\(611\) 8.00000 + 13.8564i 0.323645 + 0.560570i
\(612\) 0 0
\(613\) 1.50000 2.59808i 0.0605844 0.104935i −0.834142 0.551549i \(-0.814037\pi\)
0.894727 + 0.446614i \(0.147370\pi\)
\(614\) 0 0
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) 9.00000 15.5885i 0.362326 0.627568i −0.626017 0.779809i \(-0.715316\pi\)
0.988343 + 0.152242i \(0.0486493\pi\)
\(618\) 0 0
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) 0 0
\(621\) −8.00000 −0.321029
\(622\) 0 0
\(623\) 2.00000 0.0801283
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 35.0000 24.2487i 1.39554 0.966859i
\(630\) 0 0
\(631\) −25.0000 + 43.3013i −0.995234 + 1.72380i −0.413169 + 0.910654i \(0.635578\pi\)
−0.582066 + 0.813142i \(0.697755\pi\)
\(632\) 0 0
\(633\) 22.0000 + 38.1051i 0.874421 + 1.51454i
\(634\) 0 0
\(635\) 30.0000 1.19051
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 0 0
\(639\) −14.0000 −0.553831
\(640\) 0 0
\(641\) −17.5000 + 30.3109i −0.691208 + 1.19721i 0.280234 + 0.959932i \(0.409588\pi\)
−0.971442 + 0.237276i \(0.923745\pi\)
\(642\) 0 0
\(643\) 16.0000 0.630978 0.315489 0.948929i \(-0.397831\pi\)
0.315489 + 0.948929i \(0.397831\pi\)
\(644\) 0 0
\(645\) −30.0000 + 51.9615i −1.18125 + 2.04598i
\(646\) 0 0
\(647\) −21.0000 36.3731i −0.825595 1.42997i −0.901464 0.432855i \(-0.857506\pi\)
0.0758684 0.997118i \(-0.475827\pi\)
\(648\) 0 0
\(649\) −8.00000 + 13.8564i −0.314027 + 0.543912i
\(650\) 0 0
\(651\) −16.0000 + 27.7128i −0.627089 + 1.08615i
\(652\) 0 0
\(653\) 19.5000 + 33.7750i 0.763094 + 1.32172i 0.941248 + 0.337715i \(0.109654\pi\)
−0.178154 + 0.984003i \(0.557013\pi\)
\(654\) 0 0
\(655\) −18.0000 −0.703318
\(656\) 0 0
\(657\) 1.00000 1.73205i 0.0390137 0.0675737i
\(658\) 0 0
\(659\) −8.00000 13.8564i −0.311636 0.539769i 0.667081 0.744985i \(-0.267544\pi\)
−0.978717 + 0.205216i \(0.934210\pi\)
\(660\) 0 0
\(661\) −2.50000 4.33013i −0.0972387 0.168422i 0.813302 0.581842i \(-0.197668\pi\)
−0.910541 + 0.413419i \(0.864334\pi\)
\(662\) 0 0
\(663\) 14.0000 + 24.2487i 0.543715 + 0.941742i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6.00000 −0.232321
\(668\) 0 0
\(669\) 14.0000 + 24.2487i 0.541271 + 0.937509i
\(670\) 0 0
\(671\) −6.00000 10.3923i −0.231627 0.401190i
\(672\) 0 0
\(673\) 13.0000 + 22.5167i 0.501113 + 0.867953i 0.999999 + 0.00128586i \(0.000409302\pi\)
−0.498886 + 0.866668i \(0.666257\pi\)
\(674\) 0 0
\(675\) 8.00000 13.8564i 0.307920 0.533333i
\(676\) 0 0
\(677\) 41.0000 1.57576 0.787879 0.615830i \(-0.211179\pi\)
0.787879 + 0.615830i \(0.211179\pi\)
\(678\) 0 0
\(679\) 19.0000 + 32.9090i 0.729153 + 1.26293i
\(680\) 0 0
\(681\) 24.0000 41.5692i 0.919682 1.59294i
\(682\) 0 0
\(683\) 17.0000 29.4449i 0.650487 1.12668i −0.332518 0.943097i \(-0.607898\pi\)
0.983005 0.183579i \(-0.0587685\pi\)
\(684\) 0 0
\(685\) 4.50000 + 7.79423i 0.171936 + 0.297802i
\(686\) 0 0
\(687\) −1.00000 + 1.73205i −0.0381524 + 0.0660819i
\(688\) 0 0
\(689\) −20.0000 −0.761939
\(690\) 0 0
\(691\) −16.0000 + 27.7128i −0.608669 + 1.05425i 0.382791 + 0.923835i \(0.374963\pi\)
−0.991460 + 0.130410i \(0.958371\pi\)
\(692\) 0 0
\(693\) 8.00000 0.303895
\(694\) 0 0
\(695\) 30.0000 1.13796
\(696\) 0 0
\(697\) −7.00000 −0.265144
\(698\) 0 0
\(699\) −11.0000 19.0526i −0.416058 0.720634i
\(700\) 0 0
\(701\) −15.0000 + 25.9808i −0.566542 + 0.981280i 0.430362 + 0.902656i \(0.358386\pi\)
−0.996904 + 0.0786236i \(0.974947\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 24.0000 41.5692i 0.903892 1.56559i
\(706\) 0 0
\(707\) −3.00000 5.19615i −0.112827 0.195421i
\(708\) 0 0
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) 0 0
\(711\) −16.0000 −0.600047
\(712\) 0 0
\(713\) −16.0000 −0.599205
\(714\) 0 0
\(715\) 12.0000 20.7846i 0.448775 0.777300i
\(716\) 0 0
\(717\) 28.0000 1.04568
\(718\) 0 0
\(719\) −19.0000 + 32.9090i −0.708580 + 1.22730i 0.256803 + 0.966464i \(0.417331\pi\)
−0.965384 + 0.260834i \(0.916003\pi\)
\(720\) 0 0
\(721\) −6.00000 10.3923i −0.223452 0.387030i
\(722\) 0 0
\(723\) −22.0000 + 38.1051i −0.818189 + 1.41714i
\(724\) 0 0
\(725\) 6.00000 10.3923i 0.222834 0.385961i
\(726\) 0 0
\(727\) −10.0000 17.3205i −0.370879 0.642382i 0.618822 0.785532i \(-0.287610\pi\)
−0.989701 + 0.143149i \(0.954277\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 35.0000 60.6218i 1.29452 2.24218i
\(732\) 0 0
\(733\) −11.0000 19.0526i −0.406294 0.703722i 0.588177 0.808732i \(-0.299846\pi\)
−0.994471 + 0.105010i \(0.966513\pi\)
\(734\) 0 0
\(735\) −9.00000 15.5885i −0.331970 0.574989i
\(736\) 0 0
\(737\) −8.00000 13.8564i −0.294684 0.510407i
\(738\) 0 0
\(739\) 54.0000 1.98642 0.993211 0.116326i \(-0.0371118\pi\)
0.993211 + 0.116326i \(0.0371118\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 + 41.5692i 0.880475 + 1.52503i 0.850814 + 0.525467i \(0.176109\pi\)
0.0296605 + 0.999560i \(0.490557\pi\)
\(744\) 0 0
\(745\) 1.50000 + 2.59808i 0.0549557 + 0.0951861i
\(746\) 0 0
\(747\) 1.00000 + 1.73205i 0.0365881 + 0.0633724i
\(748\) 0 0
\(749\) −6.00000 + 10.3923i −0.219235 + 0.379727i
\(750\) 0 0
\(751\) −22.0000 −0.802791 −0.401396 0.915905i \(-0.631475\pi\)
−0.401396 + 0.915905i \(0.631475\pi\)
\(752\) 0 0
\(753\) 30.0000 + 51.9615i 1.09326 + 1.89358i
\(754\) 0 0
\(755\) −3.00000 + 5.19615i −0.109181 + 0.189107i
\(756\) 0 0
\(757\) −24.5000 + 42.4352i −0.890468 + 1.54234i −0.0511519 + 0.998691i \(0.516289\pi\)
−0.839316 + 0.543644i \(0.817044\pi\)
\(758\) 0 0
\(759\) 8.00000 + 13.8564i 0.290382 + 0.502956i
\(760\) 0 0
\(761\) −13.5000 + 23.3827i −0.489375 + 0.847622i −0.999925 0.0122260i \(-0.996108\pi\)
0.510551 + 0.859848i \(0.329442\pi\)
\(762\) 0 0
\(763\) 22.0000 0.796453
\(764\) 0 0
\(765\) 10.5000 18.1865i 0.379628 0.657536i
\(766\) 0 0
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 54.0000 1.94476
\(772\) 0 0
\(773\) 19.5000 + 33.7750i 0.701366 + 1.21480i 0.967987 + 0.251000i \(0.0807596\pi\)
−0.266621 + 0.963802i \(0.585907\pi\)
\(774\) 0 0
\(775\) 16.0000 27.7128i 0.574737 0.995474i
\(776\) 0 0
\(777\) −20.0000 + 13.8564i −0.717496 + 0.497096i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −28.0000 48.4974i −1.00192 1.73537i
\(782\) 0 0
\(783\) 12.0000 0.428845
\(784\) 0 0
\(785\) −15.0000 −0.535373
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) 0 0
\(789\) 12.0000 20.7846i 0.427211 0.739952i
\(790\) 0 0
\(791\) −28.0000 −0.995565
\(792\) 0 0
\(793\) −3.00000 + 5.19615i −0.106533 + 0.184521i
\(794\) 0 0
\(795\) 30.0000 + 51.9615i 1.06399 + 1.84289i
\(796\) 0 0
\(797\) −19.0000 + 32.9090i −0.673015 + 1.16570i 0.304030 + 0.952662i \(0.401668\pi\)
−0.977045 + 0.213033i \(0.931666\pi\)
\(798\) 0 0
\(799\) −28.0000 + 48.4974i −0.990569 + 1.71572i
\(800\) 0 0
\(801\) 0.500000 + 0.866025i 0.0176666 + 0.0305995i
\(802\) 0 0
\(803\) 8.00000 0.282314
\(804\) 0 0
\(805\) −6.00000 + 10.3923i −0.211472 + 0.366281i
\(806\) 0 0
\(807\) −14.0000 24.2487i −0.492823 0.853595i
\(808\) 0 0
\(809\) −15.0000 25.9808i −0.527372 0.913435i −0.999491 0.0319002i \(-0.989844\pi\)
0.472119 0.881535i \(-0.343489\pi\)
\(810\) 0 0
\(811\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(812\) 0 0
\(813\) −56.0000 −1.96401
\(814\) 0 0
\(815\) −54.0000 −1.89154
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −2.00000 3.46410i −0.0698857 0.121046i
\(820\) 0 0
\(821\) −3.00000 5.19615i −0.104701 0.181347i 0.808915 0.587925i \(-0.200055\pi\)
−0.913616 + 0.406578i \(0.866722\pi\)
\(822\) 0 0
\(823\) 13.0000 22.5167i 0.453152 0.784881i −0.545428 0.838157i \(-0.683633\pi\)
0.998580 + 0.0532760i \(0.0169663\pi\)
\(824\) 0 0
\(825\) −32.0000 −1.11410
\(826\) 0 0
\(827\) 8.00000 + 13.8564i 0.278187 + 0.481834i 0.970934 0.239346i \(-0.0769331\pi\)
−0.692747 + 0.721181i \(0.743600\pi\)
\(828\) 0 0
\(829\) 17.0000 29.4449i 0.590434 1.02266i −0.403739 0.914874i \(-0.632290\pi\)
0.994174 0.107788i \(-0.0343769\pi\)
\(830\) 0 0
\(831\) 3.00000 5.19615i 0.104069 0.180253i
\(832\) 0 0
\(833\) 10.5000 + 18.1865i 0.363803 + 0.630126i
\(834\) 0 0
\(835\) 12.0000 20.7846i 0.415277 0.719281i
\(836\) 0 0
\(837\) 32.0000 1.10608
\(838\) 0 0
\(839\) −3.00000 + 5.19615i −0.103572 + 0.179391i −0.913154 0.407615i \(-0.866360\pi\)
0.809582 + 0.587007i \(0.199694\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) 38.0000 1.30879
\(844\) 0 0
\(845\) 27.0000 0.928828
\(846\) 0 0
\(847\) 5.00000 + 8.66025i 0.171802 + 0.297570i
\(848\) 0 0
\(849\) 14.0000 24.2487i 0.480479 0.832214i
\(850\) 0 0
\(851\) −11.0000 5.19615i −0.377075 0.178122i
\(852\) 0 0
\(853\) 7.50000 12.9904i 0.256795 0.444782i −0.708586 0.705624i \(-0.750667\pi\)
0.965382 + 0.260842i \(0.0840001\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −57.0000 −1.94708 −0.973541 0.228510i \(-0.926614\pi\)
−0.973541 + 0.228510i \(0.926614\pi\)
\(858\) 0 0
\(859\) 10.0000 0.341196 0.170598 0.985341i \(-0.445430\pi\)
0.170598 + 0.985341i \(0.445430\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) −2.00000 + 3.46410i −0.0680808 + 0.117919i −0.898056 0.439880i \(-0.855021\pi\)
0.829976 + 0.557800i \(0.188354\pi\)
\(864\) 0 0
\(865\) 57.0000 1.93806
\(866\) 0 0
\(867\) −32.0000 + 55.4256i −1.08678 + 1.88235i
\(868\) 0 0
\(869\) −32.0000 55.4256i −1.08553 1.88019i
\(870\) 0 0
\(871\) −4.00000 + 6.92820i −0.135535 + 0.234753i
\(872\) 0 0
\(873\) −9.50000 + 16.4545i −0.321526 + 0.556900i
\(874\) 0 0
\(875\) 3.00000 + 5.19615i 0.101419 + 0.175662i
\(876\) 0 0
\(877\) 1.00000 0.0337676 0.0168838 0.999857i \(-0.494625\pi\)
0.0168838 + 0.999857i \(0.494625\pi\)
\(878\) 0 0
\(879\) 15.0000 25.9808i 0.505937 0.876309i
\(880\) 0 0
\(881\) −3.50000 6.06218i −0.117918 0.204240i 0.801024 0.598632i \(-0.204289\pi\)
−0.918942 + 0.394392i \(0.870955\pi\)
\(882\) 0 0
\(883\) 9.00000 + 15.5885i 0.302874 + 0.524593i 0.976786 0.214219i \(-0.0687205\pi\)
−0.673912 + 0.738812i \(0.735387\pi\)
\(884\) 0 0
\(885\) −12.0000 20.7846i −0.403376 0.698667i
\(886\) 0 0
\(887\) 54.0000 1.81314 0.906571 0.422053i \(-0.138690\pi\)
0.906571 + 0.422053i \(0.138690\pi\)
\(888\) 0 0
\(889\) 20.0000 0.670778
\(890\) 0 0
\(891\) −22.0000 38.1051i −0.737028 1.27657i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 18.0000 + 31.1769i 0.601674 + 1.04213i
\(896\) 0 0
\(897\) 4.00000 6.92820i 0.133556 0.231326i
\(898\) 0 0
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) −35.0000 60.6218i −1.16602 2.01960i
\(902\) 0 0
\(903\) −20.0000 + 34.6410i −0.665558 + 1.15278i
\(904\) 0 0
\(905\) 7.50000 12.9904i 0.249308 0.431815i
\(906\) 0 0
\(907\) 26.0000 + 45.0333i 0.863316 + 1.49531i 0.868710 + 0.495321i \(0.164950\pi\)
−0.00539395 + 0.999985i \(0.501717\pi\)
\(908\) 0 0
\(909\) 1.50000 2.59808i 0.0497519 0.0861727i
\(910\) 0 0
\(911\) 22.0000 0.728893 0.364446 0.931224i \(-0.381258\pi\)
0.364446 + 0.931224i \(0.381258\pi\)
\(912\) 0 0
\(913\) −4.00000 + 6.92820i −0.132381 + 0.229290i
\(914\) 0 0
\(915\) 18.0000 0.595062
\(916\) 0 0
\(917\) −12.0000 −0.396275
\(918\) 0 0
\(919\) 2.00000 0.0659739 0.0329870 0.999456i \(-0.489498\pi\)
0.0329870 + 0.999456i \(0.489498\pi\)
\(920\) 0 0
\(921\) −22.0000 38.1051i −0.724925 1.25561i
\(922\) 0 0
\(923\) −14.0000 + 24.2487i −0.460816 + 0.798156i
\(924\) 0 0
\(925\) 20.0000 13.8564i 0.657596 0.455596i
\(926\) 0 0
\(927\) 3.00000 5.19615i 0.0985329 0.170664i
\(928\) 0 0
\(929\) 22.5000 + 38.9711i 0.738201 + 1.27860i 0.953305 + 0.302010i \(0.0976578\pi\)
−0.215104 + 0.976591i \(0.569009\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −36.0000 −1.17859
\(934\) 0 0
\(935\) 84.0000 2.74709
\(936\) 0 0
\(937\) 12.5000 21.6506i 0.408357 0.707295i −0.586349 0.810059i \(-0.699435\pi\)
0.994706 + 0.102763i \(0.0327685\pi\)
\(938\) 0 0
\(939\) −50.0000 −1.63169
\(940\) 0 0
\(941\) −18.5000 + 32.0429i −0.603083 + 1.04457i 0.389269 + 0.921124i \(0.372728\pi\)
−0.992351 + 0.123446i \(0.960606\pi\)
\(942\) 0 0
\(943\) 1.00000 + 1.73205i 0.0325645 + 0.0564033i
\(944\) 0 0
\(945\) 12.0000 20.7846i 0.390360 0.676123i
\(946\) 0 0
\(947\) 6.00000 10.3923i 0.194974 0.337705i −0.751918 0.659256i \(-0.770871\pi\)
0.946892 + 0.321552i \(0.104204\pi\)
\(948\) 0 0
\(949\) −2.00000 3.46410i −0.0649227 0.112449i
\(950\) 0 0
\(951\) −46.0000 −1.49165
\(952\) 0 0
\(953\) 9.00000 15.5885i 0.291539 0.504960i −0.682635 0.730759i \(-0.739166\pi\)
0.974174 + 0.225800i \(0.0724995\pi\)
\(954\) 0 0
\(955\) −27.0000 46.7654i −0.873699 1.51329i
\(956\) 0 0
\(957\) −12.0000 20.7846i −0.387905 0.671871i
\(958\) 0 0
\(959\) 3.00000 + 5.19615i 0.0968751 + 0.167793i
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −6.00000 −0.193347
\(964\) 0 0
\(965\) 10.5000 + 18.1865i 0.338007 + 0.585445i
\(966\) 0 0
\(967\) −2.00000 3.46410i −0.0643157 0.111398i 0.832075 0.554664i \(-0.187153\pi\)
−0.896390 + 0.443266i \(0.853820\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −23.0000 + 39.8372i −0.738105 + 1.27844i 0.215242 + 0.976561i \(0.430946\pi\)
−0.953348 + 0.301875i \(0.902387\pi\)
\(972\) 0 0
\(973\) 20.0000 0.641171
\(974\) 0 0
\(975\) 8.00000 + 13.8564i 0.256205 + 0.443760i
\(976\) 0 0
\(977\) −3.00000 + 5.19615i −0.0959785 + 0.166240i −0.910017 0.414572i \(-0.863931\pi\)
0.814038 + 0.580812i \(0.197265\pi\)
\(978\) 0 0
\(979\) −2.00000 + 3.46410i −0.0639203 + 0.110713i
\(980\) 0 0
\(981\) 5.50000 + 9.52628i 0.175601 + 0.304151i
\(982\) 0 0
\(983\) 4.00000 6.92820i 0.127580 0.220975i −0.795158 0.606402i \(-0.792612\pi\)
0.922739 + 0.385426i \(0.125946\pi\)
\(984\) 0 0
\(985\) 45.0000 1.43382
\(986\) 0 0
\(987\) 16.0000 27.7128i 0.509286 0.882109i
\(988\) 0 0
\(989\) −20.0000 −0.635963
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) 0 0
\(993\) 64.0000 2.03098
\(994\) 0 0
\(995\) −15.0000 25.9808i −0.475532 0.823646i
\(996\) 0 0
\(997\) 21.0000 36.3731i 0.665077 1.15195i −0.314188 0.949361i \(-0.601732\pi\)
0.979265 0.202586i \(-0.0649345\pi\)
\(998\) 0 0
\(999\) 22.0000 + 10.3923i 0.696049 + 0.328798i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1184.2.i.a.417.1 2
4.3 odd 2 1184.2.i.b.417.1 yes 2
37.26 even 3 inner 1184.2.i.a.1025.1 yes 2
148.63 odd 6 1184.2.i.b.1025.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1184.2.i.a.417.1 2 1.1 even 1 trivial
1184.2.i.a.1025.1 yes 2 37.26 even 3 inner
1184.2.i.b.417.1 yes 2 4.3 odd 2
1184.2.i.b.1025.1 yes 2 148.63 odd 6