Properties

Label 1184.2.i.a
Level $1184$
Weight $2$
Character orbit 1184.i
Analytic conductor $9.454$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1184,2,Mod(417,1184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1184, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1184.417"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1184 = 2^{5} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1184.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,3,0,2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.45428759932\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \zeta_{6} q^{3} + 3 \zeta_{6} q^{5} + 2 \zeta_{6} q^{7} + (\zeta_{6} - 1) q^{9} - 4 q^{11} + 2 \zeta_{6} q^{13} + ( - 6 \zeta_{6} + 6) q^{15} + (7 \zeta_{6} - 7) q^{17} + ( - 4 \zeta_{6} + 4) q^{21} + \cdots + ( - 4 \zeta_{6} + 4) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 3 q^{5} + 2 q^{7} - q^{9} - 8 q^{11} + 2 q^{13} + 6 q^{15} - 7 q^{17} + 4 q^{21} + 4 q^{23} - 4 q^{25} - 8 q^{27} - 6 q^{29} - 16 q^{31} + 8 q^{33} - 6 q^{35} - 11 q^{37} + 4 q^{39} + q^{41}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1184\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(705\) \(741\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
417.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.00000 1.73205i 0 1.50000 + 2.59808i 0 1.00000 + 1.73205i 0 −0.500000 + 0.866025i 0
1025.1 0 −1.00000 + 1.73205i 0 1.50000 2.59808i 0 1.00000 1.73205i 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1184.2.i.a 2
4.b odd 2 1 1184.2.i.b yes 2
37.c even 3 1 inner 1184.2.i.a 2
148.i odd 6 1 1184.2.i.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1184.2.i.a 2 1.a even 1 1 trivial
1184.2.i.a 2 37.c even 3 1 inner
1184.2.i.b yes 2 4.b odd 2 1
1184.2.i.b yes 2 148.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 2T_{3} + 4 \) acting on \(S_{2}^{\mathrm{new}}(1184, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$5$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$7$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$11$ \( (T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( (T - 2)^{2} \) Copy content Toggle raw display
$29$ \( (T + 3)^{2} \) Copy content Toggle raw display
$31$ \( (T + 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 11T + 37 \) Copy content Toggle raw display
$41$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$43$ \( (T + 10)^{2} \) Copy content Toggle raw display
$47$ \( (T - 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$59$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$61$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$67$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$71$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$73$ \( (T + 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 16T + 256 \) Copy content Toggle raw display
$83$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$89$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$97$ \( (T - 19)^{2} \) Copy content Toggle raw display
show more
show less