Properties

Label 1184.2.i.b.417.1
Level $1184$
Weight $2$
Character 1184.417
Analytic conductor $9.454$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1184,2,Mod(417,1184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1184, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1184.417"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1184 = 2^{5} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1184.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,3,0,-2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.45428759932\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 417.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1184.417
Dual form 1184.2.i.b.1025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{3} +(1.50000 + 2.59808i) q^{5} +(-1.00000 - 1.73205i) q^{7} +(-0.500000 + 0.866025i) q^{9} +4.00000 q^{11} +(1.00000 + 1.73205i) q^{13} +(-3.00000 + 5.19615i) q^{15} +(-3.50000 + 6.06218i) q^{17} +(2.00000 - 3.46410i) q^{21} -2.00000 q^{23} +(-2.00000 + 3.46410i) q^{25} +4.00000 q^{27} -3.00000 q^{29} +8.00000 q^{31} +(4.00000 + 6.92820i) q^{33} +(3.00000 - 5.19615i) q^{35} +(-5.50000 - 2.59808i) q^{37} +(-2.00000 + 3.46410i) q^{39} +(0.500000 + 0.866025i) q^{41} +10.0000 q^{43} -3.00000 q^{45} -8.00000 q^{47} +(1.50000 - 2.59808i) q^{49} -14.0000 q^{51} +(-5.00000 + 8.66025i) q^{53} +(6.00000 + 10.3923i) q^{55} +(-2.00000 + 3.46410i) q^{59} +(1.50000 + 2.59808i) q^{61} +2.00000 q^{63} +(-3.00000 + 5.19615i) q^{65} +(-2.00000 - 3.46410i) q^{67} +(-2.00000 - 3.46410i) q^{69} +(-7.00000 - 12.1244i) q^{71} -2.00000 q^{73} -8.00000 q^{75} +(-4.00000 - 6.92820i) q^{77} +(-8.00000 - 13.8564i) q^{79} +(5.50000 + 9.52628i) q^{81} +(-1.00000 + 1.73205i) q^{83} -21.0000 q^{85} +(-3.00000 - 5.19615i) q^{87} +(0.500000 - 0.866025i) q^{89} +(2.00000 - 3.46410i) q^{91} +(8.00000 + 13.8564i) q^{93} +19.0000 q^{97} +(-2.00000 + 3.46410i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 3 q^{5} - 2 q^{7} - q^{9} + 8 q^{11} + 2 q^{13} - 6 q^{15} - 7 q^{17} + 4 q^{21} - 4 q^{23} - 4 q^{25} + 8 q^{27} - 6 q^{29} + 16 q^{31} + 8 q^{33} + 6 q^{35} - 11 q^{37} - 4 q^{39} + q^{41}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1184\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(705\) \(741\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 + 1.73205i 0.577350 + 1.00000i 0.995782 + 0.0917517i \(0.0292466\pi\)
−0.418432 + 0.908248i \(0.637420\pi\)
\(4\) 0 0
\(5\) 1.50000 + 2.59808i 0.670820 + 1.16190i 0.977672 + 0.210138i \(0.0673912\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 0 0
\(7\) −1.00000 1.73205i −0.377964 0.654654i 0.612801 0.790237i \(-0.290043\pi\)
−0.990766 + 0.135583i \(0.956709\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 1.00000 + 1.73205i 0.277350 + 0.480384i 0.970725 0.240192i \(-0.0772105\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) −3.00000 + 5.19615i −0.774597 + 1.34164i
\(16\) 0 0
\(17\) −3.50000 + 6.06218i −0.848875 + 1.47029i 0.0333386 + 0.999444i \(0.489386\pi\)
−0.882213 + 0.470850i \(0.843947\pi\)
\(18\) 0 0
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) 0 0
\(21\) 2.00000 3.46410i 0.436436 0.755929i
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 4.00000 + 6.92820i 0.696311 + 1.20605i
\(34\) 0 0
\(35\) 3.00000 5.19615i 0.507093 0.878310i
\(36\) 0 0
\(37\) −5.50000 2.59808i −0.904194 0.427121i
\(38\) 0 0
\(39\) −2.00000 + 3.46410i −0.320256 + 0.554700i
\(40\) 0 0
\(41\) 0.500000 + 0.866025i 0.0780869 + 0.135250i 0.902424 0.430848i \(-0.141786\pi\)
−0.824338 + 0.566099i \(0.808452\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) −3.00000 −0.447214
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) 0 0
\(51\) −14.0000 −1.96039
\(52\) 0 0
\(53\) −5.00000 + 8.66025i −0.686803 + 1.18958i 0.286064 + 0.958211i \(0.407653\pi\)
−0.972867 + 0.231367i \(0.925680\pi\)
\(54\) 0 0
\(55\) 6.00000 + 10.3923i 0.809040 + 1.40130i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.00000 + 3.46410i −0.260378 + 0.450988i −0.966342 0.257260i \(-0.917180\pi\)
0.705965 + 0.708247i \(0.250514\pi\)
\(60\) 0 0
\(61\) 1.50000 + 2.59808i 0.192055 + 0.332650i 0.945931 0.324367i \(-0.105151\pi\)
−0.753876 + 0.657017i \(0.771818\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) −3.00000 + 5.19615i −0.372104 + 0.644503i
\(66\) 0 0
\(67\) −2.00000 3.46410i −0.244339 0.423207i 0.717607 0.696449i \(-0.245238\pi\)
−0.961946 + 0.273241i \(0.911904\pi\)
\(68\) 0 0
\(69\) −2.00000 3.46410i −0.240772 0.417029i
\(70\) 0 0
\(71\) −7.00000 12.1244i −0.830747 1.43890i −0.897447 0.441123i \(-0.854580\pi\)
0.0666994 0.997773i \(-0.478753\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) −8.00000 −0.923760
\(76\) 0 0
\(77\) −4.00000 6.92820i −0.455842 0.789542i
\(78\) 0 0
\(79\) −8.00000 13.8564i −0.900070 1.55897i −0.827401 0.561611i \(-0.810182\pi\)
−0.0726692 0.997356i \(-0.523152\pi\)
\(80\) 0 0
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 0 0
\(83\) −1.00000 + 1.73205i −0.109764 + 0.190117i −0.915675 0.401920i \(-0.868343\pi\)
0.805910 + 0.592037i \(0.201676\pi\)
\(84\) 0 0
\(85\) −21.0000 −2.27777
\(86\) 0 0
\(87\) −3.00000 5.19615i −0.321634 0.557086i
\(88\) 0 0
\(89\) 0.500000 0.866025i 0.0529999 0.0917985i −0.838308 0.545197i \(-0.816455\pi\)
0.891308 + 0.453398i \(0.149788\pi\)
\(90\) 0 0
\(91\) 2.00000 3.46410i 0.209657 0.363137i
\(92\) 0 0
\(93\) 8.00000 + 13.8564i 0.829561 + 1.43684i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 19.0000 1.92916 0.964579 0.263795i \(-0.0849741\pi\)
0.964579 + 0.263795i \(0.0849741\pi\)
\(98\) 0 0
\(99\) −2.00000 + 3.46410i −0.201008 + 0.348155i
\(100\) 0 0
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 0 0
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) 0 0
\(105\) 12.0000 1.17108
\(106\) 0 0
\(107\) −3.00000 5.19615i −0.290021 0.502331i 0.683793 0.729676i \(-0.260329\pi\)
−0.973814 + 0.227345i \(0.926996\pi\)
\(108\) 0 0
\(109\) 5.50000 9.52628i 0.526804 0.912452i −0.472708 0.881219i \(-0.656723\pi\)
0.999512 0.0312328i \(-0.00994332\pi\)
\(110\) 0 0
\(111\) −1.00000 12.1244i −0.0949158 1.15079i
\(112\) 0 0
\(113\) −7.00000 + 12.1244i −0.658505 + 1.14056i 0.322498 + 0.946570i \(0.395477\pi\)
−0.981003 + 0.193993i \(0.937856\pi\)
\(114\) 0 0
\(115\) −3.00000 5.19615i −0.279751 0.484544i
\(116\) 0 0
\(117\) −2.00000 −0.184900
\(118\) 0 0
\(119\) 14.0000 1.28338
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) −1.00000 + 1.73205i −0.0901670 + 0.156174i
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −5.00000 + 8.66025i −0.443678 + 0.768473i −0.997959 0.0638564i \(-0.979660\pi\)
0.554281 + 0.832330i \(0.312993\pi\)
\(128\) 0 0
\(129\) 10.0000 + 17.3205i 0.880451 + 1.52499i
\(130\) 0 0
\(131\) 3.00000 5.19615i 0.262111 0.453990i −0.704692 0.709514i \(-0.748915\pi\)
0.966803 + 0.255524i \(0.0822479\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 6.00000 + 10.3923i 0.516398 + 0.894427i
\(136\) 0 0
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) −5.00000 + 8.66025i −0.424094 + 0.734553i −0.996335 0.0855324i \(-0.972741\pi\)
0.572241 + 0.820086i \(0.306074\pi\)
\(140\) 0 0
\(141\) −8.00000 13.8564i −0.673722 1.16692i
\(142\) 0 0
\(143\) 4.00000 + 6.92820i 0.334497 + 0.579365i
\(144\) 0 0
\(145\) −4.50000 7.79423i −0.373705 0.647275i
\(146\) 0 0
\(147\) 6.00000 0.494872
\(148\) 0 0
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) 0 0
\(151\) −1.00000 1.73205i −0.0813788 0.140952i 0.822464 0.568818i \(-0.192599\pi\)
−0.903842 + 0.427865i \(0.859266\pi\)
\(152\) 0 0
\(153\) −3.50000 6.06218i −0.282958 0.490098i
\(154\) 0 0
\(155\) 12.0000 + 20.7846i 0.963863 + 1.66946i
\(156\) 0 0
\(157\) −2.50000 + 4.33013i −0.199522 + 0.345582i −0.948373 0.317156i \(-0.897272\pi\)
0.748852 + 0.662738i \(0.230606\pi\)
\(158\) 0 0
\(159\) −20.0000 −1.58610
\(160\) 0 0
\(161\) 2.00000 + 3.46410i 0.157622 + 0.273009i
\(162\) 0 0
\(163\) 9.00000 15.5885i 0.704934 1.22098i −0.261781 0.965127i \(-0.584310\pi\)
0.966715 0.255855i \(-0.0823569\pi\)
\(164\) 0 0
\(165\) −12.0000 + 20.7846i −0.934199 + 1.61808i
\(166\) 0 0
\(167\) 4.00000 + 6.92820i 0.309529 + 0.536120i 0.978259 0.207385i \(-0.0664952\pi\)
−0.668730 + 0.743505i \(0.733162\pi\)
\(168\) 0 0
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.50000 16.4545i 0.722272 1.25101i −0.237816 0.971310i \(-0.576431\pi\)
0.960087 0.279701i \(-0.0902353\pi\)
\(174\) 0 0
\(175\) 8.00000 0.604743
\(176\) 0 0
\(177\) −8.00000 −0.601317
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −2.50000 4.33013i −0.185824 0.321856i 0.758030 0.652219i \(-0.226162\pi\)
−0.943854 + 0.330364i \(0.892829\pi\)
\(182\) 0 0
\(183\) −3.00000 + 5.19615i −0.221766 + 0.384111i
\(184\) 0 0
\(185\) −1.50000 18.1865i −0.110282 1.33710i
\(186\) 0 0
\(187\) −14.0000 + 24.2487i −1.02378 + 1.77324i
\(188\) 0 0
\(189\) −4.00000 6.92820i −0.290957 0.503953i
\(190\) 0 0
\(191\) 18.0000 1.30243 0.651217 0.758891i \(-0.274259\pi\)
0.651217 + 0.758891i \(0.274259\pi\)
\(192\) 0 0
\(193\) 7.00000 0.503871 0.251936 0.967744i \(-0.418933\pi\)
0.251936 + 0.967744i \(0.418933\pi\)
\(194\) 0 0
\(195\) −12.0000 −0.859338
\(196\) 0 0
\(197\) 7.50000 12.9904i 0.534353 0.925526i −0.464841 0.885394i \(-0.653889\pi\)
0.999194 0.0401324i \(-0.0127780\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) 4.00000 6.92820i 0.282138 0.488678i
\(202\) 0 0
\(203\) 3.00000 + 5.19615i 0.210559 + 0.364698i
\(204\) 0 0
\(205\) −1.50000 + 2.59808i −0.104765 + 0.181458i
\(206\) 0 0
\(207\) 1.00000 1.73205i 0.0695048 0.120386i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 22.0000 1.51454 0.757271 0.653101i \(-0.226532\pi\)
0.757271 + 0.653101i \(0.226532\pi\)
\(212\) 0 0
\(213\) 14.0000 24.2487i 0.959264 1.66149i
\(214\) 0 0
\(215\) 15.0000 + 25.9808i 1.02299 + 1.77187i
\(216\) 0 0
\(217\) −8.00000 13.8564i −0.543075 0.940634i
\(218\) 0 0
\(219\) −2.00000 3.46410i −0.135147 0.234082i
\(220\) 0 0
\(221\) −14.0000 −0.941742
\(222\) 0 0
\(223\) 14.0000 0.937509 0.468755 0.883328i \(-0.344703\pi\)
0.468755 + 0.883328i \(0.344703\pi\)
\(224\) 0 0
\(225\) −2.00000 3.46410i −0.133333 0.230940i
\(226\) 0 0
\(227\) −12.0000 20.7846i −0.796468 1.37952i −0.921903 0.387421i \(-0.873366\pi\)
0.125435 0.992102i \(-0.459967\pi\)
\(228\) 0 0
\(229\) −0.500000 0.866025i −0.0330409 0.0572286i 0.849032 0.528341i \(-0.177186\pi\)
−0.882073 + 0.471113i \(0.843853\pi\)
\(230\) 0 0
\(231\) 8.00000 13.8564i 0.526361 0.911685i
\(232\) 0 0
\(233\) 11.0000 0.720634 0.360317 0.932830i \(-0.382669\pi\)
0.360317 + 0.932830i \(0.382669\pi\)
\(234\) 0 0
\(235\) −12.0000 20.7846i −0.782794 1.35584i
\(236\) 0 0
\(237\) 16.0000 27.7128i 1.03931 1.80014i
\(238\) 0 0
\(239\) 7.00000 12.1244i 0.452792 0.784259i −0.545766 0.837938i \(-0.683761\pi\)
0.998558 + 0.0536783i \(0.0170946\pi\)
\(240\) 0 0
\(241\) −11.0000 19.0526i −0.708572 1.22728i −0.965387 0.260822i \(-0.916006\pi\)
0.256814 0.966461i \(-0.417327\pi\)
\(242\) 0 0
\(243\) −5.00000 + 8.66025i −0.320750 + 0.555556i
\(244\) 0 0
\(245\) 9.00000 0.574989
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) 30.0000 1.89358 0.946792 0.321847i \(-0.104304\pi\)
0.946792 + 0.321847i \(0.104304\pi\)
\(252\) 0 0
\(253\) −8.00000 −0.502956
\(254\) 0 0
\(255\) −21.0000 36.3731i −1.31507 2.27777i
\(256\) 0 0
\(257\) −13.5000 + 23.3827i −0.842107 + 1.45857i 0.0460033 + 0.998941i \(0.485352\pi\)
−0.888110 + 0.459631i \(0.847982\pi\)
\(258\) 0 0
\(259\) 1.00000 + 12.1244i 0.0621370 + 0.753371i
\(260\) 0 0
\(261\) 1.50000 2.59808i 0.0928477 0.160817i
\(262\) 0 0
\(263\) −6.00000 10.3923i −0.369976 0.640817i 0.619586 0.784929i \(-0.287301\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(264\) 0 0
\(265\) −30.0000 −1.84289
\(266\) 0 0
\(267\) 2.00000 0.122398
\(268\) 0 0
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) −14.0000 + 24.2487i −0.850439 + 1.47300i 0.0303728 + 0.999539i \(0.490331\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(272\) 0 0
\(273\) 8.00000 0.484182
\(274\) 0 0
\(275\) −8.00000 + 13.8564i −0.482418 + 0.835573i
\(276\) 0 0
\(277\) 1.50000 + 2.59808i 0.0901263 + 0.156103i 0.907564 0.419914i \(-0.137940\pi\)
−0.817438 + 0.576017i \(0.804606\pi\)
\(278\) 0 0
\(279\) −4.00000 + 6.92820i −0.239474 + 0.414781i
\(280\) 0 0
\(281\) −9.50000 + 16.4545i −0.566722 + 0.981592i 0.430165 + 0.902750i \(0.358455\pi\)
−0.996887 + 0.0788417i \(0.974878\pi\)
\(282\) 0 0
\(283\) −7.00000 12.1244i −0.416107 0.720718i 0.579437 0.815017i \(-0.303272\pi\)
−0.995544 + 0.0942988i \(0.969939\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.00000 1.73205i 0.0590281 0.102240i
\(288\) 0 0
\(289\) −16.0000 27.7128i −0.941176 1.63017i
\(290\) 0 0
\(291\) 19.0000 + 32.9090i 1.11380 + 1.92916i
\(292\) 0 0
\(293\) 7.50000 + 12.9904i 0.438155 + 0.758906i 0.997547 0.0699967i \(-0.0222989\pi\)
−0.559393 + 0.828903i \(0.688966\pi\)
\(294\) 0 0
\(295\) −12.0000 −0.698667
\(296\) 0 0
\(297\) 16.0000 0.928414
\(298\) 0 0
\(299\) −2.00000 3.46410i −0.115663 0.200334i
\(300\) 0 0
\(301\) −10.0000 17.3205i −0.576390 0.998337i
\(302\) 0 0
\(303\) −3.00000 5.19615i −0.172345 0.298511i
\(304\) 0 0
\(305\) −4.50000 + 7.79423i −0.257669 + 0.446296i
\(306\) 0 0
\(307\) −22.0000 −1.25561 −0.627803 0.778372i \(-0.716046\pi\)
−0.627803 + 0.778372i \(0.716046\pi\)
\(308\) 0 0
\(309\) 6.00000 + 10.3923i 0.341328 + 0.591198i
\(310\) 0 0
\(311\) −9.00000 + 15.5885i −0.510343 + 0.883940i 0.489585 + 0.871956i \(0.337148\pi\)
−0.999928 + 0.0119847i \(0.996185\pi\)
\(312\) 0 0
\(313\) 12.5000 21.6506i 0.706542 1.22377i −0.259590 0.965719i \(-0.583588\pi\)
0.966132 0.258047i \(-0.0830791\pi\)
\(314\) 0 0
\(315\) 3.00000 + 5.19615i 0.169031 + 0.292770i
\(316\) 0 0
\(317\) 11.5000 19.9186i 0.645904 1.11874i −0.338188 0.941079i \(-0.609814\pi\)
0.984092 0.177660i \(-0.0568529\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 6.00000 10.3923i 0.334887 0.580042i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −8.00000 −0.443760
\(326\) 0 0
\(327\) 22.0000 1.21660
\(328\) 0 0
\(329\) 8.00000 + 13.8564i 0.441054 + 0.763928i
\(330\) 0 0
\(331\) 16.0000 27.7128i 0.879440 1.52323i 0.0274825 0.999622i \(-0.491251\pi\)
0.851957 0.523612i \(-0.175416\pi\)
\(332\) 0 0
\(333\) 5.00000 3.46410i 0.273998 0.189832i
\(334\) 0 0
\(335\) 6.00000 10.3923i 0.327815 0.567792i
\(336\) 0 0
\(337\) 6.50000 + 11.2583i 0.354078 + 0.613280i 0.986960 0.160968i \(-0.0514616\pi\)
−0.632882 + 0.774248i \(0.718128\pi\)
\(338\) 0 0
\(339\) −28.0000 −1.52075
\(340\) 0 0
\(341\) 32.0000 1.73290
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 6.00000 10.3923i 0.323029 0.559503i
\(346\) 0 0
\(347\) −18.0000 −0.966291 −0.483145 0.875540i \(-0.660506\pi\)
−0.483145 + 0.875540i \(0.660506\pi\)
\(348\) 0 0
\(349\) −4.50000 + 7.79423i −0.240879 + 0.417215i −0.960965 0.276670i \(-0.910769\pi\)
0.720086 + 0.693885i \(0.244103\pi\)
\(350\) 0 0
\(351\) 4.00000 + 6.92820i 0.213504 + 0.369800i
\(352\) 0 0
\(353\) −1.50000 + 2.59808i −0.0798369 + 0.138282i −0.903179 0.429263i \(-0.858773\pi\)
0.823343 + 0.567545i \(0.192107\pi\)
\(354\) 0 0
\(355\) 21.0000 36.3731i 1.11456 1.93048i
\(356\) 0 0
\(357\) 14.0000 + 24.2487i 0.740959 + 1.28338i
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 9.50000 16.4545i 0.500000 0.866025i
\(362\) 0 0
\(363\) 5.00000 + 8.66025i 0.262432 + 0.454545i
\(364\) 0 0
\(365\) −3.00000 5.19615i −0.157027 0.271979i
\(366\) 0 0
\(367\) 8.00000 + 13.8564i 0.417597 + 0.723299i 0.995697 0.0926670i \(-0.0295392\pi\)
−0.578101 + 0.815966i \(0.696206\pi\)
\(368\) 0 0
\(369\) −1.00000 −0.0520579
\(370\) 0 0
\(371\) 20.0000 1.03835
\(372\) 0 0
\(373\) 9.50000 + 16.4545i 0.491891 + 0.851981i 0.999956 0.00933789i \(-0.00297238\pi\)
−0.508065 + 0.861319i \(0.669639\pi\)
\(374\) 0 0
\(375\) 3.00000 + 5.19615i 0.154919 + 0.268328i
\(376\) 0 0
\(377\) −3.00000 5.19615i −0.154508 0.267615i
\(378\) 0 0
\(379\) −9.00000 + 15.5885i −0.462299 + 0.800725i −0.999075 0.0429994i \(-0.986309\pi\)
0.536776 + 0.843725i \(0.319642\pi\)
\(380\) 0 0
\(381\) −20.0000 −1.02463
\(382\) 0 0
\(383\) 1.00000 + 1.73205i 0.0510976 + 0.0885037i 0.890443 0.455095i \(-0.150395\pi\)
−0.839345 + 0.543599i \(0.817061\pi\)
\(384\) 0 0
\(385\) 12.0000 20.7846i 0.611577 1.05928i
\(386\) 0 0
\(387\) −5.00000 + 8.66025i −0.254164 + 0.440225i
\(388\) 0 0
\(389\) 9.50000 + 16.4545i 0.481669 + 0.834275i 0.999779 0.0210389i \(-0.00669738\pi\)
−0.518110 + 0.855314i \(0.673364\pi\)
\(390\) 0 0
\(391\) 7.00000 12.1244i 0.354005 0.613155i
\(392\) 0 0
\(393\) 12.0000 0.605320
\(394\) 0 0
\(395\) 24.0000 41.5692i 1.20757 2.09157i
\(396\) 0 0
\(397\) −7.00000 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) 8.00000 + 13.8564i 0.398508 + 0.690237i
\(404\) 0 0
\(405\) −16.5000 + 28.5788i −0.819892 + 1.42009i
\(406\) 0 0
\(407\) −22.0000 10.3923i −1.09050 0.515127i
\(408\) 0 0
\(409\) −15.5000 + 26.8468i −0.766426 + 1.32749i 0.173064 + 0.984911i \(0.444633\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) 3.00000 + 5.19615i 0.147979 + 0.256307i
\(412\) 0 0
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 0 0
\(419\) 15.0000 25.9808i 0.732798 1.26924i −0.222885 0.974845i \(-0.571547\pi\)
0.955683 0.294398i \(-0.0951193\pi\)
\(420\) 0 0
\(421\) −27.0000 −1.31590 −0.657950 0.753062i \(-0.728576\pi\)
−0.657950 + 0.753062i \(0.728576\pi\)
\(422\) 0 0
\(423\) 4.00000 6.92820i 0.194487 0.336861i
\(424\) 0 0
\(425\) −14.0000 24.2487i −0.679100 1.17624i
\(426\) 0 0
\(427\) 3.00000 5.19615i 0.145180 0.251459i
\(428\) 0 0
\(429\) −8.00000 + 13.8564i −0.386244 + 0.668994i
\(430\) 0 0
\(431\) −8.00000 13.8564i −0.385346 0.667440i 0.606471 0.795106i \(-0.292585\pi\)
−0.991817 + 0.127666i \(0.959251\pi\)
\(432\) 0 0
\(433\) −21.0000 −1.00920 −0.504598 0.863355i \(-0.668359\pi\)
−0.504598 + 0.863355i \(0.668359\pi\)
\(434\) 0 0
\(435\) 9.00000 15.5885i 0.431517 0.747409i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −10.0000 17.3205i −0.477274 0.826663i 0.522387 0.852709i \(-0.325042\pi\)
−0.999661 + 0.0260459i \(0.991708\pi\)
\(440\) 0 0
\(441\) 1.50000 + 2.59808i 0.0714286 + 0.123718i
\(442\) 0 0
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) 3.00000 0.142214
\(446\) 0 0
\(447\) 1.00000 + 1.73205i 0.0472984 + 0.0819232i
\(448\) 0 0
\(449\) −15.0000 25.9808i −0.707894 1.22611i −0.965637 0.259895i \(-0.916312\pi\)
0.257743 0.966213i \(-0.417021\pi\)
\(450\) 0 0
\(451\) 2.00000 + 3.46410i 0.0941763 + 0.163118i
\(452\) 0 0
\(453\) 2.00000 3.46410i 0.0939682 0.162758i
\(454\) 0 0
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) −13.5000 23.3827i −0.631503 1.09380i −0.987245 0.159211i \(-0.949105\pi\)
0.355741 0.934585i \(-0.384228\pi\)
\(458\) 0 0
\(459\) −14.0000 + 24.2487i −0.653464 + 1.13183i
\(460\) 0 0
\(461\) 1.00000 1.73205i 0.0465746 0.0806696i −0.841798 0.539792i \(-0.818503\pi\)
0.888373 + 0.459123i \(0.151836\pi\)
\(462\) 0 0
\(463\) 13.0000 + 22.5167i 0.604161 + 1.04644i 0.992183 + 0.124788i \(0.0398251\pi\)
−0.388022 + 0.921650i \(0.626842\pi\)
\(464\) 0 0
\(465\) −24.0000 + 41.5692i −1.11297 + 1.92773i
\(466\) 0 0
\(467\) −20.0000 −0.925490 −0.462745 0.886492i \(-0.653135\pi\)
−0.462745 + 0.886492i \(0.653135\pi\)
\(468\) 0 0
\(469\) −4.00000 + 6.92820i −0.184703 + 0.319915i
\(470\) 0 0
\(471\) −10.0000 −0.460776
\(472\) 0 0
\(473\) 40.0000 1.83920
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.00000 8.66025i −0.228934 0.396526i
\(478\) 0 0
\(479\) −6.00000 + 10.3923i −0.274147 + 0.474837i −0.969920 0.243426i \(-0.921729\pi\)
0.695773 + 0.718262i \(0.255062\pi\)
\(480\) 0 0
\(481\) −1.00000 12.1244i −0.0455961 0.552823i
\(482\) 0 0
\(483\) −4.00000 + 6.92820i −0.182006 + 0.315244i
\(484\) 0 0
\(485\) 28.5000 + 49.3634i 1.29412 + 2.24148i
\(486\) 0 0
\(487\) −38.0000 −1.72194 −0.860972 0.508652i \(-0.830144\pi\)
−0.860972 + 0.508652i \(0.830144\pi\)
\(488\) 0 0
\(489\) 36.0000 1.62798
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 10.5000 18.1865i 0.472896 0.819080i
\(494\) 0 0
\(495\) −12.0000 −0.539360
\(496\) 0 0
\(497\) −14.0000 + 24.2487i −0.627986 + 1.08770i
\(498\) 0 0
\(499\) 16.0000 + 27.7128i 0.716258 + 1.24060i 0.962472 + 0.271380i \(0.0874801\pi\)
−0.246214 + 0.969216i \(0.579187\pi\)
\(500\) 0 0
\(501\) −8.00000 + 13.8564i −0.357414 + 0.619059i
\(502\) 0 0
\(503\) 6.00000 10.3923i 0.267527 0.463370i −0.700696 0.713460i \(-0.747127\pi\)
0.968223 + 0.250090i \(0.0804603\pi\)
\(504\) 0 0
\(505\) −4.50000 7.79423i −0.200247 0.346839i
\(506\) 0 0
\(507\) 18.0000 0.799408
\(508\) 0 0
\(509\) 7.50000 12.9904i 0.332432 0.575789i −0.650556 0.759458i \(-0.725464\pi\)
0.982988 + 0.183669i \(0.0587976\pi\)
\(510\) 0 0
\(511\) 2.00000 + 3.46410i 0.0884748 + 0.153243i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.00000 + 15.5885i 0.396587 + 0.686909i
\(516\) 0 0
\(517\) −32.0000 −1.40736
\(518\) 0 0
\(519\) 38.0000 1.66801
\(520\) 0 0
\(521\) −3.00000 5.19615i −0.131432 0.227648i 0.792797 0.609486i \(-0.208624\pi\)
−0.924229 + 0.381839i \(0.875291\pi\)
\(522\) 0 0
\(523\) −13.0000 22.5167i −0.568450 0.984585i −0.996719 0.0809336i \(-0.974210\pi\)
0.428269 0.903651i \(-0.359124\pi\)
\(524\) 0 0
\(525\) 8.00000 + 13.8564i 0.349149 + 0.604743i
\(526\) 0 0
\(527\) −28.0000 + 48.4974i −1.21970 + 2.11258i
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) −2.00000 3.46410i −0.0867926 0.150329i
\(532\) 0 0
\(533\) −1.00000 + 1.73205i −0.0433148 + 0.0750234i
\(534\) 0 0
\(535\) 9.00000 15.5885i 0.389104 0.673948i
\(536\) 0 0
\(537\) −12.0000 20.7846i −0.517838 0.896922i
\(538\) 0 0
\(539\) 6.00000 10.3923i 0.258438 0.447628i
\(540\) 0 0
\(541\) 5.00000 0.214967 0.107483 0.994207i \(-0.465721\pi\)
0.107483 + 0.994207i \(0.465721\pi\)
\(542\) 0 0
\(543\) 5.00000 8.66025i 0.214571 0.371647i
\(544\) 0 0
\(545\) 33.0000 1.41356
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 0 0
\(549\) −3.00000 −0.128037
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −16.0000 + 27.7128i −0.680389 + 1.17847i
\(554\) 0 0
\(555\) 30.0000 20.7846i 1.27343 0.882258i
\(556\) 0 0
\(557\) 15.5000 26.8468i 0.656756 1.13753i −0.324694 0.945819i \(-0.605261\pi\)
0.981450 0.191716i \(-0.0614052\pi\)
\(558\) 0 0
\(559\) 10.0000 + 17.3205i 0.422955 + 0.732579i
\(560\) 0 0
\(561\) −56.0000 −2.36432
\(562\) 0 0
\(563\) 14.0000 0.590030 0.295015 0.955493i \(-0.404675\pi\)
0.295015 + 0.955493i \(0.404675\pi\)
\(564\) 0 0
\(565\) −42.0000 −1.76695
\(566\) 0 0
\(567\) 11.0000 19.0526i 0.461957 0.800132i
\(568\) 0 0
\(569\) −33.0000 −1.38343 −0.691716 0.722170i \(-0.743145\pi\)
−0.691716 + 0.722170i \(0.743145\pi\)
\(570\) 0 0
\(571\) −13.0000 + 22.5167i −0.544033 + 0.942293i 0.454634 + 0.890678i \(0.349770\pi\)
−0.998667 + 0.0516146i \(0.983563\pi\)
\(572\) 0 0
\(573\) 18.0000 + 31.1769i 0.751961 + 1.30243i
\(574\) 0 0
\(575\) 4.00000 6.92820i 0.166812 0.288926i
\(576\) 0 0
\(577\) −9.00000 + 15.5885i −0.374675 + 0.648956i −0.990278 0.139100i \(-0.955579\pi\)
0.615603 + 0.788056i \(0.288912\pi\)
\(578\) 0 0
\(579\) 7.00000 + 12.1244i 0.290910 + 0.503871i
\(580\) 0 0
\(581\) 4.00000 0.165948
\(582\) 0 0
\(583\) −20.0000 + 34.6410i −0.828315 + 1.43468i
\(584\) 0 0
\(585\) −3.00000 5.19615i −0.124035 0.214834i
\(586\) 0 0
\(587\) −5.00000 8.66025i −0.206372 0.357447i 0.744197 0.667960i \(-0.232832\pi\)
−0.950569 + 0.310513i \(0.899499\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 30.0000 1.23404
\(592\) 0 0
\(593\) −21.0000 −0.862367 −0.431183 0.902264i \(-0.641904\pi\)
−0.431183 + 0.902264i \(0.641904\pi\)
\(594\) 0 0
\(595\) 21.0000 + 36.3731i 0.860916 + 1.49115i
\(596\) 0 0
\(597\) 10.0000 + 17.3205i 0.409273 + 0.708881i
\(598\) 0 0
\(599\) 14.0000 + 24.2487i 0.572024 + 0.990775i 0.996358 + 0.0852695i \(0.0271751\pi\)
−0.424333 + 0.905506i \(0.639492\pi\)
\(600\) 0 0
\(601\) 2.50000 4.33013i 0.101977 0.176630i −0.810522 0.585708i \(-0.800816\pi\)
0.912499 + 0.409079i \(0.134150\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) 7.50000 + 12.9904i 0.304918 + 0.528134i
\(606\) 0 0
\(607\) −6.00000 + 10.3923i −0.243532 + 0.421811i −0.961718 0.274041i \(-0.911640\pi\)
0.718186 + 0.695852i \(0.244973\pi\)
\(608\) 0 0
\(609\) −6.00000 + 10.3923i −0.243132 + 0.421117i
\(610\) 0 0
\(611\) −8.00000 13.8564i −0.323645 0.560570i
\(612\) 0 0
\(613\) 1.50000 2.59808i 0.0605844 0.104935i −0.834142 0.551549i \(-0.814037\pi\)
0.894727 + 0.446614i \(0.147370\pi\)
\(614\) 0 0
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) 9.00000 15.5885i 0.362326 0.627568i −0.626017 0.779809i \(-0.715316\pi\)
0.988343 + 0.152242i \(0.0486493\pi\)
\(618\) 0 0
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) 0 0
\(621\) −8.00000 −0.321029
\(622\) 0 0
\(623\) −2.00000 −0.0801283
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 35.0000 24.2487i 1.39554 0.966859i
\(630\) 0 0
\(631\) 25.0000 43.3013i 0.995234 1.72380i 0.413169 0.910654i \(-0.364422\pi\)
0.582066 0.813142i \(-0.302245\pi\)
\(632\) 0 0
\(633\) 22.0000 + 38.1051i 0.874421 + 1.51454i
\(634\) 0 0
\(635\) −30.0000 −1.19051
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 0 0
\(639\) 14.0000 0.553831
\(640\) 0 0
\(641\) −17.5000 + 30.3109i −0.691208 + 1.19721i 0.280234 + 0.959932i \(0.409588\pi\)
−0.971442 + 0.237276i \(0.923745\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 0 0
\(645\) −30.0000 + 51.9615i −1.18125 + 2.04598i
\(646\) 0 0
\(647\) 21.0000 + 36.3731i 0.825595 + 1.42997i 0.901464 + 0.432855i \(0.142494\pi\)
−0.0758684 + 0.997118i \(0.524173\pi\)
\(648\) 0 0
\(649\) −8.00000 + 13.8564i −0.314027 + 0.543912i
\(650\) 0 0
\(651\) 16.0000 27.7128i 0.627089 1.08615i
\(652\) 0 0
\(653\) 19.5000 + 33.7750i 0.763094 + 1.32172i 0.941248 + 0.337715i \(0.109654\pi\)
−0.178154 + 0.984003i \(0.557013\pi\)
\(654\) 0 0
\(655\) 18.0000 0.703318
\(656\) 0 0
\(657\) 1.00000 1.73205i 0.0390137 0.0675737i
\(658\) 0 0
\(659\) 8.00000 + 13.8564i 0.311636 + 0.539769i 0.978717 0.205216i \(-0.0657898\pi\)
−0.667081 + 0.744985i \(0.732456\pi\)
\(660\) 0 0
\(661\) −2.50000 4.33013i −0.0972387 0.168422i 0.813302 0.581842i \(-0.197668\pi\)
−0.910541 + 0.413419i \(0.864334\pi\)
\(662\) 0 0
\(663\) −14.0000 24.2487i −0.543715 0.941742i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.00000 0.232321
\(668\) 0 0
\(669\) 14.0000 + 24.2487i 0.541271 + 0.937509i
\(670\) 0 0
\(671\) 6.00000 + 10.3923i 0.231627 + 0.401190i
\(672\) 0 0
\(673\) 13.0000 + 22.5167i 0.501113 + 0.867953i 0.999999 + 0.00128586i \(0.000409302\pi\)
−0.498886 + 0.866668i \(0.666257\pi\)
\(674\) 0 0
\(675\) −8.00000 + 13.8564i −0.307920 + 0.533333i
\(676\) 0 0
\(677\) 41.0000 1.57576 0.787879 0.615830i \(-0.211179\pi\)
0.787879 + 0.615830i \(0.211179\pi\)
\(678\) 0 0
\(679\) −19.0000 32.9090i −0.729153 1.26293i
\(680\) 0 0
\(681\) 24.0000 41.5692i 0.919682 1.59294i
\(682\) 0 0
\(683\) −17.0000 + 29.4449i −0.650487 + 1.12668i 0.332518 + 0.943097i \(0.392102\pi\)
−0.983005 + 0.183579i \(0.941232\pi\)
\(684\) 0 0
\(685\) 4.50000 + 7.79423i 0.171936 + 0.297802i
\(686\) 0 0
\(687\) 1.00000 1.73205i 0.0381524 0.0660819i
\(688\) 0 0
\(689\) −20.0000 −0.761939
\(690\) 0 0
\(691\) 16.0000 27.7128i 0.608669 1.05425i −0.382791 0.923835i \(-0.625037\pi\)
0.991460 0.130410i \(-0.0416295\pi\)
\(692\) 0 0
\(693\) 8.00000 0.303895
\(694\) 0 0
\(695\) −30.0000 −1.13796
\(696\) 0 0
\(697\) −7.00000 −0.265144
\(698\) 0 0
\(699\) 11.0000 + 19.0526i 0.416058 + 0.720634i
\(700\) 0 0
\(701\) −15.0000 + 25.9808i −0.566542 + 0.981280i 0.430362 + 0.902656i \(0.358386\pi\)
−0.996904 + 0.0786236i \(0.974947\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 24.0000 41.5692i 0.903892 1.56559i
\(706\) 0 0
\(707\) 3.00000 + 5.19615i 0.112827 + 0.195421i
\(708\) 0 0
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) 0 0
\(711\) 16.0000 0.600047
\(712\) 0 0
\(713\) −16.0000 −0.599205
\(714\) 0 0
\(715\) −12.0000 + 20.7846i −0.448775 + 0.777300i
\(716\) 0 0
\(717\) 28.0000 1.04568
\(718\) 0 0
\(719\) 19.0000 32.9090i 0.708580 1.22730i −0.256803 0.966464i \(-0.582669\pi\)
0.965384 0.260834i \(-0.0839974\pi\)
\(720\) 0 0
\(721\) −6.00000 10.3923i −0.223452 0.387030i
\(722\) 0 0
\(723\) 22.0000 38.1051i 0.818189 1.41714i
\(724\) 0 0
\(725\) 6.00000 10.3923i 0.222834 0.385961i
\(726\) 0 0
\(727\) 10.0000 + 17.3205i 0.370879 + 0.642382i 0.989701 0.143149i \(-0.0457230\pi\)
−0.618822 + 0.785532i \(0.712390\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −35.0000 + 60.6218i −1.29452 + 2.24218i
\(732\) 0 0
\(733\) −11.0000 19.0526i −0.406294 0.703722i 0.588177 0.808732i \(-0.299846\pi\)
−0.994471 + 0.105010i \(0.966513\pi\)
\(734\) 0 0
\(735\) 9.00000 + 15.5885i 0.331970 + 0.574989i
\(736\) 0 0
\(737\) −8.00000 13.8564i −0.294684 0.510407i
\(738\) 0 0
\(739\) −54.0000 −1.98642 −0.993211 0.116326i \(-0.962888\pi\)
−0.993211 + 0.116326i \(0.962888\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −24.0000 41.5692i −0.880475 1.52503i −0.850814 0.525467i \(-0.823891\pi\)
−0.0296605 0.999560i \(-0.509443\pi\)
\(744\) 0 0
\(745\) 1.50000 + 2.59808i 0.0549557 + 0.0951861i
\(746\) 0 0
\(747\) −1.00000 1.73205i −0.0365881 0.0633724i
\(748\) 0 0
\(749\) −6.00000 + 10.3923i −0.219235 + 0.379727i
\(750\) 0 0
\(751\) 22.0000 0.802791 0.401396 0.915905i \(-0.368525\pi\)
0.401396 + 0.915905i \(0.368525\pi\)
\(752\) 0 0
\(753\) 30.0000 + 51.9615i 1.09326 + 1.89358i
\(754\) 0 0
\(755\) 3.00000 5.19615i 0.109181 0.189107i
\(756\) 0 0
\(757\) −24.5000 + 42.4352i −0.890468 + 1.54234i −0.0511519 + 0.998691i \(0.516289\pi\)
−0.839316 + 0.543644i \(0.817044\pi\)
\(758\) 0 0
\(759\) −8.00000 13.8564i −0.290382 0.502956i
\(760\) 0 0
\(761\) −13.5000 + 23.3827i −0.489375 + 0.847622i −0.999925 0.0122260i \(-0.996108\pi\)
0.510551 + 0.859848i \(0.329442\pi\)
\(762\) 0 0
\(763\) −22.0000 −0.796453
\(764\) 0 0
\(765\) 10.5000 18.1865i 0.379628 0.657536i
\(766\) 0 0
\(767\) −8.00000 −0.288863
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) −54.0000 −1.94476
\(772\) 0 0
\(773\) 19.5000 + 33.7750i 0.701366 + 1.21480i 0.967987 + 0.251000i \(0.0807596\pi\)
−0.266621 + 0.963802i \(0.585907\pi\)
\(774\) 0 0
\(775\) −16.0000 + 27.7128i −0.574737 + 0.995474i
\(776\) 0 0
\(777\) −20.0000 + 13.8564i −0.717496 + 0.497096i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −28.0000 48.4974i −1.00192 1.73537i
\(782\) 0 0
\(783\) −12.0000 −0.428845
\(784\) 0 0
\(785\) −15.0000 −0.535373
\(786\) 0 0
\(787\) 32.0000 1.14068 0.570338 0.821410i \(-0.306812\pi\)
0.570338 + 0.821410i \(0.306812\pi\)
\(788\) 0 0
\(789\) 12.0000 20.7846i 0.427211 0.739952i
\(790\) 0 0
\(791\) 28.0000 0.995565
\(792\) 0 0
\(793\) −3.00000 + 5.19615i −0.106533 + 0.184521i
\(794\) 0 0
\(795\) −30.0000 51.9615i −1.06399 1.84289i
\(796\) 0 0
\(797\) −19.0000 + 32.9090i −0.673015 + 1.16570i 0.304030 + 0.952662i \(0.401668\pi\)
−0.977045 + 0.213033i \(0.931666\pi\)
\(798\) 0 0
\(799\) 28.0000 48.4974i 0.990569 1.71572i
\(800\) 0 0
\(801\) 0.500000 + 0.866025i 0.0176666 + 0.0305995i
\(802\) 0 0
\(803\) −8.00000 −0.282314
\(804\) 0 0
\(805\) −6.00000 + 10.3923i −0.211472 + 0.366281i
\(806\) 0 0
\(807\) 14.0000 + 24.2487i 0.492823 + 0.853595i
\(808\) 0 0
\(809\) −15.0000 25.9808i −0.527372 0.913435i −0.999491 0.0319002i \(-0.989844\pi\)
0.472119 0.881535i \(-0.343489\pi\)
\(810\) 0 0
\(811\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(812\) 0 0
\(813\) −56.0000 −1.96401
\(814\) 0 0
\(815\) 54.0000 1.89154
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 2.00000 + 3.46410i 0.0698857 + 0.121046i
\(820\) 0 0
\(821\) −3.00000 5.19615i −0.104701 0.181347i 0.808915 0.587925i \(-0.200055\pi\)
−0.913616 + 0.406578i \(0.866722\pi\)
\(822\) 0 0
\(823\) −13.0000 + 22.5167i −0.453152 + 0.784881i −0.998580 0.0532760i \(-0.983034\pi\)
0.545428 + 0.838157i \(0.316367\pi\)
\(824\) 0 0
\(825\) −32.0000 −1.11410
\(826\) 0 0
\(827\) −8.00000 13.8564i −0.278187 0.481834i 0.692747 0.721181i \(-0.256400\pi\)
−0.970934 + 0.239346i \(0.923067\pi\)
\(828\) 0 0
\(829\) 17.0000 29.4449i 0.590434 1.02266i −0.403739 0.914874i \(-0.632290\pi\)
0.994174 0.107788i \(-0.0343769\pi\)
\(830\) 0 0
\(831\) −3.00000 + 5.19615i −0.104069 + 0.180253i
\(832\) 0 0
\(833\) 10.5000 + 18.1865i 0.363803 + 0.630126i
\(834\) 0 0
\(835\) −12.0000 + 20.7846i −0.415277 + 0.719281i
\(836\) 0 0
\(837\) 32.0000 1.10608
\(838\) 0 0
\(839\) 3.00000 5.19615i 0.103572 0.179391i −0.809582 0.587007i \(-0.800306\pi\)
0.913154 + 0.407615i \(0.133640\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 0 0
\(843\) −38.0000 −1.30879
\(844\) 0 0
\(845\) 27.0000 0.928828
\(846\) 0 0
\(847\) −5.00000 8.66025i −0.171802 0.297570i
\(848\) 0 0
\(849\) 14.0000 24.2487i 0.480479 0.832214i
\(850\) 0 0
\(851\) 11.0000 + 5.19615i 0.377075 + 0.178122i
\(852\) 0 0
\(853\) 7.50000 12.9904i 0.256795 0.444782i −0.708586 0.705624i \(-0.750667\pi\)
0.965382 + 0.260842i \(0.0840001\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −57.0000 −1.94708 −0.973541 0.228510i \(-0.926614\pi\)
−0.973541 + 0.228510i \(0.926614\pi\)
\(858\) 0 0
\(859\) −10.0000 −0.341196 −0.170598 0.985341i \(-0.554570\pi\)
−0.170598 + 0.985341i \(0.554570\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) 2.00000 3.46410i 0.0680808 0.117919i −0.829976 0.557800i \(-0.811646\pi\)
0.898056 + 0.439880i \(0.144979\pi\)
\(864\) 0 0
\(865\) 57.0000 1.93806
\(866\) 0 0
\(867\) 32.0000 55.4256i 1.08678 1.88235i
\(868\) 0 0
\(869\) −32.0000 55.4256i −1.08553 1.88019i
\(870\) 0 0
\(871\) 4.00000 6.92820i 0.135535 0.234753i
\(872\) 0 0
\(873\) −9.50000 + 16.4545i −0.321526 + 0.556900i
\(874\) 0 0
\(875\) −3.00000 5.19615i −0.101419 0.175662i
\(876\) 0 0
\(877\) 1.00000 0.0337676 0.0168838 0.999857i \(-0.494625\pi\)
0.0168838 + 0.999857i \(0.494625\pi\)
\(878\) 0 0
\(879\) −15.0000 + 25.9808i −0.505937 + 0.876309i
\(880\) 0 0
\(881\) −3.50000 6.06218i −0.117918 0.204240i 0.801024 0.598632i \(-0.204289\pi\)
−0.918942 + 0.394392i \(0.870955\pi\)
\(882\) 0 0
\(883\) −9.00000 15.5885i −0.302874 0.524593i 0.673912 0.738812i \(-0.264613\pi\)
−0.976786 + 0.214219i \(0.931280\pi\)
\(884\) 0 0
\(885\) −12.0000 20.7846i −0.403376 0.698667i
\(886\) 0 0
\(887\) −54.0000 −1.81314 −0.906571 0.422053i \(-0.861310\pi\)
−0.906571 + 0.422053i \(0.861310\pi\)
\(888\) 0 0
\(889\) 20.0000 0.670778
\(890\) 0 0
\(891\) 22.0000 + 38.1051i 0.737028 + 1.27657i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −18.0000 31.1769i −0.601674 1.04213i
\(896\) 0 0
\(897\) 4.00000 6.92820i 0.133556 0.231326i
\(898\) 0 0
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) −35.0000 60.6218i −1.16602 2.01960i
\(902\) 0 0
\(903\) 20.0000 34.6410i 0.665558 1.15278i
\(904\) 0 0
\(905\) 7.50000 12.9904i 0.249308 0.431815i
\(906\) 0 0
\(907\) −26.0000 45.0333i −0.863316 1.49531i −0.868710 0.495321i \(-0.835050\pi\)
0.00539395 0.999985i \(-0.498283\pi\)
\(908\) 0 0
\(909\) 1.50000 2.59808i 0.0497519 0.0861727i
\(910\) 0 0
\(911\) −22.0000 −0.728893 −0.364446 0.931224i \(-0.618742\pi\)
−0.364446 + 0.931224i \(0.618742\pi\)
\(912\) 0 0
\(913\) −4.00000 + 6.92820i −0.132381 + 0.229290i
\(914\) 0 0
\(915\) −18.0000 −0.595062
\(916\) 0 0
\(917\) −12.0000 −0.396275
\(918\) 0 0
\(919\) −2.00000 −0.0659739 −0.0329870 0.999456i \(-0.510502\pi\)
−0.0329870 + 0.999456i \(0.510502\pi\)
\(920\) 0 0
\(921\) −22.0000 38.1051i −0.724925 1.25561i
\(922\) 0 0
\(923\) 14.0000 24.2487i 0.460816 0.798156i
\(924\) 0 0
\(925\) 20.0000 13.8564i 0.657596 0.455596i
\(926\) 0 0
\(927\) −3.00000 + 5.19615i −0.0985329 + 0.170664i
\(928\) 0 0
\(929\) 22.5000 + 38.9711i 0.738201 + 1.27860i 0.953305 + 0.302010i \(0.0976578\pi\)
−0.215104 + 0.976591i \(0.569009\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −36.0000 −1.17859
\(934\) 0 0
\(935\) −84.0000 −2.74709
\(936\) 0 0
\(937\) 12.5000 21.6506i 0.408357 0.707295i −0.586349 0.810059i \(-0.699435\pi\)
0.994706 + 0.102763i \(0.0327685\pi\)
\(938\) 0 0
\(939\) 50.0000 1.63169
\(940\) 0 0
\(941\) −18.5000 + 32.0429i −0.603083 + 1.04457i 0.389269 + 0.921124i \(0.372728\pi\)
−0.992351 + 0.123446i \(0.960606\pi\)
\(942\) 0 0
\(943\) −1.00000 1.73205i −0.0325645 0.0564033i
\(944\) 0 0
\(945\) 12.0000 20.7846i 0.390360 0.676123i
\(946\) 0 0
\(947\) −6.00000 + 10.3923i −0.194974 + 0.337705i −0.946892 0.321552i \(-0.895796\pi\)
0.751918 + 0.659256i \(0.229129\pi\)
\(948\) 0 0
\(949\) −2.00000 3.46410i −0.0649227 0.112449i
\(950\) 0 0
\(951\) 46.0000 1.49165
\(952\) 0 0
\(953\) 9.00000 15.5885i 0.291539 0.504960i −0.682635 0.730759i \(-0.739166\pi\)
0.974174 + 0.225800i \(0.0724995\pi\)
\(954\) 0 0
\(955\) 27.0000 + 46.7654i 0.873699 + 1.51329i
\(956\) 0 0
\(957\) −12.0000 20.7846i −0.387905 0.671871i
\(958\) 0 0
\(959\) −3.00000 5.19615i −0.0968751 0.167793i
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 6.00000 0.193347
\(964\) 0 0
\(965\) 10.5000 + 18.1865i 0.338007 + 0.585445i
\(966\) 0 0
\(967\) 2.00000 + 3.46410i 0.0643157 + 0.111398i 0.896390 0.443266i \(-0.146180\pi\)
−0.832075 + 0.554664i \(0.812847\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.0000 39.8372i 0.738105 1.27844i −0.215242 0.976561i \(-0.569054\pi\)
0.953348 0.301875i \(-0.0976125\pi\)
\(972\) 0 0
\(973\) 20.0000 0.641171
\(974\) 0 0
\(975\) −8.00000 13.8564i −0.256205 0.443760i
\(976\) 0 0
\(977\) −3.00000 + 5.19615i −0.0959785 + 0.166240i −0.910017 0.414572i \(-0.863931\pi\)
0.814038 + 0.580812i \(0.197265\pi\)
\(978\) 0 0
\(979\) 2.00000 3.46410i 0.0639203 0.110713i
\(980\) 0 0
\(981\) 5.50000 + 9.52628i 0.175601 + 0.304151i
\(982\) 0 0
\(983\) −4.00000 + 6.92820i −0.127580 + 0.220975i −0.922739 0.385426i \(-0.874054\pi\)
0.795158 + 0.606402i \(0.207388\pi\)
\(984\) 0 0
\(985\) 45.0000 1.43382
\(986\) 0 0
\(987\) −16.0000 + 27.7128i −0.509286 + 0.882109i
\(988\) 0 0
\(989\) −20.0000 −0.635963
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) 0 0
\(993\) 64.0000 2.03098
\(994\) 0 0
\(995\) 15.0000 + 25.9808i 0.475532 + 0.823646i
\(996\) 0 0
\(997\) 21.0000 36.3731i 0.665077 1.15195i −0.314188 0.949361i \(-0.601732\pi\)
0.979265 0.202586i \(-0.0649345\pi\)
\(998\) 0 0
\(999\) −22.0000 10.3923i −0.696049 0.328798i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1184.2.i.b.417.1 yes 2
4.3 odd 2 1184.2.i.a.417.1 2
37.26 even 3 inner 1184.2.i.b.1025.1 yes 2
148.63 odd 6 1184.2.i.a.1025.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1184.2.i.a.417.1 2 4.3 odd 2
1184.2.i.a.1025.1 yes 2 148.63 odd 6
1184.2.i.b.417.1 yes 2 1.1 even 1 trivial
1184.2.i.b.1025.1 yes 2 37.26 even 3 inner