Properties

Label 1184.2.g.d
Level $1184$
Weight $2$
Character orbit 1184.g
Analytic conductor $9.454$
Analytic rank $0$
Dimension $4$
CM discriminant -148
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1184,2,Mod(961,1184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1184, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1184.961"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1184 = 2^{5} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1184.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.45428759932\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{37})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 19x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{9} + \beta_1 q^{19} + (\beta_{2} + \beta_1) q^{23} + 5 q^{25} + ( - \beta_{2} + \beta_1) q^{31} - \beta_{3} q^{37} + 2 \beta_{3} q^{41} + (2 \beta_{2} + \beta_1) q^{43} - 7 q^{49} - 2 \beta_{3} q^{53}+ \cdots + 9 q^{81}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{9} + 20 q^{25} - 28 q^{49} + 36 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 19x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 4\nu^{3} + 40\nu ) / 9 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 19 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 19 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 9\beta_{2} - 20\beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1184\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(705\) \(741\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
961.1
3.54138i
2.54138i
2.54138i
3.54138i
0 0 0 0 0 0 0 −3.00000 0
961.2 0 0 0 0 0 0 0 −3.00000 0
961.3 0 0 0 0 0 0 0 −3.00000 0
961.4 0 0 0 0 0 0 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
148.b odd 2 1 CM by \(\Q(\sqrt{-37}) \)
4.b odd 2 1 inner
37.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1184.2.g.d 4
4.b odd 2 1 inner 1184.2.g.d 4
8.b even 2 1 2368.2.g.i 4
8.d odd 2 1 2368.2.g.i 4
37.b even 2 1 inner 1184.2.g.d 4
148.b odd 2 1 CM 1184.2.g.d 4
296.e even 2 1 2368.2.g.i 4
296.h odd 2 1 2368.2.g.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1184.2.g.d 4 1.a even 1 1 trivial
1184.2.g.d 4 4.b odd 2 1 inner
1184.2.g.d 4 37.b even 2 1 inner
1184.2.g.d 4 148.b odd 2 1 CM
2368.2.g.i 4 8.b even 2 1
2368.2.g.i 4 8.d odd 2 1
2368.2.g.i 4 296.e even 2 1
2368.2.g.i 4 296.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1184, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 76T^{2} + 1296 \) Copy content Toggle raw display
$23$ \( T^{4} + 92T^{2} + 784 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 124T^{2} + 144 \) Copy content Toggle raw display
$37$ \( (T^{2} - 37)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 148)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 172T^{2} + 144 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 148)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 236T^{2} + 1936 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 148)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 316T^{2} + 7056 \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less