L(s) = 1 | − 3·9-s + 5.08i·19-s + 9.08i·23-s + 5·25-s + 1.08i·31-s − 6.08·37-s + 12.1·41-s + 13.0i·43-s − 7·49-s − 12.1·53-s − 2.91i·59-s + 12.1·73-s + 17.0i·79-s + 9·81-s − 12.1·101-s + ⋯ |
L(s) = 1 | − 9-s + 1.16i·19-s + 1.89i·23-s + 25-s + 0.194i·31-s − 0.999·37-s + 1.89·41-s + 1.99i·43-s − 49-s − 1.67·53-s − 0.379i·59-s + 1.42·73-s + 1.92i·79-s + 81-s − 1.21·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.110405882\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.110405882\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + 6.08T \) |
good | 3 | \( 1 + 3T^{2} \) |
| 5 | \( 1 - 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 - 5.08iT - 19T^{2} \) |
| 23 | \( 1 - 9.08iT - 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 1.08iT - 31T^{2} \) |
| 41 | \( 1 - 12.1T + 41T^{2} \) |
| 43 | \( 1 - 13.0iT - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 12.1T + 53T^{2} \) |
| 59 | \( 1 + 2.91iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 12.1T + 73T^{2} \) |
| 79 | \( 1 - 17.0iT - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.797446965209577435429050425681, −9.255545606222263416698049379067, −8.227712380916534756569510109949, −7.69305015901734959311039111866, −6.54139893624810251751513470435, −5.75252935046635999391074762375, −4.96520845112275974713709740377, −3.69899599593913139168819896146, −2.86204128398731640768764407149, −1.44245303722599999763485363240,
0.48580069508564584551086207252, 2.31507445032708885484329520217, 3.16073241787541917323872882970, 4.45656409657511854143891788521, 5.25368757180379137077090074576, 6.28248270433921680895252873430, 6.96896303184729859949368771534, 8.062551007687083964202576936839, 8.791852700279792603939151637640, 9.354740084062193647470738886983