L(s) = 1 | − 3·9-s + 7.08i·19-s + 3.08i·23-s + 5·25-s + 11.0i·31-s + 6.08·37-s − 12.1·41-s − 0.917i·43-s − 7·49-s + 12.1·53-s + 15.0i·59-s − 12.1·73-s − 4.91i·79-s + 9·81-s + 12.1·101-s + ⋯ |
L(s) = 1 | − 9-s + 1.62i·19-s + 0.642i·23-s + 25-s + 1.99i·31-s + 0.999·37-s − 1.89·41-s − 0.139i·43-s − 49-s + 1.67·53-s + 1.96i·59-s − 1.42·73-s − 0.553i·79-s + 81-s + 1.21·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.111035542\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.111035542\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 - 6.08T \) |
good | 3 | \( 1 + 3T^{2} \) |
| 5 | \( 1 - 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 - 7.08iT - 19T^{2} \) |
| 23 | \( 1 - 3.08iT - 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 11.0iT - 31T^{2} \) |
| 41 | \( 1 + 12.1T + 41T^{2} \) |
| 43 | \( 1 + 0.917iT - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 12.1T + 53T^{2} \) |
| 59 | \( 1 - 15.0iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 12.1T + 73T^{2} \) |
| 79 | \( 1 + 4.91iT - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13133352599580041561726420375, −8.958875311300416068581013197514, −8.468696073369461140220766889723, −7.56227107781882141098698021456, −6.59565657630872792261746898435, −5.72187041611065630535091321503, −4.97603540632587399766801761318, −3.69736995130601668399068878704, −2.86219861786989402823004291934, −1.44266272916152121959030008419,
0.48609899715687249450637051819, 2.31358425436441148415819231153, 3.16404351373553679324922443893, 4.44756499046267891282718274794, 5.27045239912424028216931333029, 6.25553443515884990181237613985, 6.99517392545376136968390546968, 8.060059597852300750454903456426, 8.735886747540492507777203140357, 9.465103129593134319193083608614