Properties

Label 1170.2.w.h.307.5
Level $1170$
Weight $2$
Character 1170.307
Analytic conductor $9.342$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(307,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-14,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} + 2 x^{12} + 4 x^{11} + 112 x^{10} - 208 x^{9} + 200 x^{8} + 392 x^{7} + 1708 x^{6} + \cdots + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.5
Root \(0.372382 + 0.372382i\) of defining polynomial
Character \(\chi\) \(=\) 1170.307
Dual form 1170.2.w.h.343.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(0.372382 - 2.20484i) q^{5} +1.64209 q^{7} +1.00000i q^{8} +(-2.20484 - 0.372382i) q^{10} +(-4.51787 + 4.51787i) q^{11} +(-0.732218 + 3.53042i) q^{13} -1.64209i q^{14} +1.00000 q^{16} +(-5.07094 + 5.07094i) q^{17} +(-1.47753 + 1.47753i) q^{19} +(-0.372382 + 2.20484i) q^{20} +(4.51787 + 4.51787i) q^{22} +(-5.93054 - 5.93054i) q^{23} +(-4.72266 - 1.64209i) q^{25} +(3.53042 + 0.732218i) q^{26} -1.64209 q^{28} +4.59341i q^{29} +(1.29856 + 1.29856i) q^{31} -1.00000i q^{32} +(5.07094 + 5.07094i) q^{34} +(0.611485 - 3.62055i) q^{35} +2.57058 q^{37} +(1.47753 + 1.47753i) q^{38} +(2.20484 + 0.372382i) q^{40} +(-6.40807 - 6.40807i) q^{41} +(1.01618 + 1.01618i) q^{43} +(4.51787 - 4.51787i) q^{44} +(-5.93054 + 5.93054i) q^{46} +7.69994 q^{47} -4.30354 q^{49} +(-1.64209 + 4.72266i) q^{50} +(0.732218 - 3.53042i) q^{52} +(2.67934 - 2.67934i) q^{53} +(8.27882 + 11.6436i) q^{55} +1.64209i q^{56} +4.59341 q^{58} +(1.77537 + 1.77537i) q^{59} -6.19616 q^{61} +(1.29856 - 1.29856i) q^{62} -1.00000 q^{64} +(7.51135 + 2.92909i) q^{65} +8.73173i q^{67} +(5.07094 - 5.07094i) q^{68} +(-3.62055 - 0.611485i) q^{70} +(-1.40304 - 1.40304i) q^{71} -13.2123i q^{73} -2.57058i q^{74} +(1.47753 - 1.47753i) q^{76} +(-7.41875 + 7.41875i) q^{77} +10.6201i q^{79} +(0.372382 - 2.20484i) q^{80} +(-6.40807 + 6.40807i) q^{82} -9.18339 q^{83} +(9.29230 + 13.0690i) q^{85} +(1.01618 - 1.01618i) q^{86} +(-4.51787 - 4.51787i) q^{88} +(-1.46610 - 1.46610i) q^{89} +(-1.20237 + 5.79726i) q^{91} +(5.93054 + 5.93054i) q^{92} -7.69994i q^{94} +(2.70752 + 3.80794i) q^{95} +14.1647i q^{97} +4.30354i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{4} + 2 q^{5} + 4 q^{13} + 14 q^{16} - 14 q^{17} - 12 q^{19} - 2 q^{20} - 10 q^{25} - 6 q^{26} + 12 q^{31} + 14 q^{34} - 12 q^{35} + 20 q^{37} + 12 q^{38} + 2 q^{41} + 8 q^{47} + 14 q^{49} - 4 q^{52}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0.372382 2.20484i 0.166534 0.986036i
\(6\) 0 0
\(7\) 1.64209 0.620651 0.310326 0.950630i \(-0.399562\pi\)
0.310326 + 0.950630i \(0.399562\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −2.20484 0.372382i −0.697232 0.117758i
\(11\) −4.51787 + 4.51787i −1.36219 + 1.36219i −0.491069 + 0.871121i \(0.663394\pi\)
−0.871121 + 0.491069i \(0.836606\pi\)
\(12\) 0 0
\(13\) −0.732218 + 3.53042i −0.203081 + 0.979162i
\(14\) 1.64209i 0.438867i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −5.07094 + 5.07094i −1.22988 + 1.22988i −0.265878 + 0.964007i \(0.585662\pi\)
−0.964007 + 0.265878i \(0.914338\pi\)
\(18\) 0 0
\(19\) −1.47753 + 1.47753i −0.338969 + 0.338969i −0.855979 0.517010i \(-0.827045\pi\)
0.517010 + 0.855979i \(0.327045\pi\)
\(20\) −0.372382 + 2.20484i −0.0832672 + 0.493018i
\(21\) 0 0
\(22\) 4.51787 + 4.51787i 0.963214 + 0.963214i
\(23\) −5.93054 5.93054i −1.23660 1.23660i −0.961380 0.275223i \(-0.911248\pi\)
−0.275223 0.961380i \(-0.588752\pi\)
\(24\) 0 0
\(25\) −4.72266 1.64209i −0.944533 0.328418i
\(26\) 3.53042 + 0.732218i 0.692372 + 0.143600i
\(27\) 0 0
\(28\) −1.64209 −0.310326
\(29\) 4.59341i 0.852975i 0.904493 + 0.426487i \(0.140249\pi\)
−0.904493 + 0.426487i \(0.859751\pi\)
\(30\) 0 0
\(31\) 1.29856 + 1.29856i 0.233228 + 0.233228i 0.814039 0.580811i \(-0.197264\pi\)
−0.580811 + 0.814039i \(0.697264\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 5.07094 + 5.07094i 0.869660 + 0.869660i
\(35\) 0.611485 3.62055i 0.103360 0.611984i
\(36\) 0 0
\(37\) 2.57058 0.422600 0.211300 0.977421i \(-0.432230\pi\)
0.211300 + 0.977421i \(0.432230\pi\)
\(38\) 1.47753 + 1.47753i 0.239688 + 0.239688i
\(39\) 0 0
\(40\) 2.20484 + 0.372382i 0.348616 + 0.0588788i
\(41\) −6.40807 6.40807i −1.00077 1.00077i −1.00000 0.000773433i \(-0.999754\pi\)
−0.000773433 1.00000i \(-0.500246\pi\)
\(42\) 0 0
\(43\) 1.01618 + 1.01618i 0.154967 + 0.154967i 0.780332 0.625365i \(-0.215050\pi\)
−0.625365 + 0.780332i \(0.715050\pi\)
\(44\) 4.51787 4.51787i 0.681095 0.681095i
\(45\) 0 0
\(46\) −5.93054 + 5.93054i −0.874411 + 0.874411i
\(47\) 7.69994 1.12315 0.561576 0.827425i \(-0.310195\pi\)
0.561576 + 0.827425i \(0.310195\pi\)
\(48\) 0 0
\(49\) −4.30354 −0.614792
\(50\) −1.64209 + 4.72266i −0.232226 + 0.667885i
\(51\) 0 0
\(52\) 0.732218 3.53042i 0.101540 0.489581i
\(53\) 2.67934 2.67934i 0.368036 0.368036i −0.498725 0.866760i \(-0.666198\pi\)
0.866760 + 0.498725i \(0.166198\pi\)
\(54\) 0 0
\(55\) 8.27882 + 11.6436i 1.11632 + 1.57002i
\(56\) 1.64209i 0.219433i
\(57\) 0 0
\(58\) 4.59341 0.603144
\(59\) 1.77537 + 1.77537i 0.231133 + 0.231133i 0.813166 0.582032i \(-0.197742\pi\)
−0.582032 + 0.813166i \(0.697742\pi\)
\(60\) 0 0
\(61\) −6.19616 −0.793337 −0.396669 0.917962i \(-0.629834\pi\)
−0.396669 + 0.917962i \(0.629834\pi\)
\(62\) 1.29856 1.29856i 0.164917 0.164917i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 7.51135 + 2.92909i 0.931669 + 0.363309i
\(66\) 0 0
\(67\) 8.73173i 1.06675i 0.845879 + 0.533375i \(0.179077\pi\)
−0.845879 + 0.533375i \(0.820923\pi\)
\(68\) 5.07094 5.07094i 0.614942 0.614942i
\(69\) 0 0
\(70\) −3.62055 0.611485i −0.432738 0.0730864i
\(71\) −1.40304 1.40304i −0.166510 0.166510i 0.618933 0.785443i \(-0.287565\pi\)
−0.785443 + 0.618933i \(0.787565\pi\)
\(72\) 0 0
\(73\) 13.2123i 1.54638i −0.634173 0.773191i \(-0.718659\pi\)
0.634173 0.773191i \(-0.281341\pi\)
\(74\) 2.57058i 0.298824i
\(75\) 0 0
\(76\) 1.47753 1.47753i 0.169485 0.169485i
\(77\) −7.41875 + 7.41875i −0.845445 + 0.845445i
\(78\) 0 0
\(79\) 10.6201i 1.19485i 0.801923 + 0.597427i \(0.203810\pi\)
−0.801923 + 0.597427i \(0.796190\pi\)
\(80\) 0.372382 2.20484i 0.0416336 0.246509i
\(81\) 0 0
\(82\) −6.40807 + 6.40807i −0.707653 + 0.707653i
\(83\) −9.18339 −1.00801 −0.504004 0.863701i \(-0.668140\pi\)
−0.504004 + 0.863701i \(0.668140\pi\)
\(84\) 0 0
\(85\) 9.29230 + 13.0690i 1.00789 + 1.41753i
\(86\) 1.01618 1.01618i 0.109578 0.109578i
\(87\) 0 0
\(88\) −4.51787 4.51787i −0.481607 0.481607i
\(89\) −1.46610 1.46610i −0.155406 0.155406i 0.625121 0.780528i \(-0.285049\pi\)
−0.780528 + 0.625121i \(0.785049\pi\)
\(90\) 0 0
\(91\) −1.20237 + 5.79726i −0.126042 + 0.607718i
\(92\) 5.93054 + 5.93054i 0.618302 + 0.618302i
\(93\) 0 0
\(94\) 7.69994i 0.794188i
\(95\) 2.70752 + 3.80794i 0.277786 + 0.390686i
\(96\) 0 0
\(97\) 14.1647i 1.43821i 0.694902 + 0.719105i \(0.255448\pi\)
−0.694902 + 0.719105i \(0.744552\pi\)
\(98\) 4.30354i 0.434724i
\(99\) 0 0
\(100\) 4.72266 + 1.64209i 0.472266 + 0.164209i
\(101\) 11.4416i 1.13848i −0.822170 0.569242i \(-0.807237\pi\)
0.822170 0.569242i \(-0.192763\pi\)
\(102\) 0 0
\(103\) 10.0015 + 10.0015i 0.985476 + 0.985476i 0.999896 0.0144204i \(-0.00459033\pi\)
−0.0144204 + 0.999896i \(0.504590\pi\)
\(104\) −3.53042 0.732218i −0.346186 0.0717999i
\(105\) 0 0
\(106\) −2.67934 2.67934i −0.260240 0.260240i
\(107\) 5.93186 + 5.93186i 0.573455 + 0.573455i 0.933092 0.359637i \(-0.117100\pi\)
−0.359637 + 0.933092i \(0.617100\pi\)
\(108\) 0 0
\(109\) 3.40836 3.40836i 0.326462 0.326462i −0.524777 0.851239i \(-0.675851\pi\)
0.851239 + 0.524777i \(0.175851\pi\)
\(110\) 11.6436 8.27882i 1.11017 0.789355i
\(111\) 0 0
\(112\) 1.64209 0.155163
\(113\) −6.74568 + 6.74568i −0.634580 + 0.634580i −0.949213 0.314633i \(-0.898119\pi\)
0.314633 + 0.949213i \(0.398119\pi\)
\(114\) 0 0
\(115\) −15.2843 + 10.8675i −1.42527 + 1.01340i
\(116\) 4.59341i 0.426487i
\(117\) 0 0
\(118\) 1.77537 1.77537i 0.163436 0.163436i
\(119\) −8.32694 + 8.32694i −0.763329 + 0.763329i
\(120\) 0 0
\(121\) 29.8223i 2.71112i
\(122\) 6.19616i 0.560974i
\(123\) 0 0
\(124\) −1.29856 1.29856i −0.116614 0.116614i
\(125\) −5.37918 + 9.80124i −0.481129 + 0.876650i
\(126\) 0 0
\(127\) −0.459975 + 0.459975i −0.0408162 + 0.0408162i −0.727220 0.686404i \(-0.759188\pi\)
0.686404 + 0.727220i \(0.259188\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 2.92909 7.51135i 0.256898 0.658789i
\(131\) 14.2201 1.24242 0.621208 0.783646i \(-0.286642\pi\)
0.621208 + 0.783646i \(0.286642\pi\)
\(132\) 0 0
\(133\) −2.42624 + 2.42624i −0.210382 + 0.210382i
\(134\) 8.73173 0.754306
\(135\) 0 0
\(136\) −5.07094 5.07094i −0.434830 0.434830i
\(137\) −15.8813 −1.35683 −0.678416 0.734678i \(-0.737333\pi\)
−0.678416 + 0.734678i \(0.737333\pi\)
\(138\) 0 0
\(139\) 18.1217i 1.53706i −0.639814 0.768530i \(-0.720988\pi\)
0.639814 0.768530i \(-0.279012\pi\)
\(140\) −0.611485 + 3.62055i −0.0516799 + 0.305992i
\(141\) 0 0
\(142\) −1.40304 + 1.40304i −0.117740 + 0.117740i
\(143\) −12.6419 19.2580i −1.05717 1.61044i
\(144\) 0 0
\(145\) 10.1277 + 1.71050i 0.841064 + 0.142050i
\(146\) −13.2123 −1.09346
\(147\) 0 0
\(148\) −2.57058 −0.211300
\(149\) 5.86140 5.86140i 0.480185 0.480185i −0.425006 0.905191i \(-0.639728\pi\)
0.905191 + 0.425006i \(0.139728\pi\)
\(150\) 0 0
\(151\) 5.54961 5.54961i 0.451621 0.451621i −0.444271 0.895892i \(-0.646537\pi\)
0.895892 + 0.444271i \(0.146537\pi\)
\(152\) −1.47753 1.47753i −0.119844 0.119844i
\(153\) 0 0
\(154\) 7.41875 + 7.41875i 0.597820 + 0.597820i
\(155\) 3.34668 2.37956i 0.268812 0.191131i
\(156\) 0 0
\(157\) 3.23663 + 3.23663i 0.258312 + 0.258312i 0.824367 0.566056i \(-0.191531\pi\)
−0.566056 + 0.824367i \(0.691531\pi\)
\(158\) 10.6201 0.844889
\(159\) 0 0
\(160\) −2.20484 0.372382i −0.174308 0.0294394i
\(161\) −9.73848 9.73848i −0.767500 0.767500i
\(162\) 0 0
\(163\) 16.1076i 1.26164i −0.775927 0.630822i \(-0.782718\pi\)
0.775927 0.630822i \(-0.217282\pi\)
\(164\) 6.40807 + 6.40807i 0.500387 + 0.500387i
\(165\) 0 0
\(166\) 9.18339i 0.712770i
\(167\) 10.3428 0.800348 0.400174 0.916439i \(-0.368950\pi\)
0.400174 + 0.916439i \(0.368950\pi\)
\(168\) 0 0
\(169\) −11.9277 5.17007i −0.917516 0.397698i
\(170\) 13.0690 9.29230i 1.00234 0.712687i
\(171\) 0 0
\(172\) −1.01618 1.01618i −0.0774834 0.0774834i
\(173\) −0.533953 0.533953i −0.0405957 0.0405957i 0.686518 0.727113i \(-0.259138\pi\)
−0.727113 + 0.686518i \(0.759138\pi\)
\(174\) 0 0
\(175\) −7.75503 2.69646i −0.586225 0.203833i
\(176\) −4.51787 + 4.51787i −0.340547 + 0.340547i
\(177\) 0 0
\(178\) −1.46610 + 1.46610i −0.109889 + 0.109889i
\(179\) 10.8352 0.809864 0.404932 0.914347i \(-0.367295\pi\)
0.404932 + 0.914347i \(0.367295\pi\)
\(180\) 0 0
\(181\) 4.52263i 0.336164i −0.985773 0.168082i \(-0.946243\pi\)
0.985773 0.168082i \(-0.0537574\pi\)
\(182\) 5.79726 + 1.20237i 0.429722 + 0.0891254i
\(183\) 0 0
\(184\) 5.93054 5.93054i 0.437205 0.437205i
\(185\) 0.957238 5.66772i 0.0703775 0.416699i
\(186\) 0 0
\(187\) 45.8197i 3.35067i
\(188\) −7.69994 −0.561576
\(189\) 0 0
\(190\) 3.80794 2.70752i 0.276257 0.196424i
\(191\) 15.3851 1.11323 0.556613 0.830772i \(-0.312101\pi\)
0.556613 + 0.830772i \(0.312101\pi\)
\(192\) 0 0
\(193\) 3.47402i 0.250066i 0.992153 + 0.125033i \(0.0399036\pi\)
−0.992153 + 0.125033i \(0.960096\pi\)
\(194\) 14.1647 1.01697
\(195\) 0 0
\(196\) 4.30354 0.307396
\(197\) 21.8842i 1.55918i 0.626289 + 0.779591i \(0.284573\pi\)
−0.626289 + 0.779591i \(0.715427\pi\)
\(198\) 0 0
\(199\) 4.82071 0.341731 0.170866 0.985294i \(-0.445344\pi\)
0.170866 + 0.985294i \(0.445344\pi\)
\(200\) 1.64209 4.72266i 0.116113 0.333943i
\(201\) 0 0
\(202\) −11.4416 −0.805030
\(203\) 7.54279i 0.529400i
\(204\) 0 0
\(205\) −16.5151 + 11.7425i −1.15346 + 0.820135i
\(206\) 10.0015 10.0015i 0.696836 0.696836i
\(207\) 0 0
\(208\) −0.732218 + 3.53042i −0.0507702 + 0.244790i
\(209\) 13.3506i 0.923481i
\(210\) 0 0
\(211\) −6.77515 −0.466421 −0.233210 0.972426i \(-0.574923\pi\)
−0.233210 + 0.972426i \(0.574923\pi\)
\(212\) −2.67934 + 2.67934i −0.184018 + 0.184018i
\(213\) 0 0
\(214\) 5.93186 5.93186i 0.405494 0.405494i
\(215\) 2.61894 1.86212i 0.178610 0.126995i
\(216\) 0 0
\(217\) 2.13235 + 2.13235i 0.144753 + 0.144753i
\(218\) −3.40836 3.40836i −0.230843 0.230843i
\(219\) 0 0
\(220\) −8.27882 11.6436i −0.558158 0.785010i
\(221\) −14.1895 21.6156i −0.954490 1.45402i
\(222\) 0 0
\(223\) −13.7744 −0.922402 −0.461201 0.887296i \(-0.652581\pi\)
−0.461201 + 0.887296i \(0.652581\pi\)
\(224\) 1.64209i 0.109717i
\(225\) 0 0
\(226\) 6.74568 + 6.74568i 0.448716 + 0.448716i
\(227\) 25.3628i 1.68339i 0.539956 + 0.841693i \(0.318441\pi\)
−0.539956 + 0.841693i \(0.681559\pi\)
\(228\) 0 0
\(229\) −2.22305 2.22305i −0.146903 0.146903i 0.629830 0.776733i \(-0.283125\pi\)
−0.776733 + 0.629830i \(0.783125\pi\)
\(230\) 10.8675 + 15.2843i 0.716581 + 1.00782i
\(231\) 0 0
\(232\) −4.59341 −0.301572
\(233\) −0.221543 0.221543i −0.0145138 0.0145138i 0.699813 0.714326i \(-0.253267\pi\)
−0.714326 + 0.699813i \(0.753267\pi\)
\(234\) 0 0
\(235\) 2.86732 16.9771i 0.187043 1.10747i
\(236\) −1.77537 1.77537i −0.115567 0.115567i
\(237\) 0 0
\(238\) 8.32694 + 8.32694i 0.539755 + 0.539755i
\(239\) −13.7444 + 13.7444i −0.889051 + 0.889051i −0.994432 0.105381i \(-0.966394\pi\)
0.105381 + 0.994432i \(0.466394\pi\)
\(240\) 0 0
\(241\) −19.7069 + 19.7069i −1.26943 + 1.26943i −0.323050 + 0.946382i \(0.604708\pi\)
−0.946382 + 0.323050i \(0.895292\pi\)
\(242\) −29.8223 −1.91705
\(243\) 0 0
\(244\) 6.19616 0.396669
\(245\) −1.60256 + 9.48864i −0.102384 + 0.606207i
\(246\) 0 0
\(247\) −4.13443 6.29819i −0.263068 0.400744i
\(248\) −1.29856 + 1.29856i −0.0824585 + 0.0824585i
\(249\) 0 0
\(250\) 9.80124 + 5.37918i 0.619885 + 0.340209i
\(251\) 8.85078i 0.558656i −0.960196 0.279328i \(-0.909888\pi\)
0.960196 0.279328i \(-0.0901117\pi\)
\(252\) 0 0
\(253\) 53.5869 3.36898
\(254\) 0.459975 + 0.459975i 0.0288614 + 0.0288614i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −11.6574 + 11.6574i −0.727170 + 0.727170i −0.970055 0.242885i \(-0.921906\pi\)
0.242885 + 0.970055i \(0.421906\pi\)
\(258\) 0 0
\(259\) 4.22112 0.262288
\(260\) −7.51135 2.92909i −0.465834 0.181655i
\(261\) 0 0
\(262\) 14.2201i 0.878520i
\(263\) −6.91081 + 6.91081i −0.426139 + 0.426139i −0.887311 0.461172i \(-0.847429\pi\)
0.461172 + 0.887311i \(0.347429\pi\)
\(264\) 0 0
\(265\) −4.90978 6.90526i −0.301606 0.424187i
\(266\) 2.42624 + 2.42624i 0.148762 + 0.148762i
\(267\) 0 0
\(268\) 8.73173i 0.533375i
\(269\) 24.5283i 1.49552i −0.663970 0.747759i \(-0.731130\pi\)
0.663970 0.747759i \(-0.268870\pi\)
\(270\) 0 0
\(271\) −12.8338 + 12.8338i −0.779597 + 0.779597i −0.979762 0.200165i \(-0.935852\pi\)
0.200165 + 0.979762i \(0.435852\pi\)
\(272\) −5.07094 + 5.07094i −0.307471 + 0.307471i
\(273\) 0 0
\(274\) 15.8813i 0.959425i
\(275\) 28.7551 13.9176i 1.73400 0.839265i
\(276\) 0 0
\(277\) 8.90530 8.90530i 0.535068 0.535068i −0.387008 0.922076i \(-0.626492\pi\)
0.922076 + 0.387008i \(0.126492\pi\)
\(278\) −18.1217 −1.08687
\(279\) 0 0
\(280\) 3.62055 + 0.611485i 0.216369 + 0.0365432i
\(281\) −17.4509 + 17.4509i −1.04104 + 1.04104i −0.0419147 + 0.999121i \(0.513346\pi\)
−0.999121 + 0.0419147i \(0.986654\pi\)
\(282\) 0 0
\(283\) 8.76312 + 8.76312i 0.520913 + 0.520913i 0.917847 0.396934i \(-0.129926\pi\)
−0.396934 + 0.917847i \(0.629926\pi\)
\(284\) 1.40304 + 1.40304i 0.0832550 + 0.0832550i
\(285\) 0 0
\(286\) −19.2580 + 12.6419i −1.13875 + 0.747532i
\(287\) −10.5226 10.5226i −0.621131 0.621131i
\(288\) 0 0
\(289\) 34.4289i 2.02523i
\(290\) 1.71050 10.1277i 0.100444 0.594722i
\(291\) 0 0
\(292\) 13.2123i 0.773191i
\(293\) 27.2016i 1.58914i 0.607175 + 0.794568i \(0.292303\pi\)
−0.607175 + 0.794568i \(0.707697\pi\)
\(294\) 0 0
\(295\) 4.57552 3.25329i 0.266397 0.189414i
\(296\) 2.57058i 0.149412i
\(297\) 0 0
\(298\) −5.86140 5.86140i −0.339542 0.339542i
\(299\) 25.2797 16.5948i 1.46197 0.959705i
\(300\) 0 0
\(301\) 1.66867 + 1.66867i 0.0961803 + 0.0961803i
\(302\) −5.54961 5.54961i −0.319344 0.319344i
\(303\) 0 0
\(304\) −1.47753 + 1.47753i −0.0847423 + 0.0847423i
\(305\) −2.30734 + 13.6616i −0.132118 + 0.782259i
\(306\) 0 0
\(307\) 19.5908 1.11811 0.559053 0.829132i \(-0.311165\pi\)
0.559053 + 0.829132i \(0.311165\pi\)
\(308\) 7.41875 7.41875i 0.422722 0.422722i
\(309\) 0 0
\(310\) −2.37956 3.34668i −0.135150 0.190078i
\(311\) 15.5581i 0.882217i −0.897454 0.441108i \(-0.854585\pi\)
0.897454 0.441108i \(-0.145415\pi\)
\(312\) 0 0
\(313\) −10.3697 + 10.3697i −0.586128 + 0.586128i −0.936581 0.350452i \(-0.886028\pi\)
0.350452 + 0.936581i \(0.386028\pi\)
\(314\) 3.23663 3.23663i 0.182654 0.182654i
\(315\) 0 0
\(316\) 10.6201i 0.597427i
\(317\) 7.90873i 0.444198i −0.975024 0.222099i \(-0.928709\pi\)
0.975024 0.222099i \(-0.0712909\pi\)
\(318\) 0 0
\(319\) −20.7524 20.7524i −1.16191 1.16191i
\(320\) −0.372382 + 2.20484i −0.0208168 + 0.123254i
\(321\) 0 0
\(322\) −9.73848 + 9.73848i −0.542704 + 0.542704i
\(323\) 14.9850i 0.833786i
\(324\) 0 0
\(325\) 9.25528 15.4706i 0.513391 0.858155i
\(326\) −16.1076 −0.892118
\(327\) 0 0
\(328\) 6.40807 6.40807i 0.353827 0.353827i
\(329\) 12.6440 0.697085
\(330\) 0 0
\(331\) −23.7654 23.7654i −1.30626 1.30626i −0.924090 0.382174i \(-0.875176\pi\)
−0.382174 0.924090i \(-0.624824\pi\)
\(332\) 9.18339 0.504004
\(333\) 0 0
\(334\) 10.3428i 0.565932i
\(335\) 19.2521 + 3.25154i 1.05185 + 0.177651i
\(336\) 0 0
\(337\) 6.87634 6.87634i 0.374578 0.374578i −0.494563 0.869142i \(-0.664672\pi\)
0.869142 + 0.494563i \(0.164672\pi\)
\(338\) −5.17007 + 11.9277i −0.281215 + 0.648782i
\(339\) 0 0
\(340\) −9.29230 13.0690i −0.503946 0.708764i
\(341\) −11.7334 −0.635401
\(342\) 0 0
\(343\) −18.5614 −1.00222
\(344\) −1.01618 + 1.01618i −0.0547890 + 0.0547890i
\(345\) 0 0
\(346\) −0.533953 + 0.533953i −0.0287055 + 0.0287055i
\(347\) 12.9364 + 12.9364i 0.694463 + 0.694463i 0.963211 0.268748i \(-0.0866099\pi\)
−0.268748 + 0.963211i \(0.586610\pi\)
\(348\) 0 0
\(349\) −0.121963 0.121963i −0.00652851 0.00652851i 0.703835 0.710364i \(-0.251469\pi\)
−0.710364 + 0.703835i \(0.751469\pi\)
\(350\) −2.69646 + 7.75503i −0.144132 + 0.414524i
\(351\) 0 0
\(352\) 4.51787 + 4.51787i 0.240803 + 0.240803i
\(353\) −18.7416 −0.997514 −0.498757 0.866742i \(-0.666210\pi\)
−0.498757 + 0.866742i \(0.666210\pi\)
\(354\) 0 0
\(355\) −3.61595 + 2.57101i −0.191915 + 0.136455i
\(356\) 1.46610 + 1.46610i 0.0777030 + 0.0777030i
\(357\) 0 0
\(358\) 10.8352i 0.572660i
\(359\) −6.51327 6.51327i −0.343757 0.343757i 0.514021 0.857778i \(-0.328155\pi\)
−0.857778 + 0.514021i \(0.828155\pi\)
\(360\) 0 0
\(361\) 14.6338i 0.770200i
\(362\) −4.52263 −0.237704
\(363\) 0 0
\(364\) 1.20237 5.79726i 0.0630212 0.303859i
\(365\) −29.1310 4.92003i −1.52479 0.257526i
\(366\) 0 0
\(367\) 7.79589 + 7.79589i 0.406942 + 0.406942i 0.880671 0.473729i \(-0.157092\pi\)
−0.473729 + 0.880671i \(0.657092\pi\)
\(368\) −5.93054 5.93054i −0.309151 0.309151i
\(369\) 0 0
\(370\) −5.66772 0.957238i −0.294651 0.0497644i
\(371\) 4.39971 4.39971i 0.228422 0.228422i
\(372\) 0 0
\(373\) −7.40248 + 7.40248i −0.383286 + 0.383286i −0.872284 0.488999i \(-0.837362\pi\)
0.488999 + 0.872284i \(0.337362\pi\)
\(374\) −45.8197 −2.36928
\(375\) 0 0
\(376\) 7.69994i 0.397094i
\(377\) −16.2167 3.36338i −0.835201 0.173223i
\(378\) 0 0
\(379\) −17.2417 + 17.2417i −0.885646 + 0.885646i −0.994101 0.108456i \(-0.965409\pi\)
0.108456 + 0.994101i \(0.465409\pi\)
\(380\) −2.70752 3.80794i −0.138893 0.195343i
\(381\) 0 0
\(382\) 15.3851i 0.787169i
\(383\) 0.348683 0.0178169 0.00890844 0.999960i \(-0.497164\pi\)
0.00890844 + 0.999960i \(0.497164\pi\)
\(384\) 0 0
\(385\) 13.5946 + 19.1198i 0.692843 + 0.974434i
\(386\) 3.47402 0.176823
\(387\) 0 0
\(388\) 14.1647i 0.719105i
\(389\) −15.4386 −0.782768 −0.391384 0.920227i \(-0.628004\pi\)
−0.391384 + 0.920227i \(0.628004\pi\)
\(390\) 0 0
\(391\) 60.1469 3.04176
\(392\) 4.30354i 0.217362i
\(393\) 0 0
\(394\) 21.8842 1.10251
\(395\) 23.4156 + 3.95473i 1.17817 + 0.198984i
\(396\) 0 0
\(397\) 0.259593 0.0130286 0.00651429 0.999979i \(-0.497926\pi\)
0.00651429 + 0.999979i \(0.497926\pi\)
\(398\) 4.82071i 0.241640i
\(399\) 0 0
\(400\) −4.72266 1.64209i −0.236133 0.0821045i
\(401\) −15.5794 + 15.5794i −0.777999 + 0.777999i −0.979490 0.201491i \(-0.935421\pi\)
0.201491 + 0.979490i \(0.435421\pi\)
\(402\) 0 0
\(403\) −5.53528 + 3.63363i −0.275732 + 0.181004i
\(404\) 11.4416i 0.569242i
\(405\) 0 0
\(406\) 7.54279 0.374342
\(407\) −11.6135 + 11.6135i −0.575662 + 0.575662i
\(408\) 0 0
\(409\) −5.60645 + 5.60645i −0.277221 + 0.277221i −0.831999 0.554778i \(-0.812803\pi\)
0.554778 + 0.831999i \(0.312803\pi\)
\(410\) 11.7425 + 16.5151i 0.579923 + 0.815620i
\(411\) 0 0
\(412\) −10.0015 10.0015i −0.492738 0.492738i
\(413\) 2.91531 + 2.91531i 0.143453 + 0.143453i
\(414\) 0 0
\(415\) −3.41973 + 20.2479i −0.167868 + 0.993932i
\(416\) 3.53042 + 0.732218i 0.173093 + 0.0359000i
\(417\) 0 0
\(418\) −13.3506 −0.653000
\(419\) 0.132299i 0.00646324i −0.999995 0.00323162i \(-0.998971\pi\)
0.999995 0.00323162i \(-0.00102866\pi\)
\(420\) 0 0
\(421\) −28.6488 28.6488i −1.39626 1.39626i −0.810453 0.585804i \(-0.800779\pi\)
−0.585804 0.810453i \(-0.699221\pi\)
\(422\) 6.77515i 0.329809i
\(423\) 0 0
\(424\) 2.67934 + 2.67934i 0.130120 + 0.130120i
\(425\) 32.2753 15.6214i 1.56558 0.757750i
\(426\) 0 0
\(427\) −10.1747 −0.492386
\(428\) −5.93186 5.93186i −0.286727 0.286727i
\(429\) 0 0
\(430\) −1.86212 2.61894i −0.0897993 0.126296i
\(431\) 13.6409 + 13.6409i 0.657057 + 0.657057i 0.954683 0.297626i \(-0.0961947\pi\)
−0.297626 + 0.954683i \(0.596195\pi\)
\(432\) 0 0
\(433\) 9.01360 + 9.01360i 0.433166 + 0.433166i 0.889704 0.456538i \(-0.150911\pi\)
−0.456538 + 0.889704i \(0.650911\pi\)
\(434\) 2.13235 2.13235i 0.102356 0.102356i
\(435\) 0 0
\(436\) −3.40836 + 3.40836i −0.163231 + 0.163231i
\(437\) 17.5251 0.838341
\(438\) 0 0
\(439\) −5.55874 −0.265304 −0.132652 0.991163i \(-0.542349\pi\)
−0.132652 + 0.991163i \(0.542349\pi\)
\(440\) −11.6436 + 8.27882i −0.555086 + 0.394677i
\(441\) 0 0
\(442\) −21.6156 + 14.1895i −1.02815 + 0.674926i
\(443\) −5.91848 + 5.91848i −0.281195 + 0.281195i −0.833586 0.552390i \(-0.813716\pi\)
0.552390 + 0.833586i \(0.313716\pi\)
\(444\) 0 0
\(445\) −3.77846 + 2.68657i −0.179116 + 0.127355i
\(446\) 13.7744i 0.652237i
\(447\) 0 0
\(448\) −1.64209 −0.0775814
\(449\) 7.11677 + 7.11677i 0.335861 + 0.335861i 0.854807 0.518946i \(-0.173675\pi\)
−0.518946 + 0.854807i \(0.673675\pi\)
\(450\) 0 0
\(451\) 57.9017 2.72649
\(452\) 6.74568 6.74568i 0.317290 0.317290i
\(453\) 0 0
\(454\) 25.3628 1.19033
\(455\) 12.3343 + 4.80983i 0.578241 + 0.225488i
\(456\) 0 0
\(457\) 15.7988i 0.739036i −0.929224 0.369518i \(-0.879523\pi\)
0.929224 0.369518i \(-0.120477\pi\)
\(458\) −2.22305 + 2.22305i −0.103876 + 0.103876i
\(459\) 0 0
\(460\) 15.2843 10.8675i 0.712636 0.506699i
\(461\) 14.0129 + 14.0129i 0.652644 + 0.652644i 0.953629 0.300985i \(-0.0973154\pi\)
−0.300985 + 0.953629i \(0.597315\pi\)
\(462\) 0 0
\(463\) 5.90834i 0.274584i −0.990531 0.137292i \(-0.956160\pi\)
0.990531 0.137292i \(-0.0438398\pi\)
\(464\) 4.59341i 0.213244i
\(465\) 0 0
\(466\) −0.221543 + 0.221543i −0.0102628 + 0.0102628i
\(467\) 11.1464 11.1464i 0.515795 0.515795i −0.400501 0.916296i \(-0.631164\pi\)
0.916296 + 0.400501i \(0.131164\pi\)
\(468\) 0 0
\(469\) 14.3383i 0.662080i
\(470\) −16.9771 2.86732i −0.783097 0.132260i
\(471\) 0 0
\(472\) −1.77537 + 1.77537i −0.0817180 + 0.0817180i
\(473\) −9.18199 −0.422188
\(474\) 0 0
\(475\) 9.40413 4.55165i 0.431491 0.208844i
\(476\) 8.32694 8.32694i 0.381665 0.381665i
\(477\) 0 0
\(478\) 13.7444 + 13.7444i 0.628654 + 0.628654i
\(479\) 4.97107 + 4.97107i 0.227134 + 0.227134i 0.811494 0.584360i \(-0.198654\pi\)
−0.584360 + 0.811494i \(0.698654\pi\)
\(480\) 0 0
\(481\) −1.88222 + 9.07522i −0.0858220 + 0.413794i
\(482\) 19.7069 + 19.7069i 0.897624 + 0.897624i
\(483\) 0 0
\(484\) 29.8223i 1.35556i
\(485\) 31.2310 + 5.27469i 1.41813 + 0.239511i
\(486\) 0 0
\(487\) 25.1117i 1.13792i 0.822365 + 0.568961i \(0.192654\pi\)
−0.822365 + 0.568961i \(0.807346\pi\)
\(488\) 6.19616i 0.280487i
\(489\) 0 0
\(490\) 9.48864 + 1.60256i 0.428653 + 0.0723964i
\(491\) 42.0378i 1.89714i −0.316568 0.948570i \(-0.602530\pi\)
0.316568 0.948570i \(-0.397470\pi\)
\(492\) 0 0
\(493\) −23.2929 23.2929i −1.04906 1.04906i
\(494\) −6.29819 + 4.13443i −0.283369 + 0.186017i
\(495\) 0 0
\(496\) 1.29856 + 1.29856i 0.0583070 + 0.0583070i
\(497\) −2.30391 2.30391i −0.103345 0.103345i
\(498\) 0 0
\(499\) −10.5783 + 10.5783i −0.473548 + 0.473548i −0.903061 0.429513i \(-0.858685\pi\)
0.429513 + 0.903061i \(0.358685\pi\)
\(500\) 5.37918 9.80124i 0.240564 0.438325i
\(501\) 0 0
\(502\) −8.85078 −0.395030
\(503\) 19.1823 19.1823i 0.855296 0.855296i −0.135484 0.990780i \(-0.543259\pi\)
0.990780 + 0.135484i \(0.0432588\pi\)
\(504\) 0 0
\(505\) −25.2270 4.26066i −1.12259 0.189597i
\(506\) 53.5869i 2.38223i
\(507\) 0 0
\(508\) 0.459975 0.459975i 0.0204081 0.0204081i
\(509\) 9.29714 9.29714i 0.412089 0.412089i −0.470377 0.882466i \(-0.655882\pi\)
0.882466 + 0.470377i \(0.155882\pi\)
\(510\) 0 0
\(511\) 21.6958i 0.959764i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 11.6574 + 11.6574i 0.514187 + 0.514187i
\(515\) 25.7761 18.3273i 1.13583 0.807598i
\(516\) 0 0
\(517\) −34.7873 + 34.7873i −1.52994 + 1.52994i
\(518\) 4.22112i 0.185465i
\(519\) 0 0
\(520\) −2.92909 + 7.51135i −0.128449 + 0.329395i
\(521\) 13.7355 0.601764 0.300882 0.953661i \(-0.402719\pi\)
0.300882 + 0.953661i \(0.402719\pi\)
\(522\) 0 0
\(523\) −14.1158 + 14.1158i −0.617243 + 0.617243i −0.944823 0.327581i \(-0.893767\pi\)
0.327581 + 0.944823i \(0.393767\pi\)
\(524\) −14.2201 −0.621208
\(525\) 0 0
\(526\) 6.91081 + 6.91081i 0.301325 + 0.301325i
\(527\) −13.1698 −0.573687
\(528\) 0 0
\(529\) 47.3426i 2.05838i
\(530\) −6.90526 + 4.90978i −0.299945 + 0.213267i
\(531\) 0 0
\(532\) 2.42624 2.42624i 0.105191 0.105191i
\(533\) 27.3153 17.9311i 1.18316 0.776681i
\(534\) 0 0
\(535\) 15.2877 10.8699i 0.660947 0.469947i
\(536\) −8.73173 −0.377153
\(537\) 0 0
\(538\) −24.5283 −1.05749
\(539\) 19.4429 19.4429i 0.837463 0.837463i
\(540\) 0 0
\(541\) 30.0106 30.0106i 1.29026 1.29026i 0.355633 0.934626i \(-0.384265\pi\)
0.934626 0.355633i \(-0.115735\pi\)
\(542\) 12.8338 + 12.8338i 0.551258 + 0.551258i
\(543\) 0 0
\(544\) 5.07094 + 5.07094i 0.217415 + 0.217415i
\(545\) −6.24569 8.78412i −0.267536 0.376270i
\(546\) 0 0
\(547\) 14.6365 + 14.6365i 0.625810 + 0.625810i 0.947011 0.321201i \(-0.104086\pi\)
−0.321201 + 0.947011i \(0.604086\pi\)
\(548\) 15.8813 0.678416
\(549\) 0 0
\(550\) −13.9176 28.7551i −0.593450 1.22612i
\(551\) −6.78692 6.78692i −0.289132 0.289132i
\(552\) 0 0
\(553\) 17.4391i 0.741587i
\(554\) −8.90530 8.90530i −0.378350 0.378350i
\(555\) 0 0
\(556\) 18.1217i 0.768530i
\(557\) 9.43515 0.399780 0.199890 0.979818i \(-0.435942\pi\)
0.199890 + 0.979818i \(0.435942\pi\)
\(558\) 0 0
\(559\) −4.33163 + 2.84349i −0.183208 + 0.120267i
\(560\) 0.611485 3.62055i 0.0258400 0.152996i
\(561\) 0 0
\(562\) 17.4509 + 17.4509i 0.736124 + 0.736124i
\(563\) 9.87788 + 9.87788i 0.416303 + 0.416303i 0.883927 0.467624i \(-0.154890\pi\)
−0.467624 + 0.883927i \(0.654890\pi\)
\(564\) 0 0
\(565\) 12.3612 + 17.3851i 0.520039 + 0.731398i
\(566\) 8.76312 8.76312i 0.368341 0.368341i
\(567\) 0 0
\(568\) 1.40304 1.40304i 0.0588702 0.0588702i
\(569\) 28.9627 1.21418 0.607090 0.794633i \(-0.292337\pi\)
0.607090 + 0.794633i \(0.292337\pi\)
\(570\) 0 0
\(571\) 8.33577i 0.348841i 0.984671 + 0.174421i \(0.0558052\pi\)
−0.984671 + 0.174421i \(0.944195\pi\)
\(572\) 12.6419 + 19.2580i 0.528585 + 0.805220i
\(573\) 0 0
\(574\) −10.5226 + 10.5226i −0.439206 + 0.439206i
\(575\) 18.2695 + 37.7464i 0.761890 + 1.57413i
\(576\) 0 0
\(577\) 0.606180i 0.0252356i −0.999920 0.0126178i \(-0.995984\pi\)
0.999920 0.0126178i \(-0.00401648\pi\)
\(578\) −34.4289 −1.43205
\(579\) 0 0
\(580\) −10.1277 1.71050i −0.420532 0.0710248i
\(581\) −15.0799 −0.625622
\(582\) 0 0
\(583\) 24.2098i 1.00267i
\(584\) 13.2123 0.546729
\(585\) 0 0
\(586\) 27.2016 1.12369
\(587\) 34.4395i 1.42147i 0.703459 + 0.710736i \(0.251638\pi\)
−0.703459 + 0.710736i \(0.748362\pi\)
\(588\) 0 0
\(589\) −3.83733 −0.158114
\(590\) −3.25329 4.57552i −0.133936 0.188371i
\(591\) 0 0
\(592\) 2.57058 0.105650
\(593\) 4.20670i 0.172748i 0.996263 + 0.0863741i \(0.0275280\pi\)
−0.996263 + 0.0863741i \(0.972472\pi\)
\(594\) 0 0
\(595\) 15.2588 + 21.4604i 0.625549 + 0.879791i
\(596\) −5.86140 + 5.86140i −0.240092 + 0.240092i
\(597\) 0 0
\(598\) −16.5948 25.2797i −0.678614 1.03377i
\(599\) 44.3351i 1.81148i 0.423830 + 0.905742i \(0.360685\pi\)
−0.423830 + 0.905742i \(0.639315\pi\)
\(600\) 0 0
\(601\) −3.41676 −0.139372 −0.0696862 0.997569i \(-0.522200\pi\)
−0.0696862 + 0.997569i \(0.522200\pi\)
\(602\) 1.66867 1.66867i 0.0680098 0.0680098i
\(603\) 0 0
\(604\) −5.54961 + 5.54961i −0.225811 + 0.225811i
\(605\) −65.7536 11.1053i −2.67326 0.451495i
\(606\) 0 0
\(607\) −14.0954 14.0954i −0.572114 0.572114i 0.360605 0.932719i \(-0.382570\pi\)
−0.932719 + 0.360605i \(0.882570\pi\)
\(608\) 1.47753 + 1.47753i 0.0599219 + 0.0599219i
\(609\) 0 0
\(610\) 13.6616 + 2.30734i 0.553141 + 0.0934215i
\(611\) −5.63803 + 27.1840i −0.228090 + 1.09975i
\(612\) 0 0
\(613\) 0.220056 0.00888796 0.00444398 0.999990i \(-0.498585\pi\)
0.00444398 + 0.999990i \(0.498585\pi\)
\(614\) 19.5908i 0.790620i
\(615\) 0 0
\(616\) −7.41875 7.41875i −0.298910 0.298910i
\(617\) 39.6937i 1.59801i −0.601325 0.799004i \(-0.705360\pi\)
0.601325 0.799004i \(-0.294640\pi\)
\(618\) 0 0
\(619\) 14.5264 + 14.5264i 0.583866 + 0.583866i 0.935963 0.352097i \(-0.114531\pi\)
−0.352097 + 0.935963i \(0.614531\pi\)
\(620\) −3.34668 + 2.37956i −0.134406 + 0.0955653i
\(621\) 0 0
\(622\) −15.5581 −0.623822
\(623\) −2.40746 2.40746i −0.0964530 0.0964530i
\(624\) 0 0
\(625\) 19.6071 + 15.5101i 0.784283 + 0.620403i
\(626\) 10.3697 + 10.3697i 0.414455 + 0.414455i
\(627\) 0 0
\(628\) −3.23663 3.23663i −0.129156 0.129156i
\(629\) −13.0353 + 13.0353i −0.519750 + 0.519750i
\(630\) 0 0
\(631\) −5.41530 + 5.41530i −0.215580 + 0.215580i −0.806633 0.591053i \(-0.798712\pi\)
0.591053 + 0.806633i \(0.298712\pi\)
\(632\) −10.6201 −0.422445
\(633\) 0 0
\(634\) −7.90873 −0.314096
\(635\) 0.842886 + 1.18546i 0.0334489 + 0.0470435i
\(636\) 0 0
\(637\) 3.15113 15.1933i 0.124852 0.601981i
\(638\) −20.7524 + 20.7524i −0.821597 + 0.821597i
\(639\) 0 0
\(640\) 2.20484 + 0.372382i 0.0871541 + 0.0147197i
\(641\) 38.8895i 1.53604i 0.640424 + 0.768022i \(0.278759\pi\)
−0.640424 + 0.768022i \(0.721241\pi\)
\(642\) 0 0
\(643\) −25.8618 −1.01989 −0.509946 0.860207i \(-0.670335\pi\)
−0.509946 + 0.860207i \(0.670335\pi\)
\(644\) 9.73848 + 9.73848i 0.383750 + 0.383750i
\(645\) 0 0
\(646\) −14.9850 −0.589576
\(647\) 6.25436 6.25436i 0.245884 0.245884i −0.573395 0.819279i \(-0.694374\pi\)
0.819279 + 0.573395i \(0.194374\pi\)
\(648\) 0 0
\(649\) −16.0418 −0.629695
\(650\) −15.4706 9.25528i −0.606807 0.363022i
\(651\) 0 0
\(652\) 16.1076i 0.630822i
\(653\) 9.13834 9.13834i 0.357611 0.357611i −0.505321 0.862932i \(-0.668626\pi\)
0.862932 + 0.505321i \(0.168626\pi\)
\(654\) 0 0
\(655\) 5.29531 31.3531i 0.206905 1.22507i
\(656\) −6.40807 6.40807i −0.250193 0.250193i
\(657\) 0 0
\(658\) 12.6440i 0.492914i
\(659\) 6.44506i 0.251064i −0.992090 0.125532i \(-0.959936\pi\)
0.992090 0.125532i \(-0.0400638\pi\)
\(660\) 0 0
\(661\) −7.50088 + 7.50088i −0.291750 + 0.291750i −0.837771 0.546021i \(-0.816142\pi\)
0.546021 + 0.837771i \(0.316142\pi\)
\(662\) −23.7654 + 23.7654i −0.923668 + 0.923668i
\(663\) 0 0
\(664\) 9.18339i 0.356385i
\(665\) 4.44599 + 6.25297i 0.172408 + 0.242480i
\(666\) 0 0
\(667\) 27.2414 27.2414i 1.05479 1.05479i
\(668\) −10.3428 −0.400174
\(669\) 0 0
\(670\) 3.25154 19.2521i 0.125618 0.743773i
\(671\) 27.9935 27.9935i 1.08068 1.08068i
\(672\) 0 0
\(673\) 29.6887 + 29.6887i 1.14441 + 1.14441i 0.987634 + 0.156780i \(0.0501113\pi\)
0.156780 + 0.987634i \(0.449889\pi\)
\(674\) −6.87634 6.87634i −0.264867 0.264867i
\(675\) 0 0
\(676\) 11.9277 + 5.17007i 0.458758 + 0.198849i
\(677\) 4.17961 + 4.17961i 0.160636 + 0.160636i 0.782848 0.622213i \(-0.213766\pi\)
−0.622213 + 0.782848i \(0.713766\pi\)
\(678\) 0 0
\(679\) 23.2597i 0.892626i
\(680\) −13.0690 + 9.29230i −0.501172 + 0.356344i
\(681\) 0 0
\(682\) 11.7334i 0.449297i
\(683\) 16.7391i 0.640505i −0.947332 0.320252i \(-0.896232\pi\)
0.947332 0.320252i \(-0.103768\pi\)
\(684\) 0 0
\(685\) −5.91392 + 35.0158i −0.225959 + 1.33788i
\(686\) 18.5614i 0.708678i
\(687\) 0 0
\(688\) 1.01618 + 1.01618i 0.0387417 + 0.0387417i
\(689\) 7.49733 + 11.4211i 0.285626 + 0.435107i
\(690\) 0 0
\(691\) 22.3775 + 22.3775i 0.851282 + 0.851282i 0.990291 0.139009i \(-0.0443917\pi\)
−0.139009 + 0.990291i \(0.544392\pi\)
\(692\) 0.533953 + 0.533953i 0.0202978 + 0.0202978i
\(693\) 0 0
\(694\) 12.9364 12.9364i 0.491059 0.491059i
\(695\) −39.9554 6.74819i −1.51560 0.255974i
\(696\) 0 0
\(697\) 64.9900 2.46167
\(698\) −0.121963 + 0.121963i −0.00461636 + 0.00461636i
\(699\) 0 0
\(700\) 7.75503 + 2.69646i 0.293113 + 0.101916i
\(701\) 11.8772i 0.448597i 0.974520 + 0.224298i \(0.0720091\pi\)
−0.974520 + 0.224298i \(0.927991\pi\)
\(702\) 0 0
\(703\) −3.79811 + 3.79811i −0.143249 + 0.143249i
\(704\) 4.51787 4.51787i 0.170274 0.170274i
\(705\) 0 0
\(706\) 18.7416i 0.705349i
\(707\) 18.7882i 0.706601i
\(708\) 0 0
\(709\) −33.4113 33.4113i −1.25479 1.25479i −0.953548 0.301241i \(-0.902599\pi\)
−0.301241 0.953548i \(-0.597401\pi\)
\(710\) 2.57101 + 3.61595i 0.0964884 + 0.135704i
\(711\) 0 0
\(712\) 1.46610 1.46610i 0.0549443 0.0549443i
\(713\) 15.4023i 0.576821i
\(714\) 0 0
\(715\) −47.1686 + 20.7021i −1.76401 + 0.774214i
\(716\) −10.8352 −0.404932
\(717\) 0 0
\(718\) −6.51327 + 6.51327i −0.243073 + 0.243073i
\(719\) 8.08666 0.301582 0.150791 0.988566i \(-0.451818\pi\)
0.150791 + 0.988566i \(0.451818\pi\)
\(720\) 0 0
\(721\) 16.4233 + 16.4233i 0.611637 + 0.611637i
\(722\) 14.6338 0.544613
\(723\) 0 0
\(724\) 4.52263i 0.168082i
\(725\) 7.54279 21.6931i 0.280132 0.805662i
\(726\) 0 0
\(727\) −2.52063 + 2.52063i −0.0934851 + 0.0934851i −0.752303 0.658818i \(-0.771057\pi\)
0.658818 + 0.752303i \(0.271057\pi\)
\(728\) −5.79726 1.20237i −0.214861 0.0445627i
\(729\) 0 0
\(730\) −4.92003 + 29.1310i −0.182098 + 1.07819i
\(731\) −10.3060 −0.381182
\(732\) 0 0
\(733\) −2.66812 −0.0985493 −0.0492747 0.998785i \(-0.515691\pi\)
−0.0492747 + 0.998785i \(0.515691\pi\)
\(734\) 7.79589 7.79589i 0.287752 0.287752i
\(735\) 0 0
\(736\) −5.93054 + 5.93054i −0.218603 + 0.218603i
\(737\) −39.4488 39.4488i −1.45312 1.45312i
\(738\) 0 0
\(739\) −16.4289 16.4289i −0.604346 0.604346i 0.337117 0.941463i \(-0.390548\pi\)
−0.941463 + 0.337117i \(0.890548\pi\)
\(740\) −0.957238 + 5.66772i −0.0351888 + 0.208350i
\(741\) 0 0
\(742\) −4.39971 4.39971i −0.161519 0.161519i
\(743\) 32.1163 1.17823 0.589116 0.808049i \(-0.299476\pi\)
0.589116 + 0.808049i \(0.299476\pi\)
\(744\) 0 0
\(745\) −10.7408 15.1062i −0.393512 0.553447i
\(746\) 7.40248 + 7.40248i 0.271024 + 0.271024i
\(747\) 0 0
\(748\) 45.8197i 1.67534i
\(749\) 9.74065 + 9.74065i 0.355916 + 0.355916i
\(750\) 0 0
\(751\) 2.39261i 0.0873074i 0.999047 + 0.0436537i \(0.0138998\pi\)
−0.999047 + 0.0436537i \(0.986100\pi\)
\(752\) 7.69994 0.280788
\(753\) 0 0
\(754\) −3.36338 + 16.2167i −0.122487 + 0.590576i
\(755\) −10.1694 14.3026i −0.370104 0.520525i
\(756\) 0 0
\(757\) 15.9202 + 15.9202i 0.578631 + 0.578631i 0.934526 0.355895i \(-0.115824\pi\)
−0.355895 + 0.934526i \(0.615824\pi\)
\(758\) 17.2417 + 17.2417i 0.626246 + 0.626246i
\(759\) 0 0
\(760\) −3.80794 + 2.70752i −0.138128 + 0.0982121i
\(761\) 0.132679 0.132679i 0.00480963 0.00480963i −0.704698 0.709508i \(-0.748917\pi\)
0.709508 + 0.704698i \(0.248917\pi\)
\(762\) 0 0
\(763\) 5.59684 5.59684i 0.202619 0.202619i
\(764\) −15.3851 −0.556613
\(765\) 0 0
\(766\) 0.348683i 0.0125984i
\(767\) −7.56775 + 4.96784i −0.273256 + 0.179378i
\(768\) 0 0
\(769\) 30.0647 30.0647i 1.08416 1.08416i 0.0880443 0.996117i \(-0.471938\pi\)
0.996117 0.0880443i \(-0.0280617\pi\)
\(770\) 19.1198 13.5946i 0.689029 0.489914i
\(771\) 0 0
\(772\) 3.47402i 0.125033i
\(773\) −36.4700 −1.31173 −0.655867 0.754876i \(-0.727697\pi\)
−0.655867 + 0.754876i \(0.727697\pi\)
\(774\) 0 0
\(775\) −4.00030 8.26500i −0.143695 0.296888i
\(776\) −14.1647 −0.508484
\(777\) 0 0
\(778\) 15.4386i 0.553501i
\(779\) 18.9363 0.678463
\(780\) 0 0
\(781\) 12.6775 0.453637
\(782\) 60.1469i 2.15085i
\(783\) 0 0
\(784\) −4.30354 −0.153698
\(785\) 8.34154 5.93100i 0.297722 0.211687i
\(786\) 0 0
\(787\) 11.9854 0.427232 0.213616 0.976918i \(-0.431476\pi\)
0.213616 + 0.976918i \(0.431476\pi\)
\(788\) 21.8842i 0.779591i
\(789\) 0 0
\(790\) 3.95473 23.4156i 0.140703 0.833091i
\(791\) −11.0770 + 11.0770i −0.393853 + 0.393853i
\(792\) 0 0
\(793\) 4.53694 21.8750i 0.161112 0.776806i
\(794\) 0.259593i 0.00921260i
\(795\) 0 0
\(796\) −4.82071 −0.170866
\(797\) −5.03123 + 5.03123i −0.178215 + 0.178215i −0.790577 0.612362i \(-0.790220\pi\)
0.612362 + 0.790577i \(0.290220\pi\)
\(798\) 0 0
\(799\) −39.0459 + 39.0459i −1.38135 + 1.38135i
\(800\) −1.64209 + 4.72266i −0.0580566 + 0.166971i
\(801\) 0 0
\(802\) 15.5794 + 15.5794i 0.550128 + 0.550128i
\(803\) 59.6915 + 59.6915i 2.10647 + 2.10647i
\(804\) 0 0
\(805\) −25.0982 + 17.8454i −0.884597 + 0.628967i
\(806\) 3.63363 + 5.53528i 0.127989 + 0.194972i
\(807\) 0 0
\(808\) 11.4416 0.402515
\(809\) 32.9783i 1.15945i 0.814811 + 0.579727i \(0.196841\pi\)
−0.814811 + 0.579727i \(0.803159\pi\)
\(810\) 0 0
\(811\) −16.7487 16.7487i −0.588126 0.588126i 0.348998 0.937123i \(-0.386522\pi\)
−0.937123 + 0.348998i \(0.886522\pi\)
\(812\) 7.54279i 0.264700i
\(813\) 0 0
\(814\) 11.6135 + 11.6135i 0.407055 + 0.407055i
\(815\) −35.5147 5.99819i −1.24403 0.210107i
\(816\) 0 0
\(817\) −3.00289 −0.105058
\(818\) 5.60645 + 5.60645i 0.196025 + 0.196025i
\(819\) 0 0
\(820\) 16.5151 11.7425i 0.576731 0.410067i
\(821\) 11.5961 + 11.5961i 0.404708 + 0.404708i 0.879888 0.475180i \(-0.157617\pi\)
−0.475180 + 0.879888i \(0.657617\pi\)
\(822\) 0 0
\(823\) −26.8196 26.8196i −0.934873 0.934873i 0.0631321 0.998005i \(-0.479891\pi\)
−0.998005 + 0.0631321i \(0.979891\pi\)
\(824\) −10.0015 + 10.0015i −0.348418 + 0.348418i
\(825\) 0 0
\(826\) 2.91531 2.91531i 0.101437 0.101437i
\(827\) 30.2380 1.05148 0.525738 0.850646i \(-0.323789\pi\)
0.525738 + 0.850646i \(0.323789\pi\)
\(828\) 0 0
\(829\) −49.1999 −1.70878 −0.854392 0.519630i \(-0.826070\pi\)
−0.854392 + 0.519630i \(0.826070\pi\)
\(830\) 20.2479 + 3.41973i 0.702816 + 0.118701i
\(831\) 0 0
\(832\) 0.732218 3.53042i 0.0253851 0.122395i
\(833\) 21.8230 21.8230i 0.756123 0.756123i
\(834\) 0 0
\(835\) 3.85147 22.8042i 0.133286 0.789172i
\(836\) 13.3506i 0.461741i
\(837\) 0 0
\(838\) −0.132299 −0.00457020
\(839\) −21.4254 21.4254i −0.739686 0.739686i 0.232831 0.972517i \(-0.425201\pi\)
−0.972517 + 0.232831i \(0.925201\pi\)
\(840\) 0 0
\(841\) 7.90058 0.272434
\(842\) −28.6488 + 28.6488i −0.987303 + 0.987303i
\(843\) 0 0
\(844\) 6.77515 0.233210
\(845\) −15.8409 + 24.3735i −0.544942 + 0.838473i
\(846\) 0 0
\(847\) 48.9709i 1.68266i
\(848\) 2.67934 2.67934i 0.0920089 0.0920089i
\(849\) 0 0
\(850\) −15.6214 32.2753i −0.535810 1.10703i
\(851\) −15.2449 15.2449i −0.522589 0.522589i
\(852\) 0 0
\(853\) 5.78152i 0.197955i 0.995090 + 0.0989777i \(0.0315573\pi\)
−0.995090 + 0.0989777i \(0.968443\pi\)
\(854\) 10.1747i 0.348169i
\(855\) 0 0
\(856\) −5.93186 + 5.93186i −0.202747 + 0.202747i
\(857\) −5.18577 + 5.18577i −0.177142 + 0.177142i −0.790109 0.612966i \(-0.789976\pi\)
0.612966 + 0.790109i \(0.289976\pi\)
\(858\) 0 0
\(859\) 21.6315i 0.738057i −0.929418 0.369029i \(-0.879690\pi\)
0.929418 0.369029i \(-0.120310\pi\)
\(860\) −2.61894 + 1.86212i −0.0893050 + 0.0634977i
\(861\) 0 0
\(862\) 13.6409 13.6409i 0.464610 0.464610i
\(863\) −34.7156 −1.18173 −0.590866 0.806770i \(-0.701214\pi\)
−0.590866 + 0.806770i \(0.701214\pi\)
\(864\) 0 0
\(865\) −1.37612 + 0.978447i −0.0467894 + 0.0332682i
\(866\) 9.01360 9.01360i 0.306295 0.306295i
\(867\) 0 0
\(868\) −2.13235 2.13235i −0.0723766 0.0723766i
\(869\) −47.9802 47.9802i −1.62762 1.62762i
\(870\) 0 0
\(871\) −30.8266 6.39353i −1.04452 0.216636i
\(872\) 3.40836 + 3.40836i 0.115422 + 0.115422i
\(873\) 0 0
\(874\) 17.5251i 0.592797i
\(875\) −8.83310 + 16.0945i −0.298613 + 0.544094i
\(876\) 0 0
\(877\) 29.4836i 0.995590i −0.867295 0.497795i \(-0.834143\pi\)
0.867295 0.497795i \(-0.165857\pi\)
\(878\) 5.55874i 0.187598i
\(879\) 0 0
\(880\) 8.27882 + 11.6436i 0.279079 + 0.392505i
\(881\) 9.72771i 0.327735i −0.986482 0.163867i \(-0.947603\pi\)
0.986482 0.163867i \(-0.0523969\pi\)
\(882\) 0 0
\(883\) 2.79370 + 2.79370i 0.0940155 + 0.0940155i 0.752550 0.658535i \(-0.228823\pi\)
−0.658535 + 0.752550i \(0.728823\pi\)
\(884\) 14.1895 + 21.6156i 0.477245 + 0.727011i
\(885\) 0 0
\(886\) 5.91848 + 5.91848i 0.198835 + 0.198835i
\(887\) 6.99439 + 6.99439i 0.234849 + 0.234849i 0.814713 0.579864i \(-0.196894\pi\)
−0.579864 + 0.814713i \(0.696894\pi\)
\(888\) 0 0
\(889\) −0.755320 + 0.755320i −0.0253326 + 0.0253326i
\(890\) 2.68657 + 3.77846i 0.0900539 + 0.126654i
\(891\) 0 0
\(892\) 13.7744 0.461201
\(893\) −11.3769 + 11.3769i −0.380714 + 0.380714i
\(894\) 0 0
\(895\) 4.03485 23.8900i 0.134870 0.798554i
\(896\) 1.64209i 0.0548583i
\(897\) 0 0
\(898\) 7.11677 7.11677i 0.237490 0.237490i
\(899\) −5.96481 + 5.96481i −0.198938 + 0.198938i
\(900\) 0 0
\(901\) 27.1736i 0.905283i
\(902\) 57.9017i 1.92792i
\(903\) 0 0
\(904\) −6.74568 6.74568i −0.224358 0.224358i
\(905\) −9.97169 1.68415i −0.331470 0.0559829i
\(906\) 0 0
\(907\) −31.9825 + 31.9825i −1.06196 + 1.06196i −0.0640135 + 0.997949i \(0.520390\pi\)
−0.997949 + 0.0640135i \(0.979610\pi\)
\(908\) 25.3628i 0.841693i
\(909\) 0 0
\(910\) 4.80983 12.3343i 0.159444 0.408878i
\(911\) 20.6804 0.685173 0.342587 0.939486i \(-0.388697\pi\)
0.342587 + 0.939486i \(0.388697\pi\)
\(912\) 0 0
\(913\) 41.4894 41.4894i 1.37310 1.37310i
\(914\) −15.7988 −0.522577
\(915\) 0 0
\(916\) 2.22305 + 2.22305i 0.0734517 + 0.0734517i
\(917\) 23.3507 0.771107
\(918\) 0 0
\(919\) 2.17907i 0.0718809i 0.999354 + 0.0359405i \(0.0114427\pi\)
−0.999354 + 0.0359405i \(0.988557\pi\)
\(920\) −10.8675 15.2843i −0.358290 0.503910i
\(921\) 0 0
\(922\) 14.0129 14.0129i 0.461489 0.461489i
\(923\) 5.98064 3.92598i 0.196855 0.129225i
\(924\) 0 0
\(925\) −12.1400 4.22112i −0.399160 0.138790i
\(926\) −5.90834 −0.194160
\(927\) 0 0
\(928\) 4.59341 0.150786
\(929\) −27.3886 + 27.3886i −0.898591 + 0.898591i −0.995312 0.0967204i \(-0.969165\pi\)
0.0967204 + 0.995312i \(0.469165\pi\)
\(930\) 0 0
\(931\) 6.35863 6.35863i 0.208396 0.208396i
\(932\) 0.221543 + 0.221543i 0.00725690 + 0.00725690i
\(933\) 0 0
\(934\) −11.1464 11.1464i −0.364722 0.364722i
\(935\) −101.025 17.0625i −3.30388 0.558002i
\(936\) 0 0
\(937\) 13.3258 + 13.3258i 0.435334 + 0.435334i 0.890438 0.455104i \(-0.150398\pi\)
−0.455104 + 0.890438i \(0.650398\pi\)
\(938\) 14.3383 0.468161
\(939\) 0 0
\(940\) −2.86732 + 16.9771i −0.0935217 + 0.553733i
\(941\) 34.6341 + 34.6341i 1.12904 + 1.12904i 0.990334 + 0.138705i \(0.0442941\pi\)
0.138705 + 0.990334i \(0.455706\pi\)
\(942\) 0 0
\(943\) 76.0067i 2.47512i
\(944\) 1.77537 + 1.77537i 0.0577833 + 0.0577833i
\(945\) 0 0
\(946\) 9.18199i 0.298532i
\(947\) 45.2197 1.46944 0.734721 0.678369i \(-0.237313\pi\)
0.734721 + 0.678369i \(0.237313\pi\)
\(948\) 0 0
\(949\) 46.6449 + 9.67428i 1.51416 + 0.314041i
\(950\) −4.55165 9.40413i −0.147675 0.305110i
\(951\) 0 0
\(952\) −8.32694 8.32694i −0.269878 0.269878i
\(953\) −11.7413 11.7413i −0.380337 0.380337i 0.490887 0.871223i \(-0.336673\pi\)
−0.871223 + 0.490887i \(0.836673\pi\)
\(954\) 0 0
\(955\) 5.72913 33.9217i 0.185390 1.09768i
\(956\) 13.7444 13.7444i 0.444525 0.444525i
\(957\) 0 0
\(958\) 4.97107 4.97107i 0.160608 0.160608i
\(959\) −26.0785 −0.842119
\(960\) 0 0
\(961\) 27.6275i 0.891209i
\(962\) 9.07522 + 1.88222i 0.292597 + 0.0606853i
\(963\) 0 0
\(964\) 19.7069 19.7069i 0.634716 0.634716i
\(965\) 7.65968 + 1.29367i 0.246574 + 0.0416446i
\(966\) 0 0
\(967\) 6.32736i 0.203474i 0.994811 + 0.101737i \(0.0324401\pi\)
−0.994811 + 0.101737i \(0.967560\pi\)
\(968\) 29.8223 0.958526
\(969\) 0 0
\(970\) 5.27469 31.2310i 0.169360 1.00277i
\(971\) −9.00413 −0.288956 −0.144478 0.989508i \(-0.546150\pi\)
−0.144478 + 0.989508i \(0.546150\pi\)
\(972\) 0 0
\(973\) 29.7574i 0.953979i
\(974\) 25.1117 0.804632
\(975\) 0 0
\(976\) −6.19616 −0.198334
\(977\) 13.3948i 0.428538i 0.976775 + 0.214269i \(0.0687369\pi\)
−0.976775 + 0.214269i \(0.931263\pi\)
\(978\) 0 0
\(979\) 13.2473 0.423385
\(980\) 1.60256 9.48864i 0.0511920 0.303103i
\(981\) 0 0
\(982\) −42.0378 −1.34148
\(983\) 39.9743i 1.27498i 0.770458 + 0.637491i \(0.220028\pi\)
−0.770458 + 0.637491i \(0.779972\pi\)
\(984\) 0 0
\(985\) 48.2511 + 8.14928i 1.53741 + 0.259658i
\(986\) −23.2929 + 23.2929i −0.741798 + 0.741798i
\(987\) 0 0
\(988\) 4.13443 + 6.29819i 0.131534 + 0.200372i
\(989\) 12.0531i 0.383265i
\(990\) 0 0
\(991\) 30.1024 0.956235 0.478118 0.878296i \(-0.341319\pi\)
0.478118 + 0.878296i \(0.341319\pi\)
\(992\) 1.29856 1.29856i 0.0412293 0.0412293i
\(993\) 0 0
\(994\) −2.30391 + 2.30391i −0.0730757 + 0.0730757i
\(995\) 1.79515 10.6289i 0.0569100 0.336959i
\(996\) 0 0
\(997\) −35.4246 35.4246i −1.12191 1.12191i −0.991455 0.130452i \(-0.958357\pi\)
−0.130452 0.991455i \(-0.541643\pi\)
\(998\) 10.5783 + 10.5783i 0.334849 + 0.334849i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.w.h.307.5 yes 14
3.2 odd 2 1170.2.w.g.307.3 yes 14
5.3 odd 4 1170.2.m.g.73.2 14
13.5 odd 4 1170.2.m.g.577.2 yes 14
15.8 even 4 1170.2.m.h.73.6 yes 14
39.5 even 4 1170.2.m.h.577.6 yes 14
65.18 even 4 inner 1170.2.w.h.343.5 yes 14
195.83 odd 4 1170.2.w.g.343.3 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.m.g.73.2 14 5.3 odd 4
1170.2.m.g.577.2 yes 14 13.5 odd 4
1170.2.m.h.73.6 yes 14 15.8 even 4
1170.2.m.h.577.6 yes 14 39.5 even 4
1170.2.w.g.307.3 yes 14 3.2 odd 2
1170.2.w.g.343.3 yes 14 195.83 odd 4
1170.2.w.h.307.5 yes 14 1.1 even 1 trivial
1170.2.w.h.343.5 yes 14 65.18 even 4 inner