L(s) = 1 | − i·2-s − 4-s + (0.372 − 2.20i)5-s + 1.64·7-s + i·8-s + (−2.20 − 0.372i)10-s + (−4.51 + 4.51i)11-s + (−0.732 + 3.53i)13-s − 1.64i·14-s + 16-s + (−5.07 + 5.07i)17-s + (−1.47 + 1.47i)19-s + (−0.372 + 2.20i)20-s + (4.51 + 4.51i)22-s + (−5.93 − 5.93i)23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + (0.166 − 0.986i)5-s + 0.620·7-s + 0.353i·8-s + (−0.697 − 0.117i)10-s + (−1.36 + 1.36i)11-s + (−0.203 + 0.979i)13-s − 0.438i·14-s + 0.250·16-s + (−1.22 + 1.22i)17-s + (−0.338 + 0.338i)19-s + (−0.0832 + 0.493i)20-s + (0.963 + 0.963i)22-s + (−1.23 − 1.23i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.112 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.112 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4951021909\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4951021909\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.372 + 2.20i)T \) |
| 13 | \( 1 + (0.732 - 3.53i)T \) |
good | 7 | \( 1 - 1.64T + 7T^{2} \) |
| 11 | \( 1 + (4.51 - 4.51i)T - 11iT^{2} \) |
| 17 | \( 1 + (5.07 - 5.07i)T - 17iT^{2} \) |
| 19 | \( 1 + (1.47 - 1.47i)T - 19iT^{2} \) |
| 23 | \( 1 + (5.93 + 5.93i)T + 23iT^{2} \) |
| 29 | \( 1 - 4.59iT - 29T^{2} \) |
| 31 | \( 1 + (-1.29 - 1.29i)T + 31iT^{2} \) |
| 37 | \( 1 - 2.57T + 37T^{2} \) |
| 41 | \( 1 + (6.40 + 6.40i)T + 41iT^{2} \) |
| 43 | \( 1 + (-1.01 - 1.01i)T + 43iT^{2} \) |
| 47 | \( 1 - 7.69T + 47T^{2} \) |
| 53 | \( 1 + (-2.67 + 2.67i)T - 53iT^{2} \) |
| 59 | \( 1 + (-1.77 - 1.77i)T + 59iT^{2} \) |
| 61 | \( 1 + 6.19T + 61T^{2} \) |
| 67 | \( 1 - 8.73iT - 67T^{2} \) |
| 71 | \( 1 + (1.40 + 1.40i)T + 71iT^{2} \) |
| 73 | \( 1 + 13.2iT - 73T^{2} \) |
| 79 | \( 1 - 10.6iT - 79T^{2} \) |
| 83 | \( 1 + 9.18T + 83T^{2} \) |
| 89 | \( 1 + (1.46 + 1.46i)T + 89iT^{2} \) |
| 97 | \( 1 - 14.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23441343525214378444137384098, −9.114791685931928705862490779502, −8.488484311003167720341914357403, −7.79560402688645039770702402663, −6.62016663859238383007085163100, −5.43862418717581217516423584975, −4.53154257078017983037164423757, −4.20017184759967014305421015208, −2.24591775955587912507491757549, −1.79739765409175471259981412392,
0.19708065077722579757634680555, 2.40314454917811175667800291467, 3.25188517334847006643293591940, 4.59177813249450237104386938095, 5.57139998680858106405338252395, 6.11077574379331773066727890468, 7.24669748590740376192738095617, 7.86397141156953993749172725976, 8.474508530364979352139014676075, 9.621816236870240074722421294982