Properties

Label 1170.2.q.c.629.2
Level $1170$
Weight $2$
Character 1170.629
Analytic conductor $9.342$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(359,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.359"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.q (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 629.2
Character \(\chi\) \(=\) 1170.629
Dual form 1170.2.q.c.359.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-2.23186 - 0.137134i) q^{5} +(-3.64075 + 3.64075i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.67513 - 1.48119i) q^{10} +(0.550376 - 0.550376i) q^{11} +(-2.57644 + 2.52229i) q^{13} -5.14880i q^{14} -1.00000 q^{16} -3.92461i q^{17} +(-0.0343813 + 0.0343813i) q^{19} +(-0.137134 + 2.23186i) q^{20} +0.778350i q^{22} -5.25738i q^{23} +(4.96239 + 0.612127i) q^{25} +(0.0382937 - 3.60535i) q^{26} +(3.64075 + 3.64075i) q^{28} +2.61043i q^{29} +(-1.75191 + 1.75191i) q^{31} +(0.707107 - 0.707107i) q^{32} +(2.77512 + 2.77512i) q^{34} +(8.62491 - 7.62637i) q^{35} +(-3.40442 + 3.40442i) q^{37} -0.0486226i q^{38} +(-1.48119 - 1.67513i) q^{40} +(2.00378 + 2.00378i) q^{41} +8.65410 q^{43} +(-0.550376 - 0.550376i) q^{44} +(3.71753 + 3.71753i) q^{46} +(-3.70662 - 3.70662i) q^{47} -19.5101i q^{49} +(-3.94178 + 3.07610i) q^{50} +(2.52229 + 2.57644i) q^{52} +7.17150 q^{53} +(-1.30384 + 1.15289i) q^{55} -5.14880 q^{56} +(-1.84586 - 1.84586i) q^{58} +(6.80629 - 6.80629i) q^{59} +10.8249 q^{61} -2.47757i q^{62} +1.00000i q^{64} +(6.09615 - 5.27607i) q^{65} +(-9.45160 - 9.45160i) q^{67} -3.92461 q^{68} +(-0.706074 + 11.4914i) q^{70} +(-7.43355 - 7.43355i) q^{71} +(6.06238 - 6.06238i) q^{73} -4.81457i q^{74} +(0.0343813 + 0.0343813i) q^{76} +4.00757i q^{77} -1.13946 q^{79} +(2.23186 + 0.137134i) q^{80} -2.83378 q^{82} +(6.10358 - 6.10358i) q^{83} +(-0.538197 + 8.75918i) q^{85} +(-6.11937 + 6.11937i) q^{86} +0.778350 q^{88} +(-5.69461 + 5.69461i) q^{89} +(0.197167 - 18.5632i) q^{91} -5.25738 q^{92} +5.24195 q^{94} +(0.0814492 - 0.0720195i) q^{95} +(-0.250273 - 0.250273i) q^{97} +(13.7957 + 13.7957i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 20 q^{13} - 24 q^{16} - 48 q^{19} + 32 q^{25} - 8 q^{31} + 16 q^{34} - 32 q^{37} + 8 q^{40} + 80 q^{43} + 8 q^{46} - 12 q^{52} + 16 q^{55} - 24 q^{58} - 16 q^{61} - 8 q^{67} - 24 q^{70} + 48 q^{73}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −2.23186 0.137134i −0.998118 0.0613281i
\(6\) 0 0
\(7\) −3.64075 + 3.64075i −1.37607 + 1.37607i −0.524926 + 0.851148i \(0.675907\pi\)
−0.851148 + 0.524926i \(0.824093\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.67513 1.48119i 0.529723 0.468395i
\(11\) 0.550376 0.550376i 0.165945 0.165945i −0.619250 0.785194i \(-0.712563\pi\)
0.785194 + 0.619250i \(0.212563\pi\)
\(12\) 0 0
\(13\) −2.57644 + 2.52229i −0.714577 + 0.699557i
\(14\) 5.14880i 1.37607i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 3.92461i 0.951858i −0.879484 0.475929i \(-0.842112\pi\)
0.879484 0.475929i \(-0.157888\pi\)
\(18\) 0 0
\(19\) −0.0343813 + 0.0343813i −0.00788762 + 0.00788762i −0.711040 0.703152i \(-0.751775\pi\)
0.703152 + 0.711040i \(0.251775\pi\)
\(20\) −0.137134 + 2.23186i −0.0306641 + 0.499059i
\(21\) 0 0
\(22\) 0.778350i 0.165945i
\(23\) 5.25738i 1.09624i −0.836400 0.548119i \(-0.815344\pi\)
0.836400 0.548119i \(-0.184656\pi\)
\(24\) 0 0
\(25\) 4.96239 + 0.612127i 0.992478 + 0.122425i
\(26\) 0.0382937 3.60535i 0.00751002 0.707067i
\(27\) 0 0
\(28\) 3.64075 + 3.64075i 0.688037 + 0.688037i
\(29\) 2.61043i 0.484745i 0.970183 + 0.242373i \(0.0779257\pi\)
−0.970183 + 0.242373i \(0.922074\pi\)
\(30\) 0 0
\(31\) −1.75191 + 1.75191i −0.314652 + 0.314652i −0.846709 0.532057i \(-0.821419\pi\)
0.532057 + 0.846709i \(0.321419\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 2.77512 + 2.77512i 0.475929 + 0.475929i
\(35\) 8.62491 7.62637i 1.45788 1.28909i
\(36\) 0 0
\(37\) −3.40442 + 3.40442i −0.559683 + 0.559683i −0.929217 0.369534i \(-0.879517\pi\)
0.369534 + 0.929217i \(0.379517\pi\)
\(38\) 0.0486226i 0.00788762i
\(39\) 0 0
\(40\) −1.48119 1.67513i −0.234197 0.264861i
\(41\) 2.00378 + 2.00378i 0.312938 + 0.312938i 0.846047 0.533109i \(-0.178976\pi\)
−0.533109 + 0.846047i \(0.678976\pi\)
\(42\) 0 0
\(43\) 8.65410 1.31974 0.659869 0.751381i \(-0.270612\pi\)
0.659869 + 0.751381i \(0.270612\pi\)
\(44\) −0.550376 0.550376i −0.0829724 0.0829724i
\(45\) 0 0
\(46\) 3.71753 + 3.71753i 0.548119 + 0.548119i
\(47\) −3.70662 3.70662i −0.540666 0.540666i 0.383058 0.923724i \(-0.374871\pi\)
−0.923724 + 0.383058i \(0.874871\pi\)
\(48\) 0 0
\(49\) 19.5101i 2.78716i
\(50\) −3.94178 + 3.07610i −0.557452 + 0.435026i
\(51\) 0 0
\(52\) 2.52229 + 2.57644i 0.349778 + 0.357288i
\(53\) 7.17150 0.985082 0.492541 0.870289i \(-0.336068\pi\)
0.492541 + 0.870289i \(0.336068\pi\)
\(54\) 0 0
\(55\) −1.30384 + 1.15289i −0.175809 + 0.155455i
\(56\) −5.14880 −0.688037
\(57\) 0 0
\(58\) −1.84586 1.84586i −0.242373 0.242373i
\(59\) 6.80629 6.80629i 0.886104 0.886104i −0.108042 0.994146i \(-0.534458\pi\)
0.994146 + 0.108042i \(0.0344582\pi\)
\(60\) 0 0
\(61\) 10.8249 1.38598 0.692991 0.720946i \(-0.256293\pi\)
0.692991 + 0.720946i \(0.256293\pi\)
\(62\) 2.47757i 0.314652i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 6.09615 5.27607i 0.756134 0.654416i
\(66\) 0 0
\(67\) −9.45160 9.45160i −1.15470 1.15470i −0.985599 0.169097i \(-0.945915\pi\)
−0.169097 0.985599i \(-0.554085\pi\)
\(68\) −3.92461 −0.475929
\(69\) 0 0
\(70\) −0.706074 + 11.4914i −0.0843920 + 1.37348i
\(71\) −7.43355 7.43355i −0.882200 0.882200i 0.111558 0.993758i \(-0.464416\pi\)
−0.993758 + 0.111558i \(0.964416\pi\)
\(72\) 0 0
\(73\) 6.06238 6.06238i 0.709548 0.709548i −0.256892 0.966440i \(-0.582699\pi\)
0.966440 + 0.256892i \(0.0826986\pi\)
\(74\) 4.81457i 0.559683i
\(75\) 0 0
\(76\) 0.0343813 + 0.0343813i 0.00394381 + 0.00394381i
\(77\) 4.00757i 0.456705i
\(78\) 0 0
\(79\) −1.13946 −0.128200 −0.0640998 0.997943i \(-0.520418\pi\)
−0.0640998 + 0.997943i \(0.520418\pi\)
\(80\) 2.23186 + 0.137134i 0.249529 + 0.0153320i
\(81\) 0 0
\(82\) −2.83378 −0.312938
\(83\) 6.10358 6.10358i 0.669955 0.669955i −0.287751 0.957705i \(-0.592907\pi\)
0.957705 + 0.287751i \(0.0929075\pi\)
\(84\) 0 0
\(85\) −0.538197 + 8.75918i −0.0583757 + 0.950067i
\(86\) −6.11937 + 6.11937i −0.659869 + 0.659869i
\(87\) 0 0
\(88\) 0.778350 0.0829724
\(89\) −5.69461 + 5.69461i −0.603627 + 0.603627i −0.941273 0.337646i \(-0.890369\pi\)
0.337646 + 0.941273i \(0.390369\pi\)
\(90\) 0 0
\(91\) 0.197167 18.5632i 0.0206687 1.94595i
\(92\) −5.25738 −0.548119
\(93\) 0 0
\(94\) 5.24195 0.540666
\(95\) 0.0814492 0.0720195i 0.00835651 0.00738904i
\(96\) 0 0
\(97\) −0.250273 0.250273i −0.0254113 0.0254113i 0.694287 0.719698i \(-0.255720\pi\)
−0.719698 + 0.694287i \(0.755720\pi\)
\(98\) 13.7957 + 13.7957i 1.39358 + 1.39358i
\(99\) 0 0
\(100\) 0.612127 4.96239i 0.0612127 0.496239i
\(101\) −11.5281 −1.14709 −0.573547 0.819173i \(-0.694433\pi\)
−0.573547 + 0.819173i \(0.694433\pi\)
\(102\) 0 0
\(103\) −8.51648 −0.839154 −0.419577 0.907720i \(-0.637822\pi\)
−0.419577 + 0.907720i \(0.637822\pi\)
\(104\) −3.60535 0.0382937i −0.353533 0.00375501i
\(105\) 0 0
\(106\) −5.07102 + 5.07102i −0.492541 + 0.492541i
\(107\) −6.03336 −0.583266 −0.291633 0.956530i \(-0.594199\pi\)
−0.291633 + 0.956530i \(0.594199\pi\)
\(108\) 0 0
\(109\) 10.1500 10.1500i 0.972191 0.972191i −0.0274323 0.999624i \(-0.508733\pi\)
0.999624 + 0.0274323i \(0.00873306\pi\)
\(110\) 0.106738 1.73717i 0.0101771 0.165632i
\(111\) 0 0
\(112\) 3.64075 3.64075i 0.344018 0.344018i
\(113\) −4.19034 −0.394194 −0.197097 0.980384i \(-0.563151\pi\)
−0.197097 + 0.980384i \(0.563151\pi\)
\(114\) 0 0
\(115\) −0.720964 + 11.7337i −0.0672303 + 1.09418i
\(116\) 2.61043 0.242373
\(117\) 0 0
\(118\) 9.62555i 0.886104i
\(119\) 14.2885 + 14.2885i 1.30983 + 1.30983i
\(120\) 0 0
\(121\) 10.3942i 0.944925i
\(122\) −7.65433 + 7.65433i −0.692991 + 0.692991i
\(123\) 0 0
\(124\) 1.75191 + 1.75191i 0.157326 + 0.157326i
\(125\) −10.9914 2.04669i −0.983101 0.183062i
\(126\) 0 0
\(127\) 10.5948 0.940138 0.470069 0.882630i \(-0.344229\pi\)
0.470069 + 0.882630i \(0.344229\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) −0.579881 + 8.04138i −0.0508590 + 0.705275i
\(131\) 17.6938i 1.54591i −0.634461 0.772955i \(-0.718778\pi\)
0.634461 0.772955i \(-0.281222\pi\)
\(132\) 0 0
\(133\) 0.250348i 0.0217079i
\(134\) 13.3666 1.15470
\(135\) 0 0
\(136\) 2.77512 2.77512i 0.237965 0.237965i
\(137\) 5.98471 + 5.98471i 0.511308 + 0.511308i 0.914927 0.403619i \(-0.132248\pi\)
−0.403619 + 0.914927i \(0.632248\pi\)
\(138\) 0 0
\(139\) −5.33438 −0.452456 −0.226228 0.974074i \(-0.572640\pi\)
−0.226228 + 0.974074i \(0.572640\pi\)
\(140\) −7.62637 8.62491i −0.644546 0.728938i
\(141\) 0 0
\(142\) 10.5126 0.882200
\(143\) −0.0298059 + 2.80622i −0.00249250 + 0.234668i
\(144\) 0 0
\(145\) 0.357979 5.82612i 0.0297285 0.483833i
\(146\) 8.57350i 0.709548i
\(147\) 0 0
\(148\) 3.40442 + 3.40442i 0.279841 + 0.279841i
\(149\) 4.85113 + 4.85113i 0.397420 + 0.397420i 0.877322 0.479902i \(-0.159328\pi\)
−0.479902 + 0.877322i \(0.659328\pi\)
\(150\) 0 0
\(151\) 11.1353 + 11.1353i 0.906174 + 0.906174i 0.995961 0.0897866i \(-0.0286185\pi\)
−0.0897866 + 0.995961i \(0.528618\pi\)
\(152\) −0.0486226 −0.00394381
\(153\) 0 0
\(154\) −2.83378 2.83378i −0.228352 0.228352i
\(155\) 4.15026 3.66977i 0.333357 0.294763i
\(156\) 0 0
\(157\) 16.1859i 1.29177i −0.763434 0.645886i \(-0.776488\pi\)
0.763434 0.645886i \(-0.223512\pi\)
\(158\) 0.805722 0.805722i 0.0640998 0.0640998i
\(159\) 0 0
\(160\) −1.67513 + 1.48119i −0.132431 + 0.117099i
\(161\) 19.1408 + 19.1408i 1.50851 + 1.50851i
\(162\) 0 0
\(163\) −12.1521 + 12.1521i −0.951828 + 0.951828i −0.998892 0.0470643i \(-0.985013\pi\)
0.0470643 + 0.998892i \(0.485013\pi\)
\(164\) 2.00378 2.00378i 0.156469 0.156469i
\(165\) 0 0
\(166\) 8.63176i 0.669955i
\(167\) 8.78603 + 8.78603i 0.679883 + 0.679883i 0.959974 0.280090i \(-0.0903644\pi\)
−0.280090 + 0.959974i \(0.590364\pi\)
\(168\) 0 0
\(169\) 0.276124 12.9971i 0.0212403 0.999774i
\(170\) −5.81311 6.57424i −0.445845 0.504221i
\(171\) 0 0
\(172\) 8.65410i 0.659869i
\(173\) 24.1950i 1.83951i −0.392488 0.919757i \(-0.628386\pi\)
0.392488 0.919757i \(-0.371614\pi\)
\(174\) 0 0
\(175\) −20.2954 + 15.8382i −1.53419 + 1.19726i
\(176\) −0.550376 + 0.550376i −0.0414862 + 0.0414862i
\(177\) 0 0
\(178\) 8.05339i 0.603627i
\(179\) 5.43792 0.406449 0.203225 0.979132i \(-0.434858\pi\)
0.203225 + 0.979132i \(0.434858\pi\)
\(180\) 0 0
\(181\) 21.7408i 1.61598i 0.589194 + 0.807992i \(0.299445\pi\)
−0.589194 + 0.807992i \(0.700555\pi\)
\(182\) 12.9868 + 13.2656i 0.962642 + 0.983311i
\(183\) 0 0
\(184\) 3.71753 3.71753i 0.274060 0.274060i
\(185\) 8.06504 7.13132i 0.592954 0.524305i
\(186\) 0 0
\(187\) −2.16001 2.16001i −0.157956 0.157956i
\(188\) −3.70662 + 3.70662i −0.270333 + 0.270333i
\(189\) 0 0
\(190\) −0.00666780 + 0.108519i −0.000483733 + 0.00787277i
\(191\) 5.73164i 0.414727i 0.978264 + 0.207364i \(0.0664883\pi\)
−0.978264 + 0.207364i \(0.933512\pi\)
\(192\) 0 0
\(193\) 7.41222 7.41222i 0.533544 0.533544i −0.388082 0.921625i \(-0.626862\pi\)
0.921625 + 0.388082i \(0.126862\pi\)
\(194\) 0.353939 0.0254113
\(195\) 0 0
\(196\) −19.5101 −1.39358
\(197\) −2.70779 + 2.70779i −0.192922 + 0.192922i −0.796957 0.604036i \(-0.793558\pi\)
0.604036 + 0.796957i \(0.293558\pi\)
\(198\) 0 0
\(199\) 1.40527i 0.0996172i −0.998759 0.0498086i \(-0.984139\pi\)
0.998759 0.0498086i \(-0.0158611\pi\)
\(200\) 3.07610 + 3.94178i 0.217513 + 0.278726i
\(201\) 0 0
\(202\) 8.15163 8.15163i 0.573547 0.573547i
\(203\) −9.50394 9.50394i −0.667046 0.667046i
\(204\) 0 0
\(205\) −4.19737 4.74695i −0.293157 0.331541i
\(206\) 6.02206 6.02206i 0.419577 0.419577i
\(207\) 0 0
\(208\) 2.57644 2.52229i 0.178644 0.174889i
\(209\) 0.0378454i 0.00261782i
\(210\) 0 0
\(211\) −15.8923 −1.09407 −0.547034 0.837110i \(-0.684243\pi\)
−0.547034 + 0.837110i \(0.684243\pi\)
\(212\) 7.17150i 0.492541i
\(213\) 0 0
\(214\) 4.26623 4.26623i 0.291633 0.291633i
\(215\) −19.3147 1.18677i −1.31725 0.0809370i
\(216\) 0 0
\(217\) 12.7565i 0.865969i
\(218\) 14.3542i 0.972191i
\(219\) 0 0
\(220\) 1.15289 + 1.30384i 0.0777277 + 0.0879047i
\(221\) 9.89900 + 10.1115i 0.665879 + 0.680176i
\(222\) 0 0
\(223\) −9.11780 9.11780i −0.610573 0.610573i 0.332522 0.943095i \(-0.392100\pi\)
−0.943095 + 0.332522i \(0.892100\pi\)
\(224\) 5.14880i 0.344018i
\(225\) 0 0
\(226\) 2.96302 2.96302i 0.197097 0.197097i
\(227\) −19.2800 + 19.2800i −1.27966 + 1.27966i −0.338802 + 0.940858i \(0.610022\pi\)
−0.940858 + 0.338802i \(0.889978\pi\)
\(228\) 0 0
\(229\) −0.641799 0.641799i −0.0424113 0.0424113i 0.685583 0.727994i \(-0.259547\pi\)
−0.727994 + 0.685583i \(0.759547\pi\)
\(230\) −7.78720 8.80679i −0.513473 0.580703i
\(231\) 0 0
\(232\) −1.84586 + 1.84586i −0.121186 + 0.121186i
\(233\) 21.1428i 1.38511i 0.721363 + 0.692557i \(0.243516\pi\)
−0.721363 + 0.692557i \(0.756484\pi\)
\(234\) 0 0
\(235\) 7.76435 + 8.78095i 0.506490 + 0.572806i
\(236\) −6.80629 6.80629i −0.443052 0.443052i
\(237\) 0 0
\(238\) −20.2070 −1.30983
\(239\) 10.7555 + 10.7555i 0.695718 + 0.695718i 0.963484 0.267766i \(-0.0862853\pi\)
−0.267766 + 0.963484i \(0.586285\pi\)
\(240\) 0 0
\(241\) −3.91857 3.91857i −0.252417 0.252417i 0.569544 0.821961i \(-0.307120\pi\)
−0.821961 + 0.569544i \(0.807120\pi\)
\(242\) −7.34979 7.34979i −0.472462 0.472462i
\(243\) 0 0
\(244\) 10.8249i 0.692991i
\(245\) −2.67550 + 43.5438i −0.170931 + 2.78191i
\(246\) 0 0
\(247\) 0.00186194 0.175301i 0.000118472 0.0111542i
\(248\) −2.47757 −0.157326
\(249\) 0 0
\(250\) 9.21933 6.32487i 0.583082 0.400020i
\(251\) −10.5128 −0.663565 −0.331783 0.943356i \(-0.607650\pi\)
−0.331783 + 0.943356i \(0.607650\pi\)
\(252\) 0 0
\(253\) −2.89354 2.89354i −0.181915 0.181915i
\(254\) −7.49167 + 7.49167i −0.470069 + 0.470069i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 16.1542i 1.00767i 0.863799 + 0.503836i \(0.168079\pi\)
−0.863799 + 0.503836i \(0.831921\pi\)
\(258\) 0 0
\(259\) 24.7893i 1.54033i
\(260\) −5.27607 6.09615i −0.327208 0.378067i
\(261\) 0 0
\(262\) 12.5114 + 12.5114i 0.772955 + 0.772955i
\(263\) −26.6515 −1.64340 −0.821702 0.569918i \(-0.806975\pi\)
−0.821702 + 0.569918i \(0.806975\pi\)
\(264\) 0 0
\(265\) −16.0058 0.983456i −0.983227 0.0604132i
\(266\) 0.177023 + 0.177023i 0.0108540 + 0.0108540i
\(267\) 0 0
\(268\) −9.45160 + 9.45160i −0.577348 + 0.577348i
\(269\) 14.5851i 0.889271i −0.895712 0.444635i \(-0.853333\pi\)
0.895712 0.444635i \(-0.146667\pi\)
\(270\) 0 0
\(271\) −22.3588 22.3588i −1.35820 1.35820i −0.876134 0.482067i \(-0.839886\pi\)
−0.482067 0.876134i \(-0.660114\pi\)
\(272\) 3.92461i 0.237965i
\(273\) 0 0
\(274\) −8.46366 −0.511308
\(275\) 3.06808 2.39428i 0.185012 0.144381i
\(276\) 0 0
\(277\) −8.71213 −0.523461 −0.261731 0.965141i \(-0.584293\pi\)
−0.261731 + 0.965141i \(0.584293\pi\)
\(278\) 3.77198 3.77198i 0.226228 0.226228i
\(279\) 0 0
\(280\) 11.4914 + 0.706074i 0.686742 + 0.0421960i
\(281\) 8.78056 8.78056i 0.523805 0.523805i −0.394914 0.918718i \(-0.629226\pi\)
0.918718 + 0.394914i \(0.129226\pi\)
\(282\) 0 0
\(283\) 4.42996 0.263334 0.131667 0.991294i \(-0.457967\pi\)
0.131667 + 0.991294i \(0.457967\pi\)
\(284\) −7.43355 + 7.43355i −0.441100 + 0.441100i
\(285\) 0 0
\(286\) −1.96322 2.00537i −0.116088 0.118580i
\(287\) −14.5905 −0.861253
\(288\) 0 0
\(289\) 1.59742 0.0939659
\(290\) 3.86656 + 4.37282i 0.227052 + 0.256781i
\(291\) 0 0
\(292\) −6.06238 6.06238i −0.354774 0.354774i
\(293\) −21.7172 21.7172i −1.26873 1.26873i −0.946743 0.321991i \(-0.895648\pi\)
−0.321991 0.946743i \(-0.604352\pi\)
\(294\) 0 0
\(295\) −16.1241 + 14.2573i −0.938779 + 0.830093i
\(296\) −4.81457 −0.279841
\(297\) 0 0
\(298\) −6.86054 −0.397420
\(299\) 13.2606 + 13.5453i 0.766881 + 0.783347i
\(300\) 0 0
\(301\) −31.5074 + 31.5074i −1.81606 + 1.81606i
\(302\) −15.7476 −0.906174
\(303\) 0 0
\(304\) 0.0343813 0.0343813i 0.00197191 0.00197191i
\(305\) −24.1596 1.48446i −1.38337 0.0849997i
\(306\) 0 0
\(307\) −0.222982 + 0.222982i −0.0127263 + 0.0127263i −0.713441 0.700715i \(-0.752864\pi\)
0.700715 + 0.713441i \(0.252864\pi\)
\(308\) 4.00757 0.228352
\(309\) 0 0
\(310\) −0.339759 + 5.52959i −0.0192970 + 0.314060i
\(311\) −7.31599 −0.414852 −0.207426 0.978251i \(-0.566509\pi\)
−0.207426 + 0.978251i \(0.566509\pi\)
\(312\) 0 0
\(313\) 11.8892i 0.672016i −0.941859 0.336008i \(-0.890923\pi\)
0.941859 0.336008i \(-0.109077\pi\)
\(314\) 11.4451 + 11.4451i 0.645886 + 0.645886i
\(315\) 0 0
\(316\) 1.13946i 0.0640998i
\(317\) 23.9626 23.9626i 1.34587 1.34587i 0.455784 0.890090i \(-0.349359\pi\)
0.890090 0.455784i \(-0.150641\pi\)
\(318\) 0 0
\(319\) 1.43672 + 1.43672i 0.0804410 + 0.0804410i
\(320\) 0.137134 2.23186i 0.00766602 0.124765i
\(321\) 0 0
\(322\) −27.0692 −1.50851
\(323\) 0.134933 + 0.134933i 0.00750790 + 0.00750790i
\(324\) 0 0
\(325\) −14.3293 + 10.9395i −0.794845 + 0.606812i
\(326\) 17.1857i 0.951828i
\(327\) 0 0
\(328\) 2.83378i 0.156469i
\(329\) 26.9897 1.48799
\(330\) 0 0
\(331\) 20.2559 20.2559i 1.11337 1.11337i 0.120674 0.992692i \(-0.461494\pi\)
0.992692 0.120674i \(-0.0385057\pi\)
\(332\) −6.10358 6.10358i −0.334977 0.334977i
\(333\) 0 0
\(334\) −12.4253 −0.679883
\(335\) 19.7985 + 22.3908i 1.08171 + 1.22334i
\(336\) 0 0
\(337\) 18.3122 0.997531 0.498765 0.866737i \(-0.333787\pi\)
0.498765 + 0.866737i \(0.333787\pi\)
\(338\) 8.99506 + 9.38556i 0.489267 + 0.510507i
\(339\) 0 0
\(340\) 8.75918 + 0.538197i 0.475033 + 0.0291878i
\(341\) 1.92842i 0.104430i
\(342\) 0 0
\(343\) 45.5462 + 45.5462i 2.45926 + 2.45926i
\(344\) 6.11937 + 6.11937i 0.329934 + 0.329934i
\(345\) 0 0
\(346\) 17.1085 + 17.1085i 0.919757 + 0.919757i
\(347\) −19.3467 −1.03859 −0.519293 0.854596i \(-0.673805\pi\)
−0.519293 + 0.854596i \(0.673805\pi\)
\(348\) 0 0
\(349\) 12.5378 + 12.5378i 0.671136 + 0.671136i 0.957978 0.286842i \(-0.0926055\pi\)
−0.286842 + 0.957978i \(0.592606\pi\)
\(350\) 3.15172 25.5503i 0.168466 1.36572i
\(351\) 0 0
\(352\) 0.778350i 0.0414862i
\(353\) 18.1171 18.1171i 0.964275 0.964275i −0.0351088 0.999383i \(-0.511178\pi\)
0.999383 + 0.0351088i \(0.0111778\pi\)
\(354\) 0 0
\(355\) 15.5712 + 17.6100i 0.826436 + 0.934643i
\(356\) 5.69461 + 5.69461i 0.301814 + 0.301814i
\(357\) 0 0
\(358\) −3.84519 + 3.84519i −0.203225 + 0.203225i
\(359\) 19.1639 19.1639i 1.01143 1.01143i 0.0114978 0.999934i \(-0.496340\pi\)
0.999934 0.0114978i \(-0.00365993\pi\)
\(360\) 0 0
\(361\) 18.9976i 0.999876i
\(362\) −15.3731 15.3731i −0.807992 0.807992i
\(363\) 0 0
\(364\) −18.5632 0.197167i −0.972976 0.0103343i
\(365\) −14.3617 + 12.6990i −0.751727 + 0.664697i
\(366\) 0 0
\(367\) 24.3950i 1.27341i 0.771108 + 0.636704i \(0.219703\pi\)
−0.771108 + 0.636704i \(0.780297\pi\)
\(368\) 5.25738i 0.274060i
\(369\) 0 0
\(370\) −0.660241 + 10.7454i −0.0343243 + 0.558629i
\(371\) −26.1096 + 26.1096i −1.35555 + 1.35555i
\(372\) 0 0
\(373\) 34.3966i 1.78099i −0.454994 0.890495i \(-0.650359\pi\)
0.454994 0.890495i \(-0.349641\pi\)
\(374\) 3.05472 0.157956
\(375\) 0 0
\(376\) 5.24195i 0.270333i
\(377\) −6.58427 6.72564i −0.339107 0.346388i
\(378\) 0 0
\(379\) 13.6574 13.6574i 0.701535 0.701535i −0.263205 0.964740i \(-0.584780\pi\)
0.964740 + 0.263205i \(0.0847797\pi\)
\(380\) −0.0720195 0.0814492i −0.00369452 0.00417825i
\(381\) 0 0
\(382\) −4.05288 4.05288i −0.207364 0.207364i
\(383\) 8.78211 8.78211i 0.448745 0.448745i −0.446192 0.894937i \(-0.647220\pi\)
0.894937 + 0.446192i \(0.147220\pi\)
\(384\) 0 0
\(385\) 0.549573 8.94432i 0.0280088 0.455845i
\(386\) 10.4825i 0.533544i
\(387\) 0 0
\(388\) −0.250273 + 0.250273i −0.0127057 + 0.0127057i
\(389\) 7.51513 0.381032 0.190516 0.981684i \(-0.438984\pi\)
0.190516 + 0.981684i \(0.438984\pi\)
\(390\) 0 0
\(391\) −20.6332 −1.04346
\(392\) 13.7957 13.7957i 0.696790 0.696790i
\(393\) 0 0
\(394\) 3.82939i 0.192922i
\(395\) 2.54312 + 0.156259i 0.127958 + 0.00786224i
\(396\) 0 0
\(397\) −12.6929 + 12.6929i −0.637037 + 0.637037i −0.949824 0.312786i \(-0.898738\pi\)
0.312786 + 0.949824i \(0.398738\pi\)
\(398\) 0.993678 + 0.993678i 0.0498086 + 0.0498086i
\(399\) 0 0
\(400\) −4.96239 0.612127i −0.248119 0.0306063i
\(401\) 18.0961 18.0961i 0.903674 0.903674i −0.0920776 0.995752i \(-0.529351\pi\)
0.995752 + 0.0920776i \(0.0293508\pi\)
\(402\) 0 0
\(403\) 0.0948755 8.93251i 0.00472608 0.444960i
\(404\) 11.5281i 0.573547i
\(405\) 0 0
\(406\) 13.4406 0.667046
\(407\) 3.74742i 0.185753i
\(408\) 0 0
\(409\) −5.08597 + 5.08597i −0.251485 + 0.251485i −0.821579 0.570094i \(-0.806907\pi\)
0.570094 + 0.821579i \(0.306907\pi\)
\(410\) 6.32459 + 0.388607i 0.312349 + 0.0191919i
\(411\) 0 0
\(412\) 8.51648i 0.419577i
\(413\) 49.5600i 2.43869i
\(414\) 0 0
\(415\) −14.4593 + 12.7853i −0.709781 + 0.627606i
\(416\) −0.0382937 + 3.60535i −0.00187750 + 0.176767i
\(417\) 0 0
\(418\) −0.0267607 0.0267607i −0.00130891 0.00130891i
\(419\) 29.1668i 1.42489i −0.701727 0.712446i \(-0.747587\pi\)
0.701727 0.712446i \(-0.252413\pi\)
\(420\) 0 0
\(421\) 6.59073 6.59073i 0.321213 0.321213i −0.528020 0.849232i \(-0.677065\pi\)
0.849232 + 0.528020i \(0.177065\pi\)
\(422\) 11.2375 11.2375i 0.547034 0.547034i
\(423\) 0 0
\(424\) 5.07102 + 5.07102i 0.246270 + 0.246270i
\(425\) 2.40236 19.4755i 0.116532 0.944698i
\(426\) 0 0
\(427\) −39.4106 + 39.4106i −1.90721 + 1.90721i
\(428\) 6.03336i 0.291633i
\(429\) 0 0
\(430\) 14.4967 12.8184i 0.699095 0.618158i
\(431\) −29.2398 29.2398i −1.40843 1.40843i −0.768088 0.640344i \(-0.778792\pi\)
−0.640344 0.768088i \(-0.721208\pi\)
\(432\) 0 0
\(433\) 16.1132 0.774353 0.387176 0.922006i \(-0.373450\pi\)
0.387176 + 0.922006i \(0.373450\pi\)
\(434\) 9.02022 + 9.02022i 0.432984 + 0.432984i
\(435\) 0 0
\(436\) −10.1500 10.1500i −0.486096 0.486096i
\(437\) 0.180756 + 0.180756i 0.00864672 + 0.00864672i
\(438\) 0 0
\(439\) 27.6716i 1.32069i −0.750962 0.660346i \(-0.770410\pi\)
0.750962 0.660346i \(-0.229590\pi\)
\(440\) −1.73717 0.106738i −0.0828162 0.00508854i
\(441\) 0 0
\(442\) −14.1496 0.150288i −0.673027 0.00714847i
\(443\) −11.2000 −0.532126 −0.266063 0.963956i \(-0.585723\pi\)
−0.266063 + 0.963956i \(0.585723\pi\)
\(444\) 0 0
\(445\) 13.4905 11.9286i 0.639510 0.565471i
\(446\) 12.8945 0.610573
\(447\) 0 0
\(448\) −3.64075 3.64075i −0.172009 0.172009i
\(449\) −29.0434 + 29.0434i −1.37064 + 1.37064i −0.511157 + 0.859487i \(0.670783\pi\)
−0.859487 + 0.511157i \(0.829217\pi\)
\(450\) 0 0
\(451\) 2.20567 0.103861
\(452\) 4.19034i 0.197097i
\(453\) 0 0
\(454\) 27.2661i 1.27966i
\(455\) −2.98569 + 41.4034i −0.139971 + 1.94102i
\(456\) 0 0
\(457\) −7.84694 7.84694i −0.367064 0.367064i 0.499341 0.866405i \(-0.333575\pi\)
−0.866405 + 0.499341i \(0.833575\pi\)
\(458\) 0.907641 0.0424113
\(459\) 0 0
\(460\) 11.7337 + 0.720964i 0.547088 + 0.0336151i
\(461\) −12.0214 12.0214i −0.559890 0.559890i 0.369386 0.929276i \(-0.379568\pi\)
−0.929276 + 0.369386i \(0.879568\pi\)
\(462\) 0 0
\(463\) 15.7642 15.7642i 0.732627 0.732627i −0.238513 0.971139i \(-0.576660\pi\)
0.971139 + 0.238513i \(0.0766599\pi\)
\(464\) 2.61043i 0.121186i
\(465\) 0 0
\(466\) −14.9502 14.9502i −0.692557 0.692557i
\(467\) 18.8621i 0.872832i −0.899745 0.436416i \(-0.856248\pi\)
0.899745 0.436416i \(-0.143752\pi\)
\(468\) 0 0
\(469\) 68.8218 3.17790
\(470\) −11.6993 0.718849i −0.539648 0.0331580i
\(471\) 0 0
\(472\) 9.62555 0.443052
\(473\) 4.76301 4.76301i 0.219004 0.219004i
\(474\) 0 0
\(475\) −0.191659 + 0.149568i −0.00879393 + 0.00686264i
\(476\) 14.2885 14.2885i 0.654914 0.654914i
\(477\) 0 0
\(478\) −15.2106 −0.695718
\(479\) −5.19594 + 5.19594i −0.237408 + 0.237408i −0.815776 0.578368i \(-0.803690\pi\)
0.578368 + 0.815776i \(0.303690\pi\)
\(480\) 0 0
\(481\) 0.184368 17.3582i 0.00840645 0.791466i
\(482\) 5.54169 0.252417
\(483\) 0 0
\(484\) 10.3942 0.472462
\(485\) 0.524253 + 0.592894i 0.0238051 + 0.0269219i
\(486\) 0 0
\(487\) 1.60126 + 1.60126i 0.0725601 + 0.0725601i 0.742455 0.669895i \(-0.233661\pi\)
−0.669895 + 0.742455i \(0.733661\pi\)
\(488\) 7.65433 + 7.65433i 0.346495 + 0.346495i
\(489\) 0 0
\(490\) −28.8983 32.6820i −1.30549 1.47642i
\(491\) −17.5496 −0.792003 −0.396001 0.918250i \(-0.629602\pi\)
−0.396001 + 0.918250i \(0.629602\pi\)
\(492\) 0 0
\(493\) 10.2449 0.461409
\(494\) 0.122640 + 0.125273i 0.00551784 + 0.00563631i
\(495\) 0 0
\(496\) 1.75191 1.75191i 0.0786630 0.0786630i
\(497\) 54.1274 2.42795
\(498\) 0 0
\(499\) −16.6757 + 16.6757i −0.746507 + 0.746507i −0.973821 0.227314i \(-0.927006\pi\)
0.227314 + 0.973821i \(0.427006\pi\)
\(500\) −2.04669 + 10.9914i −0.0915309 + 0.491551i
\(501\) 0 0
\(502\) 7.43371 7.43371i 0.331783 0.331783i
\(503\) −0.137436 −0.00612796 −0.00306398 0.999995i \(-0.500975\pi\)
−0.00306398 + 0.999995i \(0.500975\pi\)
\(504\) 0 0
\(505\) 25.7292 + 1.58090i 1.14493 + 0.0703491i
\(506\) 4.09208 0.181915
\(507\) 0 0
\(508\) 10.5948i 0.470069i
\(509\) −30.0672 30.0672i −1.33271 1.33271i −0.902940 0.429767i \(-0.858596\pi\)
−0.429767 0.902940i \(-0.641404\pi\)
\(510\) 0 0
\(511\) 44.1432i 1.95278i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −11.4228 11.4228i −0.503836 0.503836i
\(515\) 19.0076 + 1.16790i 0.837575 + 0.0514638i
\(516\) 0 0
\(517\) −4.08007 −0.179441
\(518\) 17.5287 + 17.5287i 0.770165 + 0.770165i
\(519\) 0 0
\(520\) 8.04138 + 0.579881i 0.352638 + 0.0254295i
\(521\) 2.76003i 0.120919i 0.998171 + 0.0604597i \(0.0192567\pi\)
−0.998171 + 0.0604597i \(0.980743\pi\)
\(522\) 0 0
\(523\) 10.3526i 0.452688i −0.974047 0.226344i \(-0.927323\pi\)
0.974047 0.226344i \(-0.0726774\pi\)
\(524\) −17.6938 −0.772955
\(525\) 0 0
\(526\) 18.8455 18.8455i 0.821702 0.821702i
\(527\) 6.87556 + 6.87556i 0.299504 + 0.299504i
\(528\) 0 0
\(529\) −4.64001 −0.201739
\(530\) 12.0132 10.6224i 0.521820 0.461407i
\(531\) 0 0
\(532\) −0.250348 −0.0108540
\(533\) −10.2168 0.108516i −0.442537 0.00470034i
\(534\) 0 0
\(535\) 13.4656 + 0.827377i 0.582169 + 0.0357706i
\(536\) 13.3666i 0.577348i
\(537\) 0 0
\(538\) 10.3132 + 10.3132i 0.444635 + 0.444635i
\(539\) −10.7379 10.7379i −0.462514 0.462514i
\(540\) 0 0
\(541\) 13.3717 + 13.3717i 0.574894 + 0.574894i 0.933492 0.358598i \(-0.116745\pi\)
−0.358598 + 0.933492i \(0.616745\pi\)
\(542\) 31.6201 1.35820
\(543\) 0 0
\(544\) −2.77512 2.77512i −0.118982 0.118982i
\(545\) −24.0452 + 21.2614i −1.02998 + 0.910739i
\(546\) 0 0
\(547\) 24.2164i 1.03542i −0.855556 0.517710i \(-0.826785\pi\)
0.855556 0.517710i \(-0.173215\pi\)
\(548\) 5.98471 5.98471i 0.255654 0.255654i
\(549\) 0 0
\(550\) −0.476449 + 3.86247i −0.0203158 + 0.164696i
\(551\) −0.0897502 0.0897502i −0.00382349 0.00382349i
\(552\) 0 0
\(553\) 4.14850 4.14850i 0.176412 0.176412i
\(554\) 6.16041 6.16041i 0.261731 0.261731i
\(555\) 0 0
\(556\) 5.33438i 0.226228i
\(557\) 7.37044 + 7.37044i 0.312296 + 0.312296i 0.845798 0.533503i \(-0.179125\pi\)
−0.533503 + 0.845798i \(0.679125\pi\)
\(558\) 0 0
\(559\) −22.2968 + 21.8281i −0.943054 + 0.923232i
\(560\) −8.62491 + 7.62637i −0.364469 + 0.322273i
\(561\) 0 0
\(562\) 12.4176i 0.523805i
\(563\) 16.7767i 0.707052i −0.935425 0.353526i \(-0.884983\pi\)
0.935425 0.353526i \(-0.115017\pi\)
\(564\) 0 0
\(565\) 9.35224 + 0.574637i 0.393452 + 0.0241752i
\(566\) −3.13246 + 3.13246i −0.131667 + 0.131667i
\(567\) 0 0
\(568\) 10.5126i 0.441100i
\(569\) 4.58148 0.192066 0.0960329 0.995378i \(-0.469385\pi\)
0.0960329 + 0.995378i \(0.469385\pi\)
\(570\) 0 0
\(571\) 5.28925i 0.221348i −0.993857 0.110674i \(-0.964699\pi\)
0.993857 0.110674i \(-0.0353010\pi\)
\(572\) 2.80622 + 0.0298059i 0.117334 + 0.00124625i
\(573\) 0 0
\(574\) 10.3171 10.3171i 0.430626 0.430626i
\(575\) 3.21818 26.0891i 0.134207 1.08799i
\(576\) 0 0
\(577\) 30.7653 + 30.7653i 1.28078 + 1.28078i 0.940226 + 0.340551i \(0.110613\pi\)
0.340551 + 0.940226i \(0.389387\pi\)
\(578\) −1.12955 + 1.12955i −0.0469829 + 0.0469829i
\(579\) 0 0
\(580\) −5.82612 0.357979i −0.241916 0.0148643i
\(581\) 44.4432i 1.84381i
\(582\) 0 0
\(583\) 3.94703 3.94703i 0.163469 0.163469i
\(584\) 8.57350 0.354774
\(585\) 0 0
\(586\) 30.7128 1.26873
\(587\) 4.67233 4.67233i 0.192848 0.192848i −0.604078 0.796925i \(-0.706458\pi\)
0.796925 + 0.604078i \(0.206458\pi\)
\(588\) 0 0
\(589\) 0.120466i 0.00496371i
\(590\) 1.31999 21.4829i 0.0543431 0.884436i
\(591\) 0 0
\(592\) 3.40442 3.40442i 0.139921 0.139921i
\(593\) −16.5930 16.5930i −0.681395 0.681395i 0.278920 0.960314i \(-0.410024\pi\)
−0.960314 + 0.278920i \(0.910024\pi\)
\(594\) 0 0
\(595\) −29.9305 33.8494i −1.22703 1.38769i
\(596\) 4.85113 4.85113i 0.198710 0.198710i
\(597\) 0 0
\(598\) −18.9547 0.201325i −0.775114 0.00823277i
\(599\) 5.00194i 0.204374i −0.994765 0.102187i \(-0.967416\pi\)
0.994765 0.102187i \(-0.0325840\pi\)
\(600\) 0 0
\(601\) 40.9490 1.67034 0.835172 0.549988i \(-0.185368\pi\)
0.835172 + 0.549988i \(0.185368\pi\)
\(602\) 44.5582i 1.81606i
\(603\) 0 0
\(604\) 11.1353 11.1353i 0.453087 0.453087i
\(605\) 1.42539 23.1983i 0.0579505 0.943146i
\(606\) 0 0
\(607\) 10.8468i 0.440259i −0.975471 0.220130i \(-0.929352\pi\)
0.975471 0.220130i \(-0.0706481\pi\)
\(608\) 0.0486226i 0.00197191i
\(609\) 0 0
\(610\) 18.1331 16.0337i 0.734186 0.649187i
\(611\) 18.8991 + 0.200734i 0.764574 + 0.00812082i
\(612\) 0 0
\(613\) 29.3943 + 29.3943i 1.18723 + 1.18723i 0.977831 + 0.209394i \(0.0671492\pi\)
0.209394 + 0.977831i \(0.432851\pi\)
\(614\) 0.315344i 0.0127263i
\(615\) 0 0
\(616\) −2.83378 + 2.83378i −0.114176 + 0.114176i
\(617\) 22.8438 22.8438i 0.919655 0.919655i −0.0773490 0.997004i \(-0.524646\pi\)
0.997004 + 0.0773490i \(0.0246456\pi\)
\(618\) 0 0
\(619\) −0.357348 0.357348i −0.0143630 0.0143630i 0.699889 0.714252i \(-0.253233\pi\)
−0.714252 + 0.699889i \(0.753233\pi\)
\(620\) −3.66977 4.15026i −0.147381 0.166678i
\(621\) 0 0
\(622\) 5.17319 5.17319i 0.207426 0.207426i
\(623\) 41.4653i 1.66127i
\(624\) 0 0
\(625\) 24.2506 + 6.07522i 0.970024 + 0.243009i
\(626\) 8.40692 + 8.40692i 0.336008 + 0.336008i
\(627\) 0 0
\(628\) −16.1859 −0.645886
\(629\) 13.3610 + 13.3610i 0.532739 + 0.532739i
\(630\) 0 0
\(631\) 8.71866 + 8.71866i 0.347084 + 0.347084i 0.859022 0.511938i \(-0.171072\pi\)
−0.511938 + 0.859022i \(0.671072\pi\)
\(632\) −0.805722 0.805722i −0.0320499 0.0320499i
\(633\) 0 0
\(634\) 33.8883i 1.34587i
\(635\) −23.6461 1.45291i −0.938368 0.0576569i
\(636\) 0 0
\(637\) 49.2101 + 50.2667i 1.94978 + 1.99164i
\(638\) −2.03183 −0.0804410
\(639\) 0 0
\(640\) 1.48119 + 1.67513i 0.0585493 + 0.0662154i
\(641\) −7.76922 −0.306866 −0.153433 0.988159i \(-0.549033\pi\)
−0.153433 + 0.988159i \(0.549033\pi\)
\(642\) 0 0
\(643\) −19.4383 19.4383i −0.766570 0.766570i 0.210931 0.977501i \(-0.432351\pi\)
−0.977501 + 0.210931i \(0.932351\pi\)
\(644\) 19.1408 19.1408i 0.754253 0.754253i
\(645\) 0 0
\(646\) −0.190825 −0.00750790
\(647\) 41.2049i 1.61993i 0.586476 + 0.809967i \(0.300515\pi\)
−0.586476 + 0.809967i \(0.699485\pi\)
\(648\) 0 0
\(649\) 7.49205i 0.294089i
\(650\) 2.39696 17.8677i 0.0940165 0.700829i
\(651\) 0 0
\(652\) 12.1521 + 12.1521i 0.475914 + 0.475914i
\(653\) 19.6236 0.767932 0.383966 0.923347i \(-0.374558\pi\)
0.383966 + 0.923347i \(0.374558\pi\)
\(654\) 0 0
\(655\) −2.42641 + 39.4900i −0.0948078 + 1.54300i
\(656\) −2.00378 2.00378i −0.0782346 0.0782346i
\(657\) 0 0
\(658\) −19.0846 + 19.0846i −0.743996 + 0.743996i
\(659\) 23.2139i 0.904286i −0.891945 0.452143i \(-0.850660\pi\)
0.891945 0.452143i \(-0.149340\pi\)
\(660\) 0 0
\(661\) −18.6638 18.6638i −0.725937 0.725937i 0.243871 0.969808i \(-0.421583\pi\)
−0.969808 + 0.243871i \(0.921583\pi\)
\(662\) 28.6462i 1.11337i
\(663\) 0 0
\(664\) 8.63176 0.334977
\(665\) −0.0343312 + 0.558741i −0.00133131 + 0.0216670i
\(666\) 0 0
\(667\) 13.7240 0.531397
\(668\) 8.78603 8.78603i 0.339942 0.339942i
\(669\) 0 0
\(670\) −29.8323 1.83301i −1.15252 0.0708154i
\(671\) 5.95775 5.95775i 0.229996 0.229996i
\(672\) 0 0
\(673\) −5.34372 −0.205985 −0.102993 0.994682i \(-0.532842\pi\)
−0.102993 + 0.994682i \(0.532842\pi\)
\(674\) −12.9487 + 12.9487i −0.498765 + 0.498765i
\(675\) 0 0
\(676\) −12.9971 0.276124i −0.499887 0.0106202i
\(677\) −0.745860 −0.0286657 −0.0143329 0.999897i \(-0.504562\pi\)
−0.0143329 + 0.999897i \(0.504562\pi\)
\(678\) 0 0
\(679\) 1.82236 0.0699358
\(680\) −6.57424 + 5.81311i −0.252111 + 0.222923i
\(681\) 0 0
\(682\) −1.36360 1.36360i −0.0522148 0.0522148i
\(683\) 9.43828 + 9.43828i 0.361146 + 0.361146i 0.864235 0.503089i \(-0.167803\pi\)
−0.503089 + 0.864235i \(0.667803\pi\)
\(684\) 0 0
\(685\) −12.5363 14.1777i −0.478988 0.541704i
\(686\) −64.4120 −2.45926
\(687\) 0 0
\(688\) −8.65410 −0.329934
\(689\) −18.4770 + 18.0886i −0.703917 + 0.689121i
\(690\) 0 0
\(691\) −24.6463 + 24.6463i −0.937591 + 0.937591i −0.998164 0.0605726i \(-0.980707\pi\)
0.0605726 + 0.998164i \(0.480707\pi\)
\(692\) −24.1950 −0.919757
\(693\) 0 0
\(694\) 13.6802 13.6802i 0.519293 0.519293i
\(695\) 11.9056 + 0.731525i 0.451605 + 0.0277483i
\(696\) 0 0
\(697\) 7.86407 7.86407i 0.297873 0.297873i
\(698\) −17.7312 −0.671136
\(699\) 0 0
\(700\) 15.8382 + 20.2954i 0.598628 + 0.767095i
\(701\) 31.1027 1.17473 0.587367 0.809321i \(-0.300165\pi\)
0.587367 + 0.809321i \(0.300165\pi\)
\(702\) 0 0
\(703\) 0.234097i 0.00882913i
\(704\) 0.550376 + 0.550376i 0.0207431 + 0.0207431i
\(705\) 0 0
\(706\) 25.6214i 0.964275i
\(707\) 41.9711 41.9711i 1.57849 1.57849i
\(708\) 0 0
\(709\) −2.74683 2.74683i −0.103159 0.103159i 0.653643 0.756803i \(-0.273240\pi\)
−0.756803 + 0.653643i \(0.773240\pi\)
\(710\) −23.4627 1.44164i −0.880540 0.0541037i
\(711\) 0 0
\(712\) −8.05339 −0.301814
\(713\) 9.21044 + 9.21044i 0.344934 + 0.344934i
\(714\) 0 0
\(715\) 0.451351 6.25900i 0.0168796 0.234073i
\(716\) 5.43792i 0.203225i
\(717\) 0 0
\(718\) 27.1018i 1.01143i
\(719\) −34.1555 −1.27379 −0.636893 0.770952i \(-0.719781\pi\)
−0.636893 + 0.770952i \(0.719781\pi\)
\(720\) 0 0
\(721\) 31.0064 31.0064i 1.15474 1.15474i
\(722\) −13.4334 13.4334i −0.499938 0.499938i
\(723\) 0 0
\(724\) 21.7408 0.807992
\(725\) −1.59792 + 12.9540i −0.0593451 + 0.481099i
\(726\) 0 0
\(727\) 43.2743 1.60495 0.802477 0.596684i \(-0.203515\pi\)
0.802477 + 0.596684i \(0.203515\pi\)
\(728\) 13.2656 12.9868i 0.491655 0.481321i
\(729\) 0 0
\(730\) 1.17572 19.1348i 0.0435152 0.708212i
\(731\) 33.9640i 1.25620i
\(732\) 0 0
\(733\) −19.2236 19.2236i −0.710039 0.710039i 0.256504 0.966543i \(-0.417429\pi\)
−0.966543 + 0.256504i \(0.917429\pi\)
\(734\) −17.2499 17.2499i −0.636704 0.636704i
\(735\) 0 0
\(736\) −3.71753 3.71753i −0.137030 0.137030i
\(737\) −10.4039 −0.383232
\(738\) 0 0
\(739\) −22.5897 22.5897i −0.830977 0.830977i 0.156673 0.987650i \(-0.449923\pi\)
−0.987650 + 0.156673i \(0.949923\pi\)
\(740\) −7.13132 8.06504i −0.262152 0.296477i
\(741\) 0 0
\(742\) 36.9246i 1.35555i
\(743\) −8.51811 + 8.51811i −0.312499 + 0.312499i −0.845877 0.533378i \(-0.820922\pi\)
0.533378 + 0.845877i \(0.320922\pi\)
\(744\) 0 0
\(745\) −10.1618 11.4923i −0.372299 0.421045i
\(746\) 24.3221 + 24.3221i 0.890495 + 0.890495i
\(747\) 0 0
\(748\) −2.16001 + 2.16001i −0.0789779 + 0.0789779i
\(749\) 21.9659 21.9659i 0.802618 0.802618i
\(750\) 0 0
\(751\) 10.4080i 0.379795i −0.981804 0.189897i \(-0.939184\pi\)
0.981804 0.189897i \(-0.0608155\pi\)
\(752\) 3.70662 + 3.70662i 0.135166 + 0.135166i
\(753\) 0 0
\(754\) 9.41152 + 0.0999632i 0.342747 + 0.00364045i
\(755\) −23.3253 26.3793i −0.848895 0.960043i
\(756\) 0 0
\(757\) 27.2934i 0.991995i −0.868324 0.495998i \(-0.834802\pi\)
0.868324 0.495998i \(-0.165198\pi\)
\(758\) 19.3145i 0.701535i
\(759\) 0 0
\(760\) 0.108519 + 0.00666780i 0.00393639 + 0.000241867i
\(761\) −3.37998 + 3.37998i −0.122524 + 0.122524i −0.765710 0.643186i \(-0.777612\pi\)
0.643186 + 0.765710i \(0.277612\pi\)
\(762\) 0 0
\(763\) 73.9070i 2.67561i
\(764\) 5.73164 0.207364
\(765\) 0 0
\(766\) 12.4198i 0.448745i
\(767\) −0.368598 + 34.7035i −0.0133093 + 1.25307i
\(768\) 0 0
\(769\) −27.6564 + 27.6564i −0.997316 + 0.997316i −0.999996 0.00268029i \(-0.999147\pi\)
0.00268029 + 0.999996i \(0.499147\pi\)
\(770\) 5.93598 + 6.71320i 0.213918 + 0.241927i
\(771\) 0 0
\(772\) −7.41222 7.41222i −0.266772 0.266772i
\(773\) 4.31423 4.31423i 0.155172 0.155172i −0.625251 0.780423i \(-0.715004\pi\)
0.780423 + 0.625251i \(0.215004\pi\)
\(774\) 0 0
\(775\) −9.76604 + 7.62126i −0.350806 + 0.273764i
\(776\) 0.353939i 0.0127057i
\(777\) 0 0
\(778\) −5.31400 + 5.31400i −0.190516 + 0.190516i
\(779\) −0.137786 −0.00493668
\(780\) 0 0
\(781\) −8.18250 −0.292793
\(782\) 14.5898 14.5898i 0.521732 0.521732i
\(783\) 0 0
\(784\) 19.5101i 0.696790i
\(785\) −2.21963 + 36.1245i −0.0792220 + 1.28934i
\(786\) 0 0
\(787\) −3.35404 + 3.35404i −0.119558 + 0.119558i −0.764355 0.644796i \(-0.776942\pi\)
0.644796 + 0.764355i \(0.276942\pi\)
\(788\) 2.70779 + 2.70779i 0.0964608 + 0.0964608i
\(789\) 0 0
\(790\) −1.90875 + 1.68777i −0.0679102 + 0.0600480i
\(791\) 15.2560 15.2560i 0.542440 0.542440i
\(792\) 0 0
\(793\) −27.8897 + 27.3034i −0.990391 + 0.969573i
\(794\) 17.9504i 0.637037i
\(795\) 0 0
\(796\) −1.40527 −0.0498086
\(797\) 10.1658i 0.360092i −0.983658 0.180046i \(-0.942375\pi\)
0.983658 0.180046i \(-0.0576247\pi\)
\(798\) 0 0
\(799\) −14.5470 + 14.5470i −0.514637 + 0.514637i
\(800\) 3.94178 3.07610i 0.139363 0.108757i
\(801\) 0 0
\(802\) 25.5917i 0.903674i
\(803\) 6.67318i 0.235491i
\(804\) 0 0
\(805\) −40.0947 45.3444i −1.41315 1.59818i
\(806\) 6.24915 + 6.38332i 0.220117 + 0.224843i
\(807\) 0 0
\(808\) −8.15163 8.15163i −0.286773 0.286773i
\(809\) 46.6723i 1.64091i 0.571710 + 0.820456i \(0.306280\pi\)
−0.571710 + 0.820456i \(0.693720\pi\)
\(810\) 0 0
\(811\) 13.7747 13.7747i 0.483695 0.483695i −0.422614 0.906310i \(-0.638888\pi\)
0.906310 + 0.422614i \(0.138888\pi\)
\(812\) −9.50394 + 9.50394i −0.333523 + 0.333523i
\(813\) 0 0
\(814\) −2.64983 2.64983i −0.0928764 0.0928764i
\(815\) 28.7883 25.4554i 1.00841 0.891662i
\(816\) 0 0
\(817\) −0.297540 + 0.297540i −0.0104096 + 0.0104096i
\(818\) 7.19265i 0.251485i
\(819\) 0 0
\(820\) −4.74695 + 4.19737i −0.165771 + 0.146579i
\(821\) −18.0751 18.0751i −0.630826 0.630826i 0.317449 0.948275i \(-0.397174\pi\)
−0.948275 + 0.317449i \(0.897174\pi\)
\(822\) 0 0
\(823\) 17.1420 0.597531 0.298766 0.954327i \(-0.403425\pi\)
0.298766 + 0.954327i \(0.403425\pi\)
\(824\) −6.02206 6.02206i −0.209789 0.209789i
\(825\) 0 0
\(826\) −35.0442 35.0442i −1.21934 1.21934i
\(827\) 9.42298 + 9.42298i 0.327669 + 0.327669i 0.851700 0.524030i \(-0.175572\pi\)
−0.524030 + 0.851700i \(0.675572\pi\)
\(828\) 0 0
\(829\) 7.00109i 0.243158i −0.992582 0.121579i \(-0.961204\pi\)
0.992582 0.121579i \(-0.0387958\pi\)
\(830\) 1.18371 19.2649i 0.0410871 0.668693i
\(831\) 0 0
\(832\) −2.52229 2.57644i −0.0874446 0.0893221i
\(833\) −76.5696 −2.65298
\(834\) 0 0
\(835\) −18.4043 20.8140i −0.636908 0.720300i
\(836\) 0.0378454 0.00130891
\(837\) 0 0
\(838\) 20.6240 + 20.6240i 0.712446 + 0.712446i
\(839\) −14.9675 + 14.9675i −0.516737 + 0.516737i −0.916582 0.399846i \(-0.869064\pi\)
0.399846 + 0.916582i \(0.369064\pi\)
\(840\) 0 0
\(841\) 22.1856 0.765022
\(842\) 9.32070i 0.321213i
\(843\) 0 0
\(844\) 15.8923i 0.547034i
\(845\) −2.39861 + 28.9698i −0.0825146 + 0.996590i
\(846\) 0 0
\(847\) −37.8426 37.8426i −1.30029 1.30029i
\(848\) −7.17150 −0.246270
\(849\) 0 0
\(850\) 12.0725 + 15.4699i 0.414083 + 0.530615i
\(851\) 17.8983 + 17.8983i 0.613546 + 0.613546i
\(852\) 0 0
\(853\) 34.6315 34.6315i 1.18576 1.18576i 0.207532 0.978228i \(-0.433457\pi\)
0.978228 0.207532i \(-0.0665430\pi\)
\(854\) 55.7350i 1.90721i
\(855\) 0 0
\(856\) −4.26623 4.26623i −0.145817 0.145817i
\(857\) 29.6038i 1.01125i 0.862755 + 0.505623i \(0.168737\pi\)
−0.862755 + 0.505623i \(0.831263\pi\)
\(858\) 0 0
\(859\) −6.02088 −0.205430 −0.102715 0.994711i \(-0.532753\pi\)
−0.102715 + 0.994711i \(0.532753\pi\)
\(860\) −1.18677 + 19.3147i −0.0404685 + 0.658627i
\(861\) 0 0
\(862\) 41.3513 1.40843
\(863\) −7.08031 + 7.08031i −0.241017 + 0.241017i −0.817271 0.576254i \(-0.804514\pi\)
0.576254 + 0.817271i \(0.304514\pi\)
\(864\) 0 0
\(865\) −3.31796 + 53.9999i −0.112814 + 1.83605i
\(866\) −11.3938 + 11.3938i −0.387176 + 0.387176i
\(867\) 0 0
\(868\) −12.7565 −0.432984
\(869\) −0.627133 + 0.627133i −0.0212740 + 0.0212740i
\(870\) 0 0
\(871\) 48.1912 + 0.511856i 1.63290 + 0.0173436i
\(872\) 14.3542 0.486096
\(873\) 0 0
\(874\) −0.255627 −0.00864672
\(875\) 47.4685 32.5655i 1.60473 1.10091i
\(876\) 0 0
\(877\) 14.2730 + 14.2730i 0.481966 + 0.481966i 0.905759 0.423793i \(-0.139302\pi\)
−0.423793 + 0.905759i \(0.639302\pi\)
\(878\) 19.5667 + 19.5667i 0.660346 + 0.660346i
\(879\) 0 0
\(880\) 1.30384 1.15289i 0.0439524 0.0388638i
\(881\) −48.2389 −1.62521 −0.812605 0.582815i \(-0.801951\pi\)
−0.812605 + 0.582815i \(0.801951\pi\)
\(882\) 0 0
\(883\) −44.8686 −1.50995 −0.754974 0.655755i \(-0.772350\pi\)
−0.754974 + 0.655755i \(0.772350\pi\)
\(884\) 10.1115 9.89900i 0.340088 0.332939i
\(885\) 0 0
\(886\) 7.91957 7.91957i 0.266063 0.266063i
\(887\) −52.8307 −1.77388 −0.886940 0.461885i \(-0.847173\pi\)
−0.886940 + 0.461885i \(0.847173\pi\)
\(888\) 0 0
\(889\) −38.5731 + 38.5731i −1.29370 + 1.29370i
\(890\) −1.10439 + 17.9740i −0.0370193 + 0.602491i
\(891\) 0 0
\(892\) −9.11780 + 9.11780i −0.305287 + 0.305287i
\(893\) 0.254877 0.00852914
\(894\) 0 0
\(895\) −12.1367 0.745723i −0.405684 0.0249268i
\(896\) 5.14880 0.172009
\(897\) 0 0
\(898\) 41.0736i 1.37064i
\(899\) −4.57324 4.57324i −0.152526 0.152526i
\(900\) 0 0
\(901\) 28.1454i 0.937658i
\(902\) −1.55964 + 1.55964i −0.0519305 + 0.0519305i
\(903\) 0 0
\(904\) −2.96302 2.96302i −0.0985484 0.0985484i
\(905\) 2.98140 48.5225i 0.0991052 1.61294i
\(906\) 0 0
\(907\) 3.58033 0.118883 0.0594414 0.998232i \(-0.481068\pi\)
0.0594414 + 0.998232i \(0.481068\pi\)
\(908\) 19.2800 + 19.2800i 0.639830 + 0.639830i
\(909\) 0 0
\(910\) −27.1654 31.3878i −0.900525 1.04050i
\(911\) 10.5533i 0.349647i −0.984600 0.174823i \(-0.944065\pi\)
0.984600 0.174823i \(-0.0559355\pi\)
\(912\) 0 0
\(913\) 6.71853i 0.222351i
\(914\) 11.0972 0.367064
\(915\) 0 0
\(916\) −0.641799 + 0.641799i −0.0212056 + 0.0212056i
\(917\) 64.4185 + 64.4185i 2.12729 + 2.12729i
\(918\) 0 0
\(919\) 4.85905 0.160285 0.0801427 0.996783i \(-0.474462\pi\)
0.0801427 + 0.996783i \(0.474462\pi\)
\(920\) −8.80679 + 7.78720i −0.290351 + 0.256736i
\(921\) 0 0
\(922\) 17.0008 0.559890
\(923\) 37.9017 + 0.402568i 1.24755 + 0.0132507i
\(924\) 0 0
\(925\) −18.9780 + 14.8101i −0.623992 + 0.486953i
\(926\) 22.2940i 0.732627i
\(927\) 0 0
\(928\) 1.84586 + 1.84586i 0.0605932 + 0.0605932i
\(929\) 20.1241 + 20.1241i 0.660249 + 0.660249i 0.955439 0.295190i \(-0.0953828\pi\)
−0.295190 + 0.955439i \(0.595383\pi\)
\(930\) 0 0
\(931\) 0.670784 + 0.670784i 0.0219841 + 0.0219841i
\(932\) 21.1428 0.692557
\(933\) 0 0
\(934\) 13.3375 + 13.3375i 0.436416 + 0.436416i
\(935\) 4.52464 + 5.11706i 0.147971 + 0.167346i
\(936\) 0 0
\(937\) 11.5338i 0.376792i 0.982093 + 0.188396i \(0.0603288\pi\)
−0.982093 + 0.188396i \(0.939671\pi\)
\(938\) −48.6644 + 48.6644i −1.58895 + 1.58895i
\(939\) 0 0
\(940\) 8.78095 7.76435i 0.286403 0.253245i
\(941\) 2.25205 + 2.25205i 0.0734148 + 0.0734148i 0.742861 0.669446i \(-0.233468\pi\)
−0.669446 + 0.742861i \(0.733468\pi\)
\(942\) 0 0
\(943\) 10.5346 10.5346i 0.343055 0.343055i
\(944\) −6.80629 + 6.80629i −0.221526 + 0.221526i
\(945\) 0 0
\(946\) 6.73592i 0.219004i
\(947\) −32.8141 32.8141i −1.06631 1.06631i −0.997639 0.0686747i \(-0.978123\pi\)
−0.0686747 0.997639i \(-0.521877\pi\)
\(948\) 0 0
\(949\) −0.328311 + 30.9104i −0.0106574 + 1.00340i
\(950\) 0.0297632 0.241284i 0.000965645 0.00782829i
\(951\) 0 0
\(952\) 20.2070i 0.654914i
\(953\) 26.9212i 0.872062i −0.899932 0.436031i \(-0.856384\pi\)
0.899932 0.436031i \(-0.143616\pi\)
\(954\) 0 0
\(955\) 0.786002 12.7922i 0.0254344 0.413947i
\(956\) 10.7555 10.7555i 0.347859 0.347859i
\(957\) 0 0
\(958\) 7.34816i 0.237408i
\(959\) −43.5777 −1.40720
\(960\) 0 0
\(961\) 24.8616i 0.801988i
\(962\) 12.1437 + 12.4045i 0.391530 + 0.399936i
\(963\) 0 0
\(964\) −3.91857 + 3.91857i −0.126209 + 0.126209i
\(965\) −17.5595 + 15.5266i −0.565260 + 0.499818i
\(966\) 0 0
\(967\) −14.6599 14.6599i −0.471431 0.471431i 0.430947 0.902377i \(-0.358180\pi\)
−0.902377 + 0.430947i \(0.858180\pi\)
\(968\) −7.34979 + 7.34979i −0.236231 + 0.236231i
\(969\) 0 0
\(970\) −0.789942 0.0485370i −0.0253635 0.00155843i
\(971\) 29.0063i 0.930858i 0.885085 + 0.465429i \(0.154100\pi\)
−0.885085 + 0.465429i \(0.845900\pi\)
\(972\) 0 0
\(973\) 19.4212 19.4212i 0.622614 0.622614i
\(974\) −2.26453 −0.0725601
\(975\) 0 0
\(976\) −10.8249 −0.346495
\(977\) −0.784623 + 0.784623i −0.0251023 + 0.0251023i −0.719547 0.694444i \(-0.755650\pi\)
0.694444 + 0.719547i \(0.255650\pi\)
\(978\) 0 0
\(979\) 6.26835i 0.200337i
\(980\) 43.5438 + 2.67550i 1.39096 + 0.0854656i
\(981\) 0 0
\(982\) 12.4094 12.4094i 0.396001 0.396001i
\(983\) −10.0476 10.0476i −0.320469 0.320469i 0.528478 0.848947i \(-0.322763\pi\)
−0.848947 + 0.528478i \(0.822763\pi\)
\(984\) 0 0
\(985\) 6.41472 5.67207i 0.204390 0.180727i
\(986\) −7.24427 + 7.24427i −0.230704 + 0.230704i
\(987\) 0 0
\(988\) −0.175301 0.00186194i −0.00557708 5.92362e-5i
\(989\) 45.4979i 1.44675i
\(990\) 0 0
\(991\) −45.2765 −1.43825 −0.719127 0.694878i \(-0.755458\pi\)
−0.719127 + 0.694878i \(0.755458\pi\)
\(992\) 2.47757i 0.0786630i
\(993\) 0 0
\(994\) −38.2738 + 38.2738i −1.21397 + 1.21397i
\(995\) −0.192711 + 3.13637i −0.00610934 + 0.0994297i
\(996\) 0 0
\(997\) 10.2589i 0.324903i 0.986717 + 0.162451i \(0.0519401\pi\)
−0.986717 + 0.162451i \(0.948060\pi\)
\(998\) 23.5830i 0.746507i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.q.c.629.2 yes 24
3.2 odd 2 inner 1170.2.q.c.629.10 yes 24
5.4 even 2 1170.2.q.d.629.11 yes 24
13.8 odd 4 1170.2.q.d.359.3 yes 24
15.14 odd 2 1170.2.q.d.629.3 yes 24
39.8 even 4 1170.2.q.d.359.11 yes 24
65.34 odd 4 inner 1170.2.q.c.359.10 yes 24
195.164 even 4 inner 1170.2.q.c.359.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.q.c.359.2 24 195.164 even 4 inner
1170.2.q.c.359.10 yes 24 65.34 odd 4 inner
1170.2.q.c.629.2 yes 24 1.1 even 1 trivial
1170.2.q.c.629.10 yes 24 3.2 odd 2 inner
1170.2.q.d.359.3 yes 24 13.8 odd 4
1170.2.q.d.359.11 yes 24 39.8 even 4
1170.2.q.d.629.3 yes 24 15.14 odd 2
1170.2.q.d.629.11 yes 24 5.4 even 2