Properties

Label 117.2.bc.a
Level 117117
Weight 22
Character orbit 117.bc
Analytic conductor 0.9340.934
Analytic rank 00
Dimension 4848
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,2,Mod(20,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.20");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 117=3213 117 = 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 117.bc (of order 1212, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.9342497036490.934249703649
Analytic rank: 00
Dimension: 4848
Relative dimension: 1212 over Q(ζ12)\Q(\zeta_{12})
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 48q6q22q36q46q52q6+2q730q82q912q10+6q1118q122q1312q14+4q15+14q162q184q196q20+22q21+32q99+O(q100) 48 q - 6 q^{2} - 2 q^{3} - 6 q^{4} - 6 q^{5} - 2 q^{6} + 2 q^{7} - 30 q^{8} - 2 q^{9} - 12 q^{10} + 6 q^{11} - 18 q^{12} - 2 q^{13} - 12 q^{14} + 4 q^{15} + 14 q^{16} - 2 q^{18} - 4 q^{19} - 6 q^{20} + 22 q^{21}+ \cdots - 32 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
20.1 −2.60753 0.698685i −1.12895 1.31357i 4.57899 + 2.64368i 1.93643 + 0.518864i 2.02600 + 4.21396i 1.26724 1.26724i −6.27505 6.27505i −0.450943 + 2.96591i −4.68676 2.70590i
20.2 −2.30434 0.617447i 0.895864 + 1.48237i 3.19671 + 1.84562i −0.605981 0.162372i −1.14909 3.96904i −1.66339 + 1.66339i −2.85295 2.85295i −1.39486 + 2.65601i 1.29613 + 0.748322i
20.3 −1.74626 0.467910i 0.825450 1.52271i 1.09844 + 0.634187i −3.66400 0.981766i −2.15394 + 2.27281i −0.671277 + 0.671277i 0.935276 + 0.935276i −1.63726 2.51383i 5.93893 + 3.42884i
20.4 −1.55681 0.417145i −1.30216 + 1.14210i 0.517589 + 0.298830i −0.690114 0.184916i 2.50363 1.23483i 3.10547 3.10547i 1.59819 + 1.59819i 0.391235 2.97438i 0.997239 + 0.575756i
20.5 −1.03000 0.275986i −1.73204 + 0.00536576i −0.747329 0.431471i 2.22216 + 0.595426i 1.78548 + 0.472494i −3.66177 + 3.66177i 2.15868 + 2.15868i 2.99994 0.0185875i −2.12448 1.22657i
20.6 −0.724963 0.194253i 1.63234 + 0.579188i −1.24421 0.718347i 0.862152 + 0.231013i −1.07088 0.736978i 2.34485 2.34485i 1.82389 + 1.82389i 2.32908 + 1.89087i −0.580153 0.334952i
20.7 0.0826047 + 0.0221339i 0.405260 1.68397i −1.72572 0.996343i 1.73943 + 0.466078i 0.0707492 0.130134i 0.362366 0.362366i −0.241441 0.241441i −2.67153 1.36489i 0.133369 + 0.0770004i
20.8 0.425586 + 0.114035i −1.46672 0.921268i −1.56393 0.902936i −2.94562 0.789277i −0.519158 0.559337i 0.205334 0.205334i −1.18572 1.18572i 1.30253 + 2.70248i −1.16361 0.671810i
20.9 0.863432 + 0.231356i 0.168175 + 1.72387i −1.04006 0.600479i 2.81220 + 0.753527i −0.253619 + 1.52735i −0.653306 + 0.653306i −2.02325 2.02325i −2.94343 + 0.579822i 2.25381 + 1.30124i
20.10 1.30411 + 0.349436i 1.57241 0.726303i −0.153448 0.0885935i −0.236109 0.0632653i 2.30440 0.397723i −2.19861 + 2.19861i −2.07851 2.07851i 1.94497 2.28410i −0.285806 0.165010i
20.11 1.86810 + 0.500557i 1.15921 + 1.28694i 1.50720 + 0.870184i −4.03603 1.08145i 1.52135 + 2.98439i 1.89104 1.89104i −0.355058 0.355058i −0.312441 + 2.98369i −6.99840 4.04053i
20.12 2.19401 + 0.587883i −1.52885 + 0.814015i 2.73602 + 1.57964i 0.239470 + 0.0641657i −3.83286 + 0.887173i −0.693990 + 0.693990i 1.86196 + 1.86196i 1.67476 2.48901i 0.487677 + 0.281560i
41.1 −2.60753 + 0.698685i −1.12895 + 1.31357i 4.57899 2.64368i 1.93643 0.518864i 2.02600 4.21396i 1.26724 + 1.26724i −6.27505 + 6.27505i −0.450943 2.96591i −4.68676 + 2.70590i
41.2 −2.30434 + 0.617447i 0.895864 1.48237i 3.19671 1.84562i −0.605981 + 0.162372i −1.14909 + 3.96904i −1.66339 1.66339i −2.85295 + 2.85295i −1.39486 2.65601i 1.29613 0.748322i
41.3 −1.74626 + 0.467910i 0.825450 + 1.52271i 1.09844 0.634187i −3.66400 + 0.981766i −2.15394 2.27281i −0.671277 0.671277i 0.935276 0.935276i −1.63726 + 2.51383i 5.93893 3.42884i
41.4 −1.55681 + 0.417145i −1.30216 1.14210i 0.517589 0.298830i −0.690114 + 0.184916i 2.50363 + 1.23483i 3.10547 + 3.10547i 1.59819 1.59819i 0.391235 + 2.97438i 0.997239 0.575756i
41.5 −1.03000 + 0.275986i −1.73204 0.00536576i −0.747329 + 0.431471i 2.22216 0.595426i 1.78548 0.472494i −3.66177 3.66177i 2.15868 2.15868i 2.99994 + 0.0185875i −2.12448 + 1.22657i
41.6 −0.724963 + 0.194253i 1.63234 0.579188i −1.24421 + 0.718347i 0.862152 0.231013i −1.07088 + 0.736978i 2.34485 + 2.34485i 1.82389 1.82389i 2.32908 1.89087i −0.580153 + 0.334952i
41.7 0.0826047 0.0221339i 0.405260 + 1.68397i −1.72572 + 0.996343i 1.73943 0.466078i 0.0707492 + 0.130134i 0.362366 + 0.362366i −0.241441 + 0.241441i −2.67153 + 1.36489i 0.133369 0.0770004i
41.8 0.425586 0.114035i −1.46672 + 0.921268i −1.56393 + 0.902936i −2.94562 + 0.789277i −0.519158 + 0.559337i 0.205334 + 0.205334i −1.18572 + 1.18572i 1.30253 2.70248i −1.16361 + 0.671810i
See all 48 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 20.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
117.bc even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.2.bc.a yes 48
3.b odd 2 1 351.2.bf.a 48
9.c even 3 1 351.2.ba.a 48
9.d odd 6 1 117.2.x.a 48
13.f odd 12 1 117.2.x.a 48
39.k even 12 1 351.2.ba.a 48
117.bb odd 12 1 351.2.bf.a 48
117.bc even 12 1 inner 117.2.bc.a yes 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.2.x.a 48 9.d odd 6 1
117.2.x.a 48 13.f odd 12 1
117.2.bc.a yes 48 1.a even 1 1 trivial
117.2.bc.a yes 48 117.bc even 12 1 inner
351.2.ba.a 48 9.c even 3 1
351.2.ba.a 48 39.k even 12 1
351.2.bf.a 48 3.b odd 2 1
351.2.bf.a 48 117.bb odd 12 1

Hecke kernels

This newform subspace is the entire newspace S2new(117,[χ])S_{2}^{\mathrm{new}}(117, [\chi]).