Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,2,Mod(20,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([2, 11]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.20");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.bc (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.934249703649\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20.1 | −2.60753 | − | 0.698685i | −1.12895 | − | 1.31357i | 4.57899 | + | 2.64368i | 1.93643 | + | 0.518864i | 2.02600 | + | 4.21396i | 1.26724 | − | 1.26724i | −6.27505 | − | 6.27505i | −0.450943 | + | 2.96591i | −4.68676 | − | 2.70590i |
20.2 | −2.30434 | − | 0.617447i | 0.895864 | + | 1.48237i | 3.19671 | + | 1.84562i | −0.605981 | − | 0.162372i | −1.14909 | − | 3.96904i | −1.66339 | + | 1.66339i | −2.85295 | − | 2.85295i | −1.39486 | + | 2.65601i | 1.29613 | + | 0.748322i |
20.3 | −1.74626 | − | 0.467910i | 0.825450 | − | 1.52271i | 1.09844 | + | 0.634187i | −3.66400 | − | 0.981766i | −2.15394 | + | 2.27281i | −0.671277 | + | 0.671277i | 0.935276 | + | 0.935276i | −1.63726 | − | 2.51383i | 5.93893 | + | 3.42884i |
20.4 | −1.55681 | − | 0.417145i | −1.30216 | + | 1.14210i | 0.517589 | + | 0.298830i | −0.690114 | − | 0.184916i | 2.50363 | − | 1.23483i | 3.10547 | − | 3.10547i | 1.59819 | + | 1.59819i | 0.391235 | − | 2.97438i | 0.997239 | + | 0.575756i |
20.5 | −1.03000 | − | 0.275986i | −1.73204 | + | 0.00536576i | −0.747329 | − | 0.431471i | 2.22216 | + | 0.595426i | 1.78548 | + | 0.472494i | −3.66177 | + | 3.66177i | 2.15868 | + | 2.15868i | 2.99994 | − | 0.0185875i | −2.12448 | − | 1.22657i |
20.6 | −0.724963 | − | 0.194253i | 1.63234 | + | 0.579188i | −1.24421 | − | 0.718347i | 0.862152 | + | 0.231013i | −1.07088 | − | 0.736978i | 2.34485 | − | 2.34485i | 1.82389 | + | 1.82389i | 2.32908 | + | 1.89087i | −0.580153 | − | 0.334952i |
20.7 | 0.0826047 | + | 0.0221339i | 0.405260 | − | 1.68397i | −1.72572 | − | 0.996343i | 1.73943 | + | 0.466078i | 0.0707492 | − | 0.130134i | 0.362366 | − | 0.362366i | −0.241441 | − | 0.241441i | −2.67153 | − | 1.36489i | 0.133369 | + | 0.0770004i |
20.8 | 0.425586 | + | 0.114035i | −1.46672 | − | 0.921268i | −1.56393 | − | 0.902936i | −2.94562 | − | 0.789277i | −0.519158 | − | 0.559337i | 0.205334 | − | 0.205334i | −1.18572 | − | 1.18572i | 1.30253 | + | 2.70248i | −1.16361 | − | 0.671810i |
20.9 | 0.863432 | + | 0.231356i | 0.168175 | + | 1.72387i | −1.04006 | − | 0.600479i | 2.81220 | + | 0.753527i | −0.253619 | + | 1.52735i | −0.653306 | + | 0.653306i | −2.02325 | − | 2.02325i | −2.94343 | + | 0.579822i | 2.25381 | + | 1.30124i |
20.10 | 1.30411 | + | 0.349436i | 1.57241 | − | 0.726303i | −0.153448 | − | 0.0885935i | −0.236109 | − | 0.0632653i | 2.30440 | − | 0.397723i | −2.19861 | + | 2.19861i | −2.07851 | − | 2.07851i | 1.94497 | − | 2.28410i | −0.285806 | − | 0.165010i |
20.11 | 1.86810 | + | 0.500557i | 1.15921 | + | 1.28694i | 1.50720 | + | 0.870184i | −4.03603 | − | 1.08145i | 1.52135 | + | 2.98439i | 1.89104 | − | 1.89104i | −0.355058 | − | 0.355058i | −0.312441 | + | 2.98369i | −6.99840 | − | 4.04053i |
20.12 | 2.19401 | + | 0.587883i | −1.52885 | + | 0.814015i | 2.73602 | + | 1.57964i | 0.239470 | + | 0.0641657i | −3.83286 | + | 0.887173i | −0.693990 | + | 0.693990i | 1.86196 | + | 1.86196i | 1.67476 | − | 2.48901i | 0.487677 | + | 0.281560i |
41.1 | −2.60753 | + | 0.698685i | −1.12895 | + | 1.31357i | 4.57899 | − | 2.64368i | 1.93643 | − | 0.518864i | 2.02600 | − | 4.21396i | 1.26724 | + | 1.26724i | −6.27505 | + | 6.27505i | −0.450943 | − | 2.96591i | −4.68676 | + | 2.70590i |
41.2 | −2.30434 | + | 0.617447i | 0.895864 | − | 1.48237i | 3.19671 | − | 1.84562i | −0.605981 | + | 0.162372i | −1.14909 | + | 3.96904i | −1.66339 | − | 1.66339i | −2.85295 | + | 2.85295i | −1.39486 | − | 2.65601i | 1.29613 | − | 0.748322i |
41.3 | −1.74626 | + | 0.467910i | 0.825450 | + | 1.52271i | 1.09844 | − | 0.634187i | −3.66400 | + | 0.981766i | −2.15394 | − | 2.27281i | −0.671277 | − | 0.671277i | 0.935276 | − | 0.935276i | −1.63726 | + | 2.51383i | 5.93893 | − | 3.42884i |
41.4 | −1.55681 | + | 0.417145i | −1.30216 | − | 1.14210i | 0.517589 | − | 0.298830i | −0.690114 | + | 0.184916i | 2.50363 | + | 1.23483i | 3.10547 | + | 3.10547i | 1.59819 | − | 1.59819i | 0.391235 | + | 2.97438i | 0.997239 | − | 0.575756i |
41.5 | −1.03000 | + | 0.275986i | −1.73204 | − | 0.00536576i | −0.747329 | + | 0.431471i | 2.22216 | − | 0.595426i | 1.78548 | − | 0.472494i | −3.66177 | − | 3.66177i | 2.15868 | − | 2.15868i | 2.99994 | + | 0.0185875i | −2.12448 | + | 1.22657i |
41.6 | −0.724963 | + | 0.194253i | 1.63234 | − | 0.579188i | −1.24421 | + | 0.718347i | 0.862152 | − | 0.231013i | −1.07088 | + | 0.736978i | 2.34485 | + | 2.34485i | 1.82389 | − | 1.82389i | 2.32908 | − | 1.89087i | −0.580153 | + | 0.334952i |
41.7 | 0.0826047 | − | 0.0221339i | 0.405260 | + | 1.68397i | −1.72572 | + | 0.996343i | 1.73943 | − | 0.466078i | 0.0707492 | + | 0.130134i | 0.362366 | + | 0.362366i | −0.241441 | + | 0.241441i | −2.67153 | + | 1.36489i | 0.133369 | − | 0.0770004i |
41.8 | 0.425586 | − | 0.114035i | −1.46672 | + | 0.921268i | −1.56393 | + | 0.902936i | −2.94562 | + | 0.789277i | −0.519158 | + | 0.559337i | 0.205334 | + | 0.205334i | −1.18572 | + | 1.18572i | 1.30253 | − | 2.70248i | −1.16361 | + | 0.671810i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.bc | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.2.bc.a | yes | 48 |
3.b | odd | 2 | 1 | 351.2.bf.a | 48 | ||
9.c | even | 3 | 1 | 351.2.ba.a | 48 | ||
9.d | odd | 6 | 1 | 117.2.x.a | ✓ | 48 | |
13.f | odd | 12 | 1 | 117.2.x.a | ✓ | 48 | |
39.k | even | 12 | 1 | 351.2.ba.a | 48 | ||
117.bb | odd | 12 | 1 | 351.2.bf.a | 48 | ||
117.bc | even | 12 | 1 | inner | 117.2.bc.a | yes | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.2.x.a | ✓ | 48 | 9.d | odd | 6 | 1 | |
117.2.x.a | ✓ | 48 | 13.f | odd | 12 | 1 | |
117.2.bc.a | yes | 48 | 1.a | even | 1 | 1 | trivial |
117.2.bc.a | yes | 48 | 117.bc | even | 12 | 1 | inner |
351.2.ba.a | 48 | 9.c | even | 3 | 1 | ||
351.2.ba.a | 48 | 39.k | even | 12 | 1 | ||
351.2.bf.a | 48 | 3.b | odd | 2 | 1 | ||
351.2.bf.a | 48 | 117.bb | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(117, [\chi])\).