Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,2,Mod(2,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([2, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.2");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.x (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.934249703649\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −1.90884 | − | 1.90884i | 1.70206 | − | 0.320913i | 5.28736i | 0.518864 | − | 1.93643i | −3.86154 | − | 2.63639i | 0.463844 | − | 1.73109i | 6.27505 | − | 6.27505i | 2.79403 | − | 1.09243i | −4.68676 | + | 2.70590i | ||
2.2 | −1.68690 | − | 1.68690i | −1.73170 | + | 0.0346549i | 3.69124i | −0.162372 | + | 0.605981i | 2.97967 | + | 2.86275i | −0.608844 | + | 2.27224i | 2.85295 | − | 2.85295i | 2.99760 | − | 0.120024i | 1.29613 | − | 0.748322i | ||
2.3 | −1.27835 | − | 1.27835i | 0.905977 | + | 1.47621i | 1.26837i | −0.981766 | + | 3.66400i | 0.728964 | − | 3.04528i | −0.245704 | + | 0.916981i | −0.935276 | + | 0.935276i | −1.35841 | + | 2.67483i | 5.93893 | − | 3.42884i | ||
2.4 | −1.13966 | − | 1.13966i | −0.338004 | − | 1.69875i | 0.597661i | −0.184916 | + | 0.690114i | −1.55079 | + | 2.32121i | 1.13668 | − | 4.24215i | −1.59819 | + | 1.59819i | −2.77151 | + | 1.14837i | 0.997239 | − | 0.575756i | ||
2.5 | −0.754009 | − | 0.754009i | 0.861374 | − | 1.50268i | − | 0.862941i | 0.595426 | − | 2.22216i | −1.78251 | + | 0.483547i | −1.34030 | + | 5.00206i | −2.15868 | + | 2.15868i | −1.51607 | − | 2.58873i | −2.12448 | + | 1.22657i | |
2.6 | −0.530710 | − | 0.530710i | −1.31776 | + | 1.12406i | − | 1.43669i | 0.231013 | − | 0.862152i | 1.29590 | + | 0.102802i | 0.858276 | − | 3.20313i | −1.82389 | + | 1.82389i | 0.472998 | − | 2.96248i | −0.580153 | + | 0.334952i | |
2.7 | 0.0604708 | + | 0.0604708i | 1.25573 | + | 1.19295i | − | 1.99269i | 0.466078 | − | 1.73943i | 0.00379642 | + | 0.148074i | 0.132635 | − | 0.495001i | 0.241441 | − | 0.241441i | 0.153731 | + | 2.99606i | 0.133369 | − | 0.0770004i | |
2.8 | 0.311551 | + | 0.311551i | 1.53120 | − | 0.809582i | − | 1.80587i | −0.789277 | + | 2.94562i | 0.729272 | + | 0.224821i | 0.0751575 | − | 0.280491i | 1.18572 | − | 1.18572i | 1.68915 | − | 2.47927i | −1.16361 | + | 0.671810i | |
2.9 | 0.632076 | + | 0.632076i | −1.57700 | − | 0.716290i | − | 1.20096i | 0.753527 | − | 2.81220i | −0.544035 | − | 1.44953i | −0.239127 | + | 0.892433i | 2.02325 | − | 2.02325i | 1.97386 | + | 2.25918i | 2.25381 | − | 1.30124i | |
2.10 | 0.954676 | + | 0.954676i | −0.157210 | + | 1.72490i | − | 0.177187i | −0.0632653 | + | 0.236109i | −1.79681 | + | 1.49664i | −0.804746 | + | 3.00335i | 2.07851 | − | 2.07851i | −2.95057 | − | 0.542344i | −0.285806 | + | 0.165010i | |
2.11 | 1.36755 | + | 1.36755i | −1.69413 | + | 0.360438i | 1.74037i | −1.08145 | + | 4.03603i | −2.80972 | − | 1.82389i | 0.692170 | − | 2.58321i | 0.355058 | − | 0.355058i | 2.74017 | − | 1.22126i | −6.99840 | + | 4.04053i | ||
2.12 | 1.60613 | + | 1.60613i | 0.0594668 | − | 1.73103i | 3.15929i | 0.0641657 | − | 0.239470i | 2.87576 | − | 2.68474i | −0.254018 | + | 0.948008i | −1.86196 | + | 1.86196i | −2.99293 | − | 0.205878i | 0.487677 | − | 0.281560i | ||
11.1 | −1.86694 | + | 1.86694i | 0.154854 | + | 1.72511i | − | 4.97091i | −2.60400 | − | 0.697740i | −3.50978 | − | 2.93158i | −2.18636 | − | 0.585835i | 5.54651 | + | 5.54651i | −2.95204 | + | 0.534283i | 6.16415 | − | 3.55887i | |
11.2 | −1.75651 | + | 1.75651i | −1.38793 | − | 1.03618i | − | 4.17069i | 3.52054 | + | 0.943327i | 4.25797 | − | 0.617852i | −1.05231 | − | 0.281966i | 3.81284 | + | 3.81284i | 0.852675 | + | 2.87627i | −7.84085 | + | 4.52692i | |
11.3 | −1.53591 | + | 1.53591i | 1.40963 | − | 1.00645i | − | 2.71806i | −0.529972 | − | 0.142006i | −0.619261 | + | 3.71089i | 4.13954 | + | 1.10919i | 1.10288 | + | 1.10288i | 0.974134 | − | 2.83744i | 1.03210 | − | 0.595883i | |
11.4 | −0.841634 | + | 0.841634i | −0.947612 | − | 1.44984i | 0.583303i | −2.77680 | − | 0.744040i | 2.01778 | + | 0.422691i | −1.42554 | − | 0.381973i | −2.17420 | − | 2.17420i | −1.20406 | + | 2.74777i | 2.96326 | − | 1.71084i | ||
11.5 | −0.662754 | + | 0.662754i | 1.56154 | + | 0.749386i | 1.12151i | 0.101414 | + | 0.0271738i | −1.53158 | + | 0.538261i | −0.353095 | − | 0.0946115i | −2.06880 | − | 2.06880i | 1.87684 | + | 2.34040i | −0.0852221 | + | 0.0492030i | ||
11.6 | −0.0488315 | + | 0.0488315i | 0.804456 | − | 1.53390i | 1.99523i | 2.57746 | + | 0.690628i | 0.0356199 | + | 0.114186i | −2.39973 | − | 0.643006i | −0.195093 | − | 0.195093i | −1.70570 | − | 2.46791i | −0.159586 | + | 0.0921368i | ||
11.7 | 0.286505 | − | 0.286505i | −1.72577 | − | 0.147373i | 1.83583i | 2.00620 | + | 0.537559i | −0.536665 | + | 0.452219i | 1.90533 | + | 0.510531i | 1.09899 | + | 1.09899i | 2.95656 | + | 0.508664i | 0.728800 | − | 0.420773i | ||
11.8 | 0.375702 | − | 0.375702i | −0.0440912 | + | 1.73149i | 1.71770i | −2.85246 | − | 0.764314i | 0.633958 | + | 0.667088i | 3.85210 | + | 1.03217i | 1.39674 | + | 1.39674i | −2.99611 | − | 0.152687i | −1.35883 | + | 0.784520i | ||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.x | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.2.x.a | ✓ | 48 |
3.b | odd | 2 | 1 | 351.2.ba.a | 48 | ||
9.c | even | 3 | 1 | 351.2.bf.a | 48 | ||
9.d | odd | 6 | 1 | 117.2.bc.a | yes | 48 | |
13.f | odd | 12 | 1 | 117.2.bc.a | yes | 48 | |
39.k | even | 12 | 1 | 351.2.bf.a | 48 | ||
117.w | odd | 12 | 1 | 351.2.ba.a | 48 | ||
117.x | even | 12 | 1 | inner | 117.2.x.a | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.2.x.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
117.2.x.a | ✓ | 48 | 117.x | even | 12 | 1 | inner |
117.2.bc.a | yes | 48 | 9.d | odd | 6 | 1 | |
117.2.bc.a | yes | 48 | 13.f | odd | 12 | 1 | |
351.2.ba.a | 48 | 3.b | odd | 2 | 1 | ||
351.2.ba.a | 48 | 117.w | odd | 12 | 1 | ||
351.2.bf.a | 48 | 9.c | even | 3 | 1 | ||
351.2.bf.a | 48 | 39.k | even | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(117, [\chi])\).