Properties

Label 117.2.x.a
Level $117$
Weight $2$
Character orbit 117.x
Analytic conductor $0.934$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,2,Mod(2,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 117.x (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.934249703649\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 48 q - 6 q^{2} - 2 q^{3} - 6 q^{5} - 8 q^{6} - 4 q^{7} + 30 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 48 q - 6 q^{2} - 2 q^{3} - 6 q^{5} - 8 q^{6} - 4 q^{7} + 30 q^{8} - 2 q^{9} - 12 q^{10} - 6 q^{11} + 18 q^{12} - 2 q^{13} - 12 q^{14} - 26 q^{15} - 28 q^{16} - 14 q^{18} - 4 q^{19} - 18 q^{20} - 8 q^{21} - 4 q^{22} - 6 q^{23} + 6 q^{24} - 48 q^{26} - 32 q^{27} + 42 q^{30} - 18 q^{31} + 54 q^{32} + 28 q^{33} + 6 q^{34} + 6 q^{35} + 24 q^{36} - 6 q^{37} + 36 q^{38} + 10 q^{39} - 12 q^{40} + 18 q^{41} - 70 q^{42} - 30 q^{43} + 12 q^{44} + 40 q^{45} - 12 q^{46} - 36 q^{47} - 14 q^{48} - 6 q^{49} - 60 q^{50} + 56 q^{52} + 34 q^{54} - 4 q^{55} - 6 q^{56} - 56 q^{57} + 50 q^{58} - 6 q^{59} + 44 q^{60} + 2 q^{61} + 18 q^{62} + 22 q^{63} + 72 q^{65} + 32 q^{66} + 26 q^{67} + 42 q^{68} + 30 q^{69} - 16 q^{70} - 48 q^{71} + 30 q^{72} - 22 q^{73} + 30 q^{74} - 24 q^{75} + 6 q^{76} + 72 q^{77} - 20 q^{78} + 8 q^{79} - 54 q^{80} + 82 q^{81} - 12 q^{82} + 54 q^{83} - 38 q^{84} - 24 q^{85} - 54 q^{86} + 2 q^{87} - 114 q^{90} - 16 q^{91} + 120 q^{92} + 52 q^{93} + 26 q^{94} - 12 q^{95} + 94 q^{96} - 24 q^{97} + 36 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2.1 −1.90884 1.90884i 1.70206 0.320913i 5.28736i 0.518864 1.93643i −3.86154 2.63639i 0.463844 1.73109i 6.27505 6.27505i 2.79403 1.09243i −4.68676 + 2.70590i
2.2 −1.68690 1.68690i −1.73170 + 0.0346549i 3.69124i −0.162372 + 0.605981i 2.97967 + 2.86275i −0.608844 + 2.27224i 2.85295 2.85295i 2.99760 0.120024i 1.29613 0.748322i
2.3 −1.27835 1.27835i 0.905977 + 1.47621i 1.26837i −0.981766 + 3.66400i 0.728964 3.04528i −0.245704 + 0.916981i −0.935276 + 0.935276i −1.35841 + 2.67483i 5.93893 3.42884i
2.4 −1.13966 1.13966i −0.338004 1.69875i 0.597661i −0.184916 + 0.690114i −1.55079 + 2.32121i 1.13668 4.24215i −1.59819 + 1.59819i −2.77151 + 1.14837i 0.997239 0.575756i
2.5 −0.754009 0.754009i 0.861374 1.50268i 0.862941i 0.595426 2.22216i −1.78251 + 0.483547i −1.34030 + 5.00206i −2.15868 + 2.15868i −1.51607 2.58873i −2.12448 + 1.22657i
2.6 −0.530710 0.530710i −1.31776 + 1.12406i 1.43669i 0.231013 0.862152i 1.29590 + 0.102802i 0.858276 3.20313i −1.82389 + 1.82389i 0.472998 2.96248i −0.580153 + 0.334952i
2.7 0.0604708 + 0.0604708i 1.25573 + 1.19295i 1.99269i 0.466078 1.73943i 0.00379642 + 0.148074i 0.132635 0.495001i 0.241441 0.241441i 0.153731 + 2.99606i 0.133369 0.0770004i
2.8 0.311551 + 0.311551i 1.53120 0.809582i 1.80587i −0.789277 + 2.94562i 0.729272 + 0.224821i 0.0751575 0.280491i 1.18572 1.18572i 1.68915 2.47927i −1.16361 + 0.671810i
2.9 0.632076 + 0.632076i −1.57700 0.716290i 1.20096i 0.753527 2.81220i −0.544035 1.44953i −0.239127 + 0.892433i 2.02325 2.02325i 1.97386 + 2.25918i 2.25381 1.30124i
2.10 0.954676 + 0.954676i −0.157210 + 1.72490i 0.177187i −0.0632653 + 0.236109i −1.79681 + 1.49664i −0.804746 + 3.00335i 2.07851 2.07851i −2.95057 0.542344i −0.285806 + 0.165010i
2.11 1.36755 + 1.36755i −1.69413 + 0.360438i 1.74037i −1.08145 + 4.03603i −2.80972 1.82389i 0.692170 2.58321i 0.355058 0.355058i 2.74017 1.22126i −6.99840 + 4.04053i
2.12 1.60613 + 1.60613i 0.0594668 1.73103i 3.15929i 0.0641657 0.239470i 2.87576 2.68474i −0.254018 + 0.948008i −1.86196 + 1.86196i −2.99293 0.205878i 0.487677 0.281560i
11.1 −1.86694 + 1.86694i 0.154854 + 1.72511i 4.97091i −2.60400 0.697740i −3.50978 2.93158i −2.18636 0.585835i 5.54651 + 5.54651i −2.95204 + 0.534283i 6.16415 3.55887i
11.2 −1.75651 + 1.75651i −1.38793 1.03618i 4.17069i 3.52054 + 0.943327i 4.25797 0.617852i −1.05231 0.281966i 3.81284 + 3.81284i 0.852675 + 2.87627i −7.84085 + 4.52692i
11.3 −1.53591 + 1.53591i 1.40963 1.00645i 2.71806i −0.529972 0.142006i −0.619261 + 3.71089i 4.13954 + 1.10919i 1.10288 + 1.10288i 0.974134 2.83744i 1.03210 0.595883i
11.4 −0.841634 + 0.841634i −0.947612 1.44984i 0.583303i −2.77680 0.744040i 2.01778 + 0.422691i −1.42554 0.381973i −2.17420 2.17420i −1.20406 + 2.74777i 2.96326 1.71084i
11.5 −0.662754 + 0.662754i 1.56154 + 0.749386i 1.12151i 0.101414 + 0.0271738i −1.53158 + 0.538261i −0.353095 0.0946115i −2.06880 2.06880i 1.87684 + 2.34040i −0.0852221 + 0.0492030i
11.6 −0.0488315 + 0.0488315i 0.804456 1.53390i 1.99523i 2.57746 + 0.690628i 0.0356199 + 0.114186i −2.39973 0.643006i −0.195093 0.195093i −1.70570 2.46791i −0.159586 + 0.0921368i
11.7 0.286505 0.286505i −1.72577 0.147373i 1.83583i 2.00620 + 0.537559i −0.536665 + 0.452219i 1.90533 + 0.510531i 1.09899 + 1.09899i 2.95656 + 0.508664i 0.728800 0.420773i
11.8 0.375702 0.375702i −0.0440912 + 1.73149i 1.71770i −2.85246 0.764314i 0.633958 + 0.667088i 3.85210 + 1.03217i 1.39674 + 1.39674i −2.99611 0.152687i −1.35883 + 0.784520i
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
117.x even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.2.x.a 48
3.b odd 2 1 351.2.ba.a 48
9.c even 3 1 351.2.bf.a 48
9.d odd 6 1 117.2.bc.a yes 48
13.f odd 12 1 117.2.bc.a yes 48
39.k even 12 1 351.2.bf.a 48
117.w odd 12 1 351.2.ba.a 48
117.x even 12 1 inner 117.2.x.a 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.2.x.a 48 1.a even 1 1 trivial
117.2.x.a 48 117.x even 12 1 inner
117.2.bc.a yes 48 9.d odd 6 1
117.2.bc.a yes 48 13.f odd 12 1
351.2.ba.a 48 3.b odd 2 1
351.2.ba.a 48 117.w odd 12 1
351.2.bf.a 48 9.c even 3 1
351.2.bf.a 48 39.k even 12 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(117, [\chi])\).