Properties

Label 1166.2.c.b.529.9
Level $1166$
Weight $2$
Character 1166.529
Analytic conductor $9.311$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1166,2,Mod(529,1166)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1166, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1166.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,-22,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.31055687568\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.9
Character \(\chi\) \(=\) 1166.529
Dual form 1166.2.c.b.529.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +1.49995i q^{3} -1.00000 q^{4} -4.12793i q^{5} +1.49995 q^{6} -0.327299 q^{7} +1.00000i q^{8} +0.750159 q^{9} -4.12793 q^{10} -1.00000 q^{11} -1.49995i q^{12} -6.53814 q^{13} +0.327299i q^{14} +6.19168 q^{15} +1.00000 q^{16} -2.35430 q^{17} -0.750159i q^{18} -2.67844i q^{19} +4.12793i q^{20} -0.490931i q^{21} +1.00000i q^{22} -3.59400i q^{23} -1.49995 q^{24} -12.0398 q^{25} +6.53814i q^{26} +5.62504i q^{27} +0.327299 q^{28} +6.50589 q^{29} -6.19168i q^{30} +8.56689i q^{31} -1.00000i q^{32} -1.49995i q^{33} +2.35430i q^{34} +1.35107i q^{35} -0.750159 q^{36} -7.12241 q^{37} -2.67844 q^{38} -9.80686i q^{39} +4.12793 q^{40} -2.13251i q^{41} -0.490931 q^{42} +2.21010 q^{43} +1.00000 q^{44} -3.09660i q^{45} -3.59400 q^{46} -4.65172 q^{47} +1.49995i q^{48} -6.89288 q^{49} +12.0398i q^{50} -3.53133i q^{51} +6.53814 q^{52} +(-2.68277 + 6.76777i) q^{53} +5.62504 q^{54} +4.12793i q^{55} -0.327299i q^{56} +4.01751 q^{57} -6.50589i q^{58} -3.31481 q^{59} -6.19168 q^{60} -6.96964i q^{61} +8.56689 q^{62} -0.245526 q^{63} -1.00000 q^{64} +26.9890i q^{65} -1.49995 q^{66} +13.5065i q^{67} +2.35430 q^{68} +5.39080 q^{69} +1.35107 q^{70} -10.4988i q^{71} +0.750159i q^{72} -7.18906i q^{73} +7.12241i q^{74} -18.0591i q^{75} +2.67844i q^{76} +0.327299 q^{77} -9.80686 q^{78} -12.3156i q^{79} -4.12793i q^{80} -6.18679 q^{81} -2.13251 q^{82} -5.55901i q^{83} +0.490931i q^{84} +9.71841i q^{85} -2.21010i q^{86} +9.75849i q^{87} -1.00000i q^{88} -4.36174 q^{89} -3.09660 q^{90} +2.13992 q^{91} +3.59400i q^{92} -12.8499 q^{93} +4.65172i q^{94} -11.0564 q^{95} +1.49995 q^{96} -15.3507 q^{97} +6.89288i q^{98} -0.750159 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 22 q^{4} - 6 q^{6} - 24 q^{9} + 4 q^{10} - 22 q^{11} + 6 q^{13} + 30 q^{15} + 22 q^{16} + 18 q^{17} + 6 q^{24} - 30 q^{25} + 28 q^{29} + 24 q^{36} - 34 q^{37} - 18 q^{38} - 4 q^{40} + 4 q^{42} - 34 q^{43}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1166\mathbb{Z}\right)^\times\).

\(n\) \(849\) \(903\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.49995i 0.865995i 0.901395 + 0.432997i \(0.142544\pi\)
−0.901395 + 0.432997i \(0.857456\pi\)
\(4\) −1.00000 −0.500000
\(5\) 4.12793i 1.84607i −0.384719 0.923034i \(-0.625702\pi\)
0.384719 0.923034i \(-0.374298\pi\)
\(6\) 1.49995 0.612351
\(7\) −0.327299 −0.123707 −0.0618536 0.998085i \(-0.519701\pi\)
−0.0618536 + 0.998085i \(0.519701\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.750159 0.250053
\(10\) −4.12793 −1.30537
\(11\) −1.00000 −0.301511
\(12\) 1.49995i 0.432997i
\(13\) −6.53814 −1.81335 −0.906677 0.421827i \(-0.861389\pi\)
−0.906677 + 0.421827i \(0.861389\pi\)
\(14\) 0.327299i 0.0874742i
\(15\) 6.19168 1.59868
\(16\) 1.00000 0.250000
\(17\) −2.35430 −0.571003 −0.285501 0.958378i \(-0.592160\pi\)
−0.285501 + 0.958378i \(0.592160\pi\)
\(18\) 0.750159i 0.176814i
\(19\) 2.67844i 0.614475i −0.951633 0.307238i \(-0.900595\pi\)
0.951633 0.307238i \(-0.0994047\pi\)
\(20\) 4.12793i 0.923034i
\(21\) 0.490931i 0.107130i
\(22\) 1.00000i 0.213201i
\(23\) 3.59400i 0.749400i −0.927146 0.374700i \(-0.877746\pi\)
0.927146 0.374700i \(-0.122254\pi\)
\(24\) −1.49995 −0.306175
\(25\) −12.0398 −2.40796
\(26\) 6.53814i 1.28223i
\(27\) 5.62504i 1.08254i
\(28\) 0.327299 0.0618536
\(29\) 6.50589 1.20811 0.604057 0.796941i \(-0.293550\pi\)
0.604057 + 0.796941i \(0.293550\pi\)
\(30\) 6.19168i 1.13044i
\(31\) 8.56689i 1.53866i 0.638852 + 0.769329i \(0.279409\pi\)
−0.638852 + 0.769329i \(0.720591\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 1.49995i 0.261107i
\(34\) 2.35430i 0.403760i
\(35\) 1.35107i 0.228372i
\(36\) −0.750159 −0.125026
\(37\) −7.12241 −1.17092 −0.585458 0.810702i \(-0.699085\pi\)
−0.585458 + 0.810702i \(0.699085\pi\)
\(38\) −2.67844 −0.434500
\(39\) 9.80686i 1.57035i
\(40\) 4.12793 0.652683
\(41\) 2.13251i 0.333042i −0.986038 0.166521i \(-0.946747\pi\)
0.986038 0.166521i \(-0.0532534\pi\)
\(42\) −0.490931 −0.0757522
\(43\) 2.21010 0.337037 0.168519 0.985698i \(-0.446102\pi\)
0.168519 + 0.985698i \(0.446102\pi\)
\(44\) 1.00000 0.150756
\(45\) 3.09660i 0.461614i
\(46\) −3.59400 −0.529906
\(47\) −4.65172 −0.678523 −0.339261 0.940692i \(-0.610177\pi\)
−0.339261 + 0.940692i \(0.610177\pi\)
\(48\) 1.49995i 0.216499i
\(49\) −6.89288 −0.984697
\(50\) 12.0398i 1.70269i
\(51\) 3.53133i 0.494485i
\(52\) 6.53814 0.906677
\(53\) −2.68277 + 6.76777i −0.368507 + 0.929625i
\(54\) 5.62504 0.765471
\(55\) 4.12793i 0.556610i
\(56\) 0.327299i 0.0437371i
\(57\) 4.01751 0.532133
\(58\) 6.50589i 0.854265i
\(59\) −3.31481 −0.431552 −0.215776 0.976443i \(-0.569228\pi\)
−0.215776 + 0.976443i \(0.569228\pi\)
\(60\) −6.19168 −0.799342
\(61\) 6.96964i 0.892371i −0.894940 0.446186i \(-0.852782\pi\)
0.894940 0.446186i \(-0.147218\pi\)
\(62\) 8.56689 1.08800
\(63\) −0.245526 −0.0309333
\(64\) −1.00000 −0.125000
\(65\) 26.9890i 3.34757i
\(66\) −1.49995 −0.184631
\(67\) 13.5065i 1.65009i 0.565070 + 0.825043i \(0.308849\pi\)
−0.565070 + 0.825043i \(0.691151\pi\)
\(68\) 2.35430 0.285501
\(69\) 5.39080 0.648976
\(70\) 1.35107 0.161483
\(71\) 10.4988i 1.24598i −0.782231 0.622989i \(-0.785918\pi\)
0.782231 0.622989i \(-0.214082\pi\)
\(72\) 0.750159i 0.0884070i
\(73\) 7.18906i 0.841415i −0.907196 0.420708i \(-0.861782\pi\)
0.907196 0.420708i \(-0.138218\pi\)
\(74\) 7.12241i 0.827963i
\(75\) 18.0591i 2.08528i
\(76\) 2.67844i 0.307238i
\(77\) 0.327299 0.0372991
\(78\) −9.80686 −1.11041
\(79\) 12.3156i 1.38562i −0.721122 0.692808i \(-0.756373\pi\)
0.721122 0.692808i \(-0.243627\pi\)
\(80\) 4.12793i 0.461517i
\(81\) −6.18679 −0.687421
\(82\) −2.13251 −0.235496
\(83\) 5.55901i 0.610181i −0.952323 0.305091i \(-0.901313\pi\)
0.952323 0.305091i \(-0.0986867\pi\)
\(84\) 0.490931i 0.0535649i
\(85\) 9.71841i 1.05411i
\(86\) 2.21010i 0.238321i
\(87\) 9.75849i 1.04622i
\(88\) 1.00000i 0.106600i
\(89\) −4.36174 −0.462344 −0.231172 0.972913i \(-0.574256\pi\)
−0.231172 + 0.972913i \(0.574256\pi\)
\(90\) −3.09660 −0.326411
\(91\) 2.13992 0.224325
\(92\) 3.59400i 0.374700i
\(93\) −12.8499 −1.33247
\(94\) 4.65172i 0.479788i
\(95\) −11.0564 −1.13436
\(96\) 1.49995 0.153088
\(97\) −15.3507 −1.55863 −0.779313 0.626635i \(-0.784432\pi\)
−0.779313 + 0.626635i \(0.784432\pi\)
\(98\) 6.89288i 0.696286i
\(99\) −0.750159 −0.0753938
\(100\) 12.0398 1.20398
\(101\) 7.71192i 0.767365i −0.923465 0.383682i \(-0.874656\pi\)
0.923465 0.383682i \(-0.125344\pi\)
\(102\) −3.53133 −0.349654
\(103\) 7.76894i 0.765497i −0.923853 0.382748i \(-0.874978\pi\)
0.923853 0.382748i \(-0.125022\pi\)
\(104\) 6.53814i 0.641117i
\(105\) −2.02653 −0.197769
\(106\) 6.76777 + 2.68277i 0.657344 + 0.260574i
\(107\) −7.06621 −0.683116 −0.341558 0.939861i \(-0.610955\pi\)
−0.341558 + 0.939861i \(0.610955\pi\)
\(108\) 5.62504i 0.541270i
\(109\) 12.6393i 1.21063i 0.795986 + 0.605315i \(0.206953\pi\)
−0.795986 + 0.605315i \(0.793047\pi\)
\(110\) 4.12793 0.393583
\(111\) 10.6832i 1.01401i
\(112\) −0.327299 −0.0309268
\(113\) −6.27797 −0.590581 −0.295291 0.955407i \(-0.595416\pi\)
−0.295291 + 0.955407i \(0.595416\pi\)
\(114\) 4.01751i 0.376275i
\(115\) −14.8358 −1.38344
\(116\) −6.50589 −0.604057
\(117\) −4.90464 −0.453434
\(118\) 3.31481i 0.305153i
\(119\) 0.770560 0.0706371
\(120\) 6.19168i 0.565220i
\(121\) 1.00000 0.0909091
\(122\) −6.96964 −0.631002
\(123\) 3.19865 0.288413
\(124\) 8.56689i 0.769329i
\(125\) 29.0599i 2.59920i
\(126\) 0.245526i 0.0218732i
\(127\) 17.7193i 1.57234i −0.618012 0.786169i \(-0.712062\pi\)
0.618012 0.786169i \(-0.287938\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 3.31504i 0.291873i
\(130\) 26.9890 2.36709
\(131\) 3.64825 0.318749 0.159374 0.987218i \(-0.449052\pi\)
0.159374 + 0.987218i \(0.449052\pi\)
\(132\) 1.49995i 0.130554i
\(133\) 0.876648i 0.0760150i
\(134\) 13.5065 1.16679
\(135\) 23.2198 1.99844
\(136\) 2.35430i 0.201880i
\(137\) 10.6768i 0.912178i 0.889934 + 0.456089i \(0.150750\pi\)
−0.889934 + 0.456089i \(0.849250\pi\)
\(138\) 5.39080i 0.458896i
\(139\) 0.488252i 0.0414130i −0.999786 0.0207065i \(-0.993408\pi\)
0.999786 0.0207065i \(-0.00659155\pi\)
\(140\) 1.35107i 0.114186i
\(141\) 6.97733i 0.587597i
\(142\) −10.4988 −0.881039
\(143\) 6.53814 0.546747
\(144\) 0.750159 0.0625132
\(145\) 26.8559i 2.23026i
\(146\) −7.18906 −0.594970
\(147\) 10.3389i 0.852742i
\(148\) 7.12241 0.585458
\(149\) 18.6351 1.52664 0.763322 0.646018i \(-0.223567\pi\)
0.763322 + 0.646018i \(0.223567\pi\)
\(150\) −18.0591 −1.47452
\(151\) 20.3460i 1.65573i −0.560924 0.827867i \(-0.689554\pi\)
0.560924 0.827867i \(-0.310446\pi\)
\(152\) 2.67844 0.217250
\(153\) −1.76610 −0.142781
\(154\) 0.327299i 0.0263745i
\(155\) 35.3635 2.84047
\(156\) 9.80686i 0.785177i
\(157\) 6.51469i 0.519929i −0.965618 0.259964i \(-0.916289\pi\)
0.965618 0.259964i \(-0.0837108\pi\)
\(158\) −12.3156 −0.979779
\(159\) −10.1513 4.02402i −0.805050 0.319125i
\(160\) −4.12793 −0.326342
\(161\) 1.17631i 0.0927062i
\(162\) 6.18679i 0.486080i
\(163\) 21.8674 1.71278 0.856392 0.516326i \(-0.172701\pi\)
0.856392 + 0.516326i \(0.172701\pi\)
\(164\) 2.13251i 0.166521i
\(165\) −6.19168 −0.482022
\(166\) −5.55901 −0.431463
\(167\) 8.00140i 0.619167i 0.950872 + 0.309584i \(0.100190\pi\)
−0.950872 + 0.309584i \(0.899810\pi\)
\(168\) 0.490931 0.0378761
\(169\) 29.7472 2.28825
\(170\) 9.71841 0.745368
\(171\) 2.00925i 0.153651i
\(172\) −2.21010 −0.168519
\(173\) 11.3962i 0.866434i 0.901290 + 0.433217i \(0.142622\pi\)
−0.901290 + 0.433217i \(0.857378\pi\)
\(174\) 9.75849 0.739789
\(175\) 3.94062 0.297883
\(176\) −1.00000 −0.0753778
\(177\) 4.97204i 0.373721i
\(178\) 4.36174i 0.326927i
\(179\) 4.06672i 0.303961i 0.988383 + 0.151981i \(0.0485651\pi\)
−0.988383 + 0.151981i \(0.951435\pi\)
\(180\) 3.09660i 0.230807i
\(181\) 6.07048i 0.451215i 0.974218 + 0.225608i \(0.0724368\pi\)
−0.974218 + 0.225608i \(0.927563\pi\)
\(182\) 2.13992i 0.158622i
\(183\) 10.4541 0.772789
\(184\) 3.59400 0.264953
\(185\) 29.4008i 2.16159i
\(186\) 12.8499i 0.942199i
\(187\) 2.35430 0.172164
\(188\) 4.65172 0.339261
\(189\) 1.84107i 0.133918i
\(190\) 11.0564i 0.802116i
\(191\) 0.0645017i 0.00466718i −0.999997 0.00233359i \(-0.999257\pi\)
0.999997 0.00233359i \(-0.000742806\pi\)
\(192\) 1.49995i 0.108249i
\(193\) 7.53924i 0.542687i −0.962483 0.271343i \(-0.912532\pi\)
0.962483 0.271343i \(-0.0874679\pi\)
\(194\) 15.3507i 1.10211i
\(195\) −40.4820 −2.89898
\(196\) 6.89288 0.492348
\(197\) 23.4862 1.67332 0.836660 0.547722i \(-0.184505\pi\)
0.836660 + 0.547722i \(0.184505\pi\)
\(198\) 0.750159i 0.0533115i
\(199\) 7.74218 0.548829 0.274414 0.961612i \(-0.411516\pi\)
0.274414 + 0.961612i \(0.411516\pi\)
\(200\) 12.0398i 0.851344i
\(201\) −20.2591 −1.42897
\(202\) −7.71192 −0.542609
\(203\) −2.12937 −0.149452
\(204\) 3.53133i 0.247243i
\(205\) −8.80286 −0.614818
\(206\) −7.76894 −0.541288
\(207\) 2.69607i 0.187390i
\(208\) −6.53814 −0.453338
\(209\) 2.67844i 0.185271i
\(210\) 2.02653i 0.139844i
\(211\) 8.17360 0.562694 0.281347 0.959606i \(-0.409219\pi\)
0.281347 + 0.959606i \(0.409219\pi\)
\(212\) 2.68277 6.76777i 0.184254 0.464812i
\(213\) 15.7476 1.07901
\(214\) 7.06621i 0.483036i
\(215\) 9.12315i 0.622194i
\(216\) −5.62504 −0.382735
\(217\) 2.80393i 0.190343i
\(218\) 12.6393 0.856045
\(219\) 10.7832 0.728661
\(220\) 4.12793i 0.278305i
\(221\) 15.3928 1.03543
\(222\) −10.6832 −0.717012
\(223\) 8.11044 0.543115 0.271558 0.962422i \(-0.412461\pi\)
0.271558 + 0.962422i \(0.412461\pi\)
\(224\) 0.327299i 0.0218686i
\(225\) −9.03177 −0.602118
\(226\) 6.27797i 0.417604i
\(227\) −6.42422 −0.426391 −0.213195 0.977010i \(-0.568387\pi\)
−0.213195 + 0.977010i \(0.568387\pi\)
\(228\) −4.01751 −0.266066
\(229\) 17.1107 1.13070 0.565352 0.824850i \(-0.308740\pi\)
0.565352 + 0.824850i \(0.308740\pi\)
\(230\) 14.8358i 0.978242i
\(231\) 0.490931i 0.0323009i
\(232\) 6.50589i 0.427133i
\(233\) 6.88848i 0.451280i −0.974211 0.225640i \(-0.927553\pi\)
0.974211 0.225640i \(-0.0724472\pi\)
\(234\) 4.90464i 0.320626i
\(235\) 19.2020i 1.25260i
\(236\) 3.31481 0.215776
\(237\) 18.4728 1.19994
\(238\) 0.770560i 0.0499480i
\(239\) 6.49626i 0.420208i 0.977679 + 0.210104i \(0.0673802\pi\)
−0.977679 + 0.210104i \(0.932620\pi\)
\(240\) 6.19168 0.399671
\(241\) −8.48537 −0.546591 −0.273295 0.961930i \(-0.588114\pi\)
−0.273295 + 0.961930i \(0.588114\pi\)
\(242\) 1.00000i 0.0642824i
\(243\) 7.59527i 0.487237i
\(244\) 6.96964i 0.446186i
\(245\) 28.4533i 1.81782i
\(246\) 3.19865i 0.203939i
\(247\) 17.5120i 1.11426i
\(248\) −8.56689 −0.543998
\(249\) 8.33823 0.528414
\(250\) 29.0599 1.83791
\(251\) 17.0955i 1.07906i −0.841966 0.539531i \(-0.818602\pi\)
0.841966 0.539531i \(-0.181398\pi\)
\(252\) 0.245526 0.0154667
\(253\) 3.59400i 0.225953i
\(254\) −17.7193 −1.11181
\(255\) −14.5771 −0.912853
\(256\) 1.00000 0.0625000
\(257\) 20.6923i 1.29075i −0.763865 0.645376i \(-0.776701\pi\)
0.763865 0.645376i \(-0.223299\pi\)
\(258\) 3.31504 0.206385
\(259\) 2.33115 0.144851
\(260\) 26.9890i 1.67379i
\(261\) 4.88045 0.302092
\(262\) 3.64825i 0.225390i
\(263\) 21.1472i 1.30399i −0.758221 0.651997i \(-0.773931\pi\)
0.758221 0.651997i \(-0.226069\pi\)
\(264\) 1.49995 0.0923154
\(265\) 27.9369 + 11.0743i 1.71615 + 0.680289i
\(266\) 0.876648 0.0537508
\(267\) 6.54239i 0.400388i
\(268\) 13.5065i 0.825043i
\(269\) −0.717681 −0.0437578 −0.0218789 0.999761i \(-0.506965\pi\)
−0.0218789 + 0.999761i \(0.506965\pi\)
\(270\) 23.2198i 1.41311i
\(271\) −17.6289 −1.07088 −0.535439 0.844574i \(-0.679854\pi\)
−0.535439 + 0.844574i \(0.679854\pi\)
\(272\) −2.35430 −0.142751
\(273\) 3.20977i 0.194264i
\(274\) 10.6768 0.645008
\(275\) 12.0398 0.726028
\(276\) −5.39080 −0.324488
\(277\) 23.6890i 1.42334i −0.702516 0.711668i \(-0.747940\pi\)
0.702516 0.711668i \(-0.252060\pi\)
\(278\) −0.488252 −0.0292834
\(279\) 6.42653i 0.384746i
\(280\) −1.35107 −0.0807416
\(281\) −28.6005 −1.70616 −0.853081 0.521778i \(-0.825269\pi\)
−0.853081 + 0.521778i \(0.825269\pi\)
\(282\) −6.97733 −0.415494
\(283\) 3.01087i 0.178978i 0.995988 + 0.0894889i \(0.0285234\pi\)
−0.995988 + 0.0894889i \(0.971477\pi\)
\(284\) 10.4988i 0.622989i
\(285\) 16.5840i 0.982352i
\(286\) 6.53814i 0.386608i
\(287\) 0.697968i 0.0411997i
\(288\) 0.750159i 0.0442035i
\(289\) −11.4573 −0.673956
\(290\) −26.8559 −1.57703
\(291\) 23.0252i 1.34976i
\(292\) 7.18906i 0.420708i
\(293\) −3.57590 −0.208906 −0.104453 0.994530i \(-0.533309\pi\)
−0.104453 + 0.994530i \(0.533309\pi\)
\(294\) −10.3389 −0.602980
\(295\) 13.6833i 0.796673i
\(296\) 7.12241i 0.413982i
\(297\) 5.62504i 0.326398i
\(298\) 18.6351i 1.07950i
\(299\) 23.4980i 1.35893i
\(300\) 18.0591i 1.04264i
\(301\) −0.723363 −0.0416940
\(302\) −20.3460 −1.17078
\(303\) 11.5675 0.664534
\(304\) 2.67844i 0.153619i
\(305\) −28.7702 −1.64738
\(306\) 1.76610i 0.100961i
\(307\) 18.8480 1.07571 0.537856 0.843037i \(-0.319234\pi\)
0.537856 + 0.843037i \(0.319234\pi\)
\(308\) −0.327299 −0.0186496
\(309\) 11.6530 0.662916
\(310\) 35.3635i 2.00851i
\(311\) 9.22585 0.523150 0.261575 0.965183i \(-0.415758\pi\)
0.261575 + 0.965183i \(0.415758\pi\)
\(312\) 9.80686 0.555204
\(313\) 24.2936i 1.37316i −0.727056 0.686578i \(-0.759112\pi\)
0.727056 0.686578i \(-0.240888\pi\)
\(314\) −6.51469 −0.367645
\(315\) 1.01351i 0.0571050i
\(316\) 12.3156i 0.692808i
\(317\) 9.06290 0.509023 0.254512 0.967070i \(-0.418085\pi\)
0.254512 + 0.967070i \(0.418085\pi\)
\(318\) −4.02402 + 10.1513i −0.225656 + 0.569257i
\(319\) −6.50589 −0.364260
\(320\) 4.12793i 0.230758i
\(321\) 10.5989i 0.591575i
\(322\) 1.17631 0.0655532
\(323\) 6.30585i 0.350867i
\(324\) 6.18679 0.343710
\(325\) 78.7180 4.36649
\(326\) 21.8674i 1.21112i
\(327\) −18.9584 −1.04840
\(328\) 2.13251 0.117748
\(329\) 1.52250 0.0839382
\(330\) 6.19168i 0.340841i
\(331\) −29.1632 −1.60296 −0.801478 0.598024i \(-0.795953\pi\)
−0.801478 + 0.598024i \(0.795953\pi\)
\(332\) 5.55901i 0.305091i
\(333\) −5.34294 −0.292791
\(334\) 8.00140 0.437817
\(335\) 55.7541 3.04617
\(336\) 0.490931i 0.0267825i
\(337\) 2.91211i 0.158633i 0.996850 + 0.0793163i \(0.0252737\pi\)
−0.996850 + 0.0793163i \(0.974726\pi\)
\(338\) 29.7472i 1.61804i
\(339\) 9.41662i 0.511440i
\(340\) 9.71841i 0.527055i
\(341\) 8.56689i 0.463923i
\(342\) −2.00925 −0.108648
\(343\) 4.54712 0.245521
\(344\) 2.21010i 0.119161i
\(345\) 22.2529i 1.19805i
\(346\) 11.3962 0.612661
\(347\) −17.7070 −0.950564 −0.475282 0.879834i \(-0.657654\pi\)
−0.475282 + 0.879834i \(0.657654\pi\)
\(348\) 9.75849i 0.523110i
\(349\) 10.0981i 0.540537i −0.962785 0.270268i \(-0.912888\pi\)
0.962785 0.270268i \(-0.0871125\pi\)
\(350\) 3.94062i 0.210635i
\(351\) 36.7773i 1.96303i
\(352\) 1.00000i 0.0533002i
\(353\) 31.5684i 1.68022i −0.542419 0.840108i \(-0.682492\pi\)
0.542419 0.840108i \(-0.317508\pi\)
\(354\) −4.97204 −0.264261
\(355\) −43.3383 −2.30016
\(356\) 4.36174 0.231172
\(357\) 1.15580i 0.0611714i
\(358\) 4.06672 0.214933
\(359\) 29.6441i 1.56456i 0.622930 + 0.782278i \(0.285942\pi\)
−0.622930 + 0.782278i \(0.714058\pi\)
\(360\) 3.09660 0.163205
\(361\) 11.8260 0.622420
\(362\) 6.07048 0.319057
\(363\) 1.49995i 0.0787268i
\(364\) −2.13992 −0.112162
\(365\) −29.6759 −1.55331
\(366\) 10.4541i 0.546444i
\(367\) −31.6279 −1.65096 −0.825482 0.564428i \(-0.809097\pi\)
−0.825482 + 0.564428i \(0.809097\pi\)
\(368\) 3.59400i 0.187350i
\(369\) 1.59972i 0.0832782i
\(370\) 29.4008 1.52848
\(371\) 0.878068 2.21508i 0.0455870 0.115001i
\(372\) 12.8499 0.666235
\(373\) 31.3261i 1.62200i 0.585044 + 0.811001i \(0.301077\pi\)
−0.585044 + 0.811001i \(0.698923\pi\)
\(374\) 2.35430i 0.121738i
\(375\) −43.5883 −2.25089
\(376\) 4.65172i 0.239894i
\(377\) −42.5364 −2.19074
\(378\) −1.84107 −0.0946943
\(379\) 6.75558i 0.347011i −0.984833 0.173505i \(-0.944491\pi\)
0.984833 0.173505i \(-0.0555094\pi\)
\(380\) 11.0564 0.567181
\(381\) 26.5781 1.36164
\(382\) −0.0645017 −0.00330020
\(383\) 2.47507i 0.126470i 0.997999 + 0.0632351i \(0.0201418\pi\)
−0.997999 + 0.0632351i \(0.979858\pi\)
\(384\) −1.49995 −0.0765439
\(385\) 1.35107i 0.0688567i
\(386\) −7.53924 −0.383737
\(387\) 1.65793 0.0842772
\(388\) 15.3507 0.779313
\(389\) 15.6222i 0.792076i −0.918234 0.396038i \(-0.870385\pi\)
0.918234 0.396038i \(-0.129615\pi\)
\(390\) 40.4820i 2.04989i
\(391\) 8.46136i 0.427909i
\(392\) 6.89288i 0.348143i
\(393\) 5.47218i 0.276035i
\(394\) 23.4862i 1.18322i
\(395\) −50.8381 −2.55794
\(396\) 0.750159 0.0376969
\(397\) 30.9334i 1.55250i 0.630423 + 0.776252i \(0.282882\pi\)
−0.630423 + 0.776252i \(0.717118\pi\)
\(398\) 7.74218i 0.388080i
\(399\) −1.31493 −0.0658286
\(400\) −12.0398 −0.601991
\(401\) 8.74483i 0.436696i 0.975871 + 0.218348i \(0.0700668\pi\)
−0.975871 + 0.218348i \(0.929933\pi\)
\(402\) 20.2591i 1.01043i
\(403\) 56.0115i 2.79013i
\(404\) 7.71192i 0.383682i
\(405\) 25.5386i 1.26902i
\(406\) 2.12937i 0.105679i
\(407\) 7.12241 0.353045
\(408\) 3.53133 0.174827
\(409\) 7.46974 0.369355 0.184677 0.982799i \(-0.440876\pi\)
0.184677 + 0.982799i \(0.440876\pi\)
\(410\) 8.80286i 0.434742i
\(411\) −16.0146 −0.789942
\(412\) 7.76894i 0.382748i
\(413\) 1.08493 0.0533861
\(414\) −2.69607 −0.132504
\(415\) −22.9472 −1.12644
\(416\) 6.53814i 0.320559i
\(417\) 0.732352 0.0358634
\(418\) 2.67844 0.131007
\(419\) 0.228861i 0.0111806i 0.999984 + 0.00559029i \(0.00177945\pi\)
−0.999984 + 0.00559029i \(0.998221\pi\)
\(420\) 2.02653 0.0988844
\(421\) 24.3628i 1.18737i −0.804698 0.593685i \(-0.797673\pi\)
0.804698 0.593685i \(-0.202327\pi\)
\(422\) 8.17360i 0.397884i
\(423\) −3.48953 −0.169667
\(424\) −6.76777 2.68277i −0.328672 0.130287i
\(425\) 28.3454 1.37495
\(426\) 15.7476i 0.762975i
\(427\) 2.28115i 0.110393i
\(428\) 7.06621 0.341558
\(429\) 9.80686i 0.473480i
\(430\) −9.12315 −0.439957
\(431\) 32.1564 1.54892 0.774461 0.632622i \(-0.218021\pi\)
0.774461 + 0.632622i \(0.218021\pi\)
\(432\) 5.62504i 0.270635i
\(433\) −13.6044 −0.653787 −0.326894 0.945061i \(-0.606002\pi\)
−0.326894 + 0.945061i \(0.606002\pi\)
\(434\) −2.80393 −0.134593
\(435\) 40.2824 1.93139
\(436\) 12.6393i 0.605315i
\(437\) −9.62629 −0.460488
\(438\) 10.7832i 0.515241i
\(439\) 28.1537 1.34370 0.671851 0.740687i \(-0.265500\pi\)
0.671851 + 0.740687i \(0.265500\pi\)
\(440\) −4.12793 −0.196791
\(441\) −5.17075 −0.246226
\(442\) 15.3928i 0.732159i
\(443\) 13.4538i 0.639211i 0.947551 + 0.319606i \(0.103550\pi\)
−0.947551 + 0.319606i \(0.896450\pi\)
\(444\) 10.6832i 0.507004i
\(445\) 18.0050i 0.853518i
\(446\) 8.11044i 0.384041i
\(447\) 27.9516i 1.32207i
\(448\) 0.327299 0.0154634
\(449\) −27.5238 −1.29893 −0.649463 0.760393i \(-0.725006\pi\)
−0.649463 + 0.760393i \(0.725006\pi\)
\(450\) 9.03177i 0.425762i
\(451\) 2.13251i 0.100416i
\(452\) 6.27797 0.295291
\(453\) 30.5179 1.43386
\(454\) 6.42422i 0.301504i
\(455\) 8.83346i 0.414119i
\(456\) 4.01751i 0.188137i
\(457\) 0.628748i 0.0294116i −0.999892 0.0147058i \(-0.995319\pi\)
0.999892 0.0147058i \(-0.00468117\pi\)
\(458\) 17.1107i 0.799529i
\(459\) 13.2431i 0.618133i
\(460\) 14.8358 0.691721
\(461\) −13.5706 −0.632046 −0.316023 0.948752i \(-0.602348\pi\)
−0.316023 + 0.948752i \(0.602348\pi\)
\(462\) 0.490931 0.0228402
\(463\) 19.2750i 0.895785i 0.894087 + 0.447892i \(0.147825\pi\)
−0.894087 + 0.447892i \(0.852175\pi\)
\(464\) 6.50589 0.302028
\(465\) 53.0434i 2.45983i
\(466\) −6.88848 −0.319103
\(467\) −4.54645 −0.210385 −0.105192 0.994452i \(-0.533546\pi\)
−0.105192 + 0.994452i \(0.533546\pi\)
\(468\) 4.90464 0.226717
\(469\) 4.42067i 0.204128i
\(470\) 19.2020 0.885721
\(471\) 9.77169 0.450256
\(472\) 3.31481i 0.152577i
\(473\) −2.21010 −0.101621
\(474\) 18.4728i 0.848484i
\(475\) 32.2479i 1.47963i
\(476\) −0.770560 −0.0353186
\(477\) −2.01251 + 5.07690i −0.0921463 + 0.232455i
\(478\) 6.49626 0.297132
\(479\) 22.3517i 1.02128i −0.859796 0.510638i \(-0.829409\pi\)
0.859796 0.510638i \(-0.170591\pi\)
\(480\) 6.19168i 0.282610i
\(481\) 46.5673 2.12329
\(482\) 8.48537i 0.386498i
\(483\) −1.76440 −0.0802831
\(484\) −1.00000 −0.0454545
\(485\) 63.3666i 2.87733i
\(486\) 7.59527 0.344528
\(487\) 20.1753 0.914231 0.457115 0.889407i \(-0.348883\pi\)
0.457115 + 0.889407i \(0.348883\pi\)
\(488\) 6.96964 0.315501
\(489\) 32.7999i 1.48326i
\(490\) 28.4533 1.28539
\(491\) 31.2607i 1.41078i 0.708821 + 0.705389i \(0.249228\pi\)
−0.708821 + 0.705389i \(0.750772\pi\)
\(492\) −3.19865 −0.144206
\(493\) −15.3168 −0.689836
\(494\) 17.5120 0.787901
\(495\) 3.09660i 0.139182i
\(496\) 8.56689i 0.384665i
\(497\) 3.43624i 0.154136i
\(498\) 8.33823i 0.373645i
\(499\) 38.7213i 1.73340i −0.498828 0.866701i \(-0.666236\pi\)
0.498828 0.866701i \(-0.333764\pi\)
\(500\) 29.0599i 1.29960i
\(501\) −12.0017 −0.536196
\(502\) −17.0955 −0.763011
\(503\) 18.2717i 0.814697i −0.913273 0.407348i \(-0.866453\pi\)
0.913273 0.407348i \(-0.133547\pi\)
\(504\) 0.245526i 0.0109366i
\(505\) −31.8343 −1.41661
\(506\) 3.59400 0.159773
\(507\) 44.6193i 1.98161i
\(508\) 17.7193i 0.786169i
\(509\) 2.43867i 0.108092i −0.998538 0.0540460i \(-0.982788\pi\)
0.998538 0.0540460i \(-0.0172118\pi\)
\(510\) 14.5771i 0.645485i
\(511\) 2.35297i 0.104089i
\(512\) 1.00000i 0.0441942i
\(513\) 15.0663 0.665194
\(514\) −20.6923 −0.912699
\(515\) −32.0697 −1.41316
\(516\) 3.31504i 0.145936i
\(517\) 4.65172 0.204582
\(518\) 2.33115i 0.102425i
\(519\) −17.0936 −0.750328
\(520\) −26.9890 −1.18355
\(521\) 25.8682 1.13331 0.566654 0.823956i \(-0.308238\pi\)
0.566654 + 0.823956i \(0.308238\pi\)
\(522\) 4.88045i 0.213611i
\(523\) −26.0150 −1.13756 −0.568778 0.822491i \(-0.692584\pi\)
−0.568778 + 0.822491i \(0.692584\pi\)
\(524\) −3.64825 −0.159374
\(525\) 5.91071i 0.257965i
\(526\) −21.1472 −0.922063
\(527\) 20.1691i 0.878578i
\(528\) 1.49995i 0.0652768i
\(529\) 10.0832 0.438400
\(530\) 11.0743 27.9369i 0.481037 1.21350i
\(531\) −2.48663 −0.107911
\(532\) 0.876648i 0.0380075i
\(533\) 13.9426i 0.603923i
\(534\) −6.54239 −0.283117
\(535\) 29.1688i 1.26108i
\(536\) −13.5065 −0.583394
\(537\) −6.09987 −0.263229
\(538\) 0.717681i 0.0309414i
\(539\) 6.89288 0.296897
\(540\) −23.2198 −0.999220
\(541\) −26.3403 −1.13246 −0.566228 0.824249i \(-0.691598\pi\)
−0.566228 + 0.824249i \(0.691598\pi\)
\(542\) 17.6289i 0.757226i
\(543\) −9.10540 −0.390750
\(544\) 2.35430i 0.100940i
\(545\) 52.1744 2.23490
\(546\) 3.20977 0.137366
\(547\) 37.1942 1.59031 0.795155 0.606407i \(-0.207390\pi\)
0.795155 + 0.606407i \(0.207390\pi\)
\(548\) 10.6768i 0.456089i
\(549\) 5.22834i 0.223140i
\(550\) 12.0398i 0.513380i
\(551\) 17.4256i 0.742356i
\(552\) 5.39080i 0.229448i
\(553\) 4.03089i 0.171411i
\(554\) −23.6890 −1.00645
\(555\) −44.0997 −1.87193
\(556\) 0.488252i 0.0207065i
\(557\) 23.4133i 0.992055i −0.868307 0.496028i \(-0.834791\pi\)
0.868307 0.496028i \(-0.165209\pi\)
\(558\) 6.42653 0.272057
\(559\) −14.4500 −0.611168
\(560\) 1.35107i 0.0570930i
\(561\) 3.53133i 0.149093i
\(562\) 28.6005i 1.20644i
\(563\) 16.4928i 0.695087i 0.937664 + 0.347543i \(0.112984\pi\)
−0.937664 + 0.347543i \(0.887016\pi\)
\(564\) 6.97733i 0.293799i
\(565\) 25.9150i 1.09025i
\(566\) 3.01087 0.126556
\(567\) 2.02493 0.0850389
\(568\) 10.4988 0.440520
\(569\) 25.3592i 1.06311i 0.847023 + 0.531556i \(0.178392\pi\)
−0.847023 + 0.531556i \(0.821608\pi\)
\(570\) −16.5840 −0.694628
\(571\) 7.98061i 0.333978i 0.985959 + 0.166989i \(0.0534045\pi\)
−0.985959 + 0.166989i \(0.946596\pi\)
\(572\) −6.53814 −0.273373
\(573\) 0.0967492 0.00404175
\(574\) 0.697968 0.0291326
\(575\) 43.2711i 1.80453i
\(576\) −0.750159 −0.0312566
\(577\) −22.5794 −0.939994 −0.469997 0.882668i \(-0.655745\pi\)
−0.469997 + 0.882668i \(0.655745\pi\)
\(578\) 11.4573i 0.476559i
\(579\) 11.3085 0.469964
\(580\) 26.8559i 1.11513i
\(581\) 1.81946i 0.0754838i
\(582\) −23.0252 −0.954426
\(583\) 2.68277 6.76777i 0.111109 0.280292i
\(584\) 7.18906 0.297485
\(585\) 20.2460i 0.837070i
\(586\) 3.57590i 0.147719i
\(587\) −37.5884 −1.55144 −0.775720 0.631077i \(-0.782613\pi\)
−0.775720 + 0.631077i \(0.782613\pi\)
\(588\) 10.3389i 0.426371i
\(589\) 22.9459 0.945468
\(590\) 13.6833 0.563333
\(591\) 35.2280i 1.44909i
\(592\) −7.12241 −0.292729
\(593\) −46.7780 −1.92094 −0.960471 0.278381i \(-0.910202\pi\)
−0.960471 + 0.278381i \(0.910202\pi\)
\(594\) −5.62504 −0.230798
\(595\) 3.18082i 0.130401i
\(596\) −18.6351 −0.763322
\(597\) 11.6129i 0.475283i
\(598\) 23.4980 0.960906
\(599\) −26.5999 −1.08684 −0.543422 0.839460i \(-0.682871\pi\)
−0.543422 + 0.839460i \(0.682871\pi\)
\(600\) 18.0591 0.737259
\(601\) 44.1865i 1.80240i 0.433398 + 0.901202i \(0.357314\pi\)
−0.433398 + 0.901202i \(0.642686\pi\)
\(602\) 0.723363i 0.0294821i
\(603\) 10.1320i 0.412609i
\(604\) 20.3460i 0.827867i
\(605\) 4.12793i 0.167824i
\(606\) 11.5675i 0.469896i
\(607\) −30.5009 −1.23799 −0.618996 0.785394i \(-0.712460\pi\)
−0.618996 + 0.785394i \(0.712460\pi\)
\(608\) −2.67844 −0.108625
\(609\) 3.19394i 0.129425i
\(610\) 28.7702i 1.16487i
\(611\) 30.4136 1.23040
\(612\) 1.76610 0.0713904
\(613\) 24.0632i 0.971902i −0.873986 0.485951i \(-0.838473\pi\)
0.873986 0.485951i \(-0.161527\pi\)
\(614\) 18.8480i 0.760644i
\(615\) 13.2038i 0.532430i
\(616\) 0.327299i 0.0131872i
\(617\) 4.27933i 0.172279i 0.996283 + 0.0861397i \(0.0274531\pi\)
−0.996283 + 0.0861397i \(0.972547\pi\)
\(618\) 11.6530i 0.468753i
\(619\) −28.7991 −1.15753 −0.578767 0.815493i \(-0.696466\pi\)
−0.578767 + 0.815493i \(0.696466\pi\)
\(620\) −35.3635 −1.42023
\(621\) 20.2164 0.811255
\(622\) 9.22585i 0.369923i
\(623\) 1.42759 0.0571953
\(624\) 9.80686i 0.392589i
\(625\) 59.7582 2.39033
\(626\) −24.2936 −0.970968
\(627\) −4.01751 −0.160444
\(628\) 6.51469i 0.259964i
\(629\) 16.7683 0.668597
\(630\) 1.01351 0.0403794
\(631\) 9.38214i 0.373497i −0.982408 0.186749i \(-0.940205\pi\)
0.982408 0.186749i \(-0.0597950\pi\)
\(632\) 12.3156 0.489889
\(633\) 12.2600i 0.487290i
\(634\) 9.06290i 0.359934i
\(635\) −73.1442 −2.90264
\(636\) 10.1513 + 4.02402i 0.402525 + 0.159563i
\(637\) 45.0666 1.78560
\(638\) 6.50589i 0.257571i
\(639\) 7.87576i 0.311560i
\(640\) 4.12793 0.163171
\(641\) 22.5970i 0.892527i 0.894902 + 0.446263i \(0.147246\pi\)
−0.894902 + 0.446263i \(0.852754\pi\)
\(642\) −10.5989 −0.418307
\(643\) −5.04232 −0.198850 −0.0994249 0.995045i \(-0.531700\pi\)
−0.0994249 + 0.995045i \(0.531700\pi\)
\(644\) 1.17631i 0.0463531i
\(645\) 13.6842 0.538817
\(646\) 6.30585 0.248100
\(647\) 45.0278 1.77022 0.885112 0.465377i \(-0.154081\pi\)
0.885112 + 0.465377i \(0.154081\pi\)
\(648\) 6.18679i 0.243040i
\(649\) 3.31481 0.130118
\(650\) 78.7180i 3.08757i
\(651\) 4.20575 0.164836
\(652\) −21.8674 −0.856392
\(653\) 3.69208 0.144482 0.0722412 0.997387i \(-0.476985\pi\)
0.0722412 + 0.997387i \(0.476985\pi\)
\(654\) 18.9584i 0.741330i
\(655\) 15.0597i 0.588432i
\(656\) 2.13251i 0.0832606i
\(657\) 5.39293i 0.210398i
\(658\) 1.52250i 0.0593532i
\(659\) 26.7564i 1.04228i −0.853471 0.521140i \(-0.825507\pi\)
0.853471 0.521140i \(-0.174493\pi\)
\(660\) 6.19168 0.241011
\(661\) −31.2379 −1.21501 −0.607506 0.794315i \(-0.707830\pi\)
−0.607506 + 0.794315i \(0.707830\pi\)
\(662\) 29.1632i 1.13346i
\(663\) 23.0883i 0.896676i
\(664\) 5.55901 0.215732
\(665\) 3.61874 0.140329
\(666\) 5.34294i 0.207035i
\(667\) 23.3821i 0.905360i
\(668\) 8.00140i 0.309584i
\(669\) 12.1652i 0.470335i
\(670\) 55.7541i 2.15397i
\(671\) 6.96964i 0.269060i
\(672\) −0.490931 −0.0189381
\(673\) −6.25173 −0.240986 −0.120493 0.992714i \(-0.538448\pi\)
−0.120493 + 0.992714i \(0.538448\pi\)
\(674\) 2.91211 0.112170
\(675\) 67.7245i 2.60672i
\(676\) −29.7472 −1.14412
\(677\) 0.840985i 0.0323217i −0.999869 0.0161608i \(-0.994856\pi\)
0.999869 0.0161608i \(-0.00514438\pi\)
\(678\) −9.41662 −0.361643
\(679\) 5.02426 0.192813
\(680\) −9.71841 −0.372684
\(681\) 9.63600i 0.369252i
\(682\) −8.56689 −0.328043
\(683\) 51.4675 1.96935 0.984675 0.174400i \(-0.0557986\pi\)
0.984675 + 0.174400i \(0.0557986\pi\)
\(684\) 2.00925i 0.0768257i
\(685\) 44.0730 1.68394
\(686\) 4.54712i 0.173610i
\(687\) 25.6651i 0.979184i
\(688\) 2.21010 0.0842594
\(689\) 17.5403 44.2486i 0.668234 1.68574i
\(690\) −22.2529 −0.847152
\(691\) 21.6185i 0.822405i −0.911544 0.411203i \(-0.865109\pi\)
0.911544 0.411203i \(-0.134891\pi\)
\(692\) 11.3962i 0.433217i
\(693\) 0.245526 0.00932675
\(694\) 17.7070i 0.672150i
\(695\) −2.01547 −0.0764512
\(696\) −9.75849 −0.369895
\(697\) 5.02058i 0.190168i
\(698\) −10.0981 −0.382217
\(699\) 10.3324 0.390806
\(700\) −3.94062 −0.148941
\(701\) 40.9312i 1.54595i −0.634436 0.772976i \(-0.718767\pi\)
0.634436 0.772976i \(-0.281233\pi\)
\(702\) −36.7773 −1.38807
\(703\) 19.0769i 0.719500i
\(704\) 1.00000 0.0376889
\(705\) −28.8019 −1.08474
\(706\) −31.5684 −1.18809
\(707\) 2.52410i 0.0949285i
\(708\) 4.97204i 0.186861i
\(709\) 8.89920i 0.334217i 0.985939 + 0.167108i \(0.0534429\pi\)
−0.985939 + 0.167108i \(0.946557\pi\)
\(710\) 43.3383i 1.62646i
\(711\) 9.23868i 0.346477i
\(712\) 4.36174i 0.163463i
\(713\) 30.7894 1.15307
\(714\) 1.15580 0.0432547
\(715\) 26.9890i 1.00933i
\(716\) 4.06672i 0.151981i
\(717\) −9.74404 −0.363898
\(718\) 29.6441 1.10631
\(719\) 27.9729i 1.04321i 0.853186 + 0.521607i \(0.174667\pi\)
−0.853186 + 0.521607i \(0.825333\pi\)
\(720\) 3.09660i 0.115404i
\(721\) 2.54276i 0.0946975i
\(722\) 11.8260i 0.440117i
\(723\) 12.7276i 0.473345i
\(724\) 6.07048i 0.225608i
\(725\) −78.3297 −2.90909
\(726\) 1.49995 0.0556683
\(727\) 26.9718 1.00033 0.500164 0.865931i \(-0.333273\pi\)
0.500164 + 0.865931i \(0.333273\pi\)
\(728\) 2.13992i 0.0793108i
\(729\) −29.9529 −1.10937
\(730\) 29.6759i 1.09836i
\(731\) −5.20325 −0.192449
\(732\) −10.4541 −0.386395
\(733\) 9.88846 0.365239 0.182619 0.983184i \(-0.441542\pi\)
0.182619 + 0.983184i \(0.441542\pi\)
\(734\) 31.6279i 1.16741i
\(735\) −42.6785 −1.57422
\(736\) −3.59400 −0.132476
\(737\) 13.5065i 0.497520i
\(738\) −1.59972 −0.0588866
\(739\) 23.5372i 0.865831i −0.901435 0.432915i \(-0.857485\pi\)
0.901435 0.432915i \(-0.142515\pi\)
\(740\) 29.4008i 1.08080i
\(741\) −26.2671 −0.964944
\(742\) −2.21508 0.878068i −0.0813182 0.0322349i
\(743\) −14.7080 −0.539584 −0.269792 0.962919i \(-0.586955\pi\)
−0.269792 + 0.962919i \(0.586955\pi\)
\(744\) 12.8499i 0.471099i
\(745\) 76.9243i 2.81829i
\(746\) 31.3261 1.14693
\(747\) 4.17014i 0.152578i
\(748\) −2.35430 −0.0860819
\(749\) 2.31276 0.0845064
\(750\) 43.5883i 1.59162i
\(751\) −9.23743 −0.337079 −0.168539 0.985695i \(-0.553905\pi\)
−0.168539 + 0.985695i \(0.553905\pi\)
\(752\) −4.65172 −0.169631
\(753\) 25.6424 0.934461
\(754\) 42.5364i 1.54908i
\(755\) −83.9869 −3.05660
\(756\) 1.84107i 0.0669590i
\(757\) 12.9708 0.471434 0.235717 0.971822i \(-0.424256\pi\)
0.235717 + 0.971822i \(0.424256\pi\)
\(758\) −6.75558 −0.245374
\(759\) −5.39080 −0.195674
\(760\) 11.0564i 0.401058i
\(761\) 46.7301i 1.69396i 0.531622 + 0.846982i \(0.321583\pi\)
−0.531622 + 0.846982i \(0.678417\pi\)
\(762\) 26.5781i 0.962822i
\(763\) 4.13684i 0.149764i
\(764\) 0.0645017i 0.00233359i
\(765\) 7.29035i 0.263583i
\(766\) 2.47507 0.0894279
\(767\) 21.6727 0.782555
\(768\) 1.49995i 0.0541247i
\(769\) 4.98067i 0.179607i −0.995959 0.0898037i \(-0.971376\pi\)
0.995959 0.0898037i \(-0.0286240\pi\)
\(770\) −1.35107 −0.0486890
\(771\) 31.0374 1.11778
\(772\) 7.53924i 0.271343i
\(773\) 35.8831i 1.29063i −0.763919 0.645313i \(-0.776727\pi\)
0.763919 0.645313i \(-0.223273\pi\)
\(774\) 1.65793i 0.0595930i
\(775\) 103.144i 3.70503i
\(776\) 15.3507i 0.551057i
\(777\) 3.49661i 0.125440i
\(778\) −15.6222 −0.560083
\(779\) −5.71179 −0.204646
\(780\) 40.4820 1.44949
\(781\) 10.4988i 0.375676i
\(782\) 8.46136 0.302578
\(783\) 36.5959i 1.30783i
\(784\) −6.89288 −0.246174
\(785\) −26.8922 −0.959823
\(786\) 5.47218 0.195186
\(787\) 33.0797i 1.17916i 0.807708 + 0.589582i \(0.200708\pi\)
−0.807708 + 0.589582i \(0.799292\pi\)
\(788\) −23.4862 −0.836660
\(789\) 31.7197 1.12925
\(790\) 50.8381i 1.80874i
\(791\) 2.05477 0.0730592
\(792\) 0.750159i 0.0266557i
\(793\) 45.5685i 1.61818i
\(794\) 30.9334 1.09779
\(795\) −16.6109 + 41.9039i −0.589127 + 1.48618i
\(796\) −7.74218 −0.274414
\(797\) 20.6330i 0.730860i 0.930839 + 0.365430i \(0.119078\pi\)
−0.930839 + 0.365430i \(0.880922\pi\)
\(798\) 1.31493i 0.0465479i
\(799\) 10.9516 0.387438
\(800\) 12.0398i 0.425672i
\(801\) −3.27200 −0.115610
\(802\) 8.74483 0.308791
\(803\) 7.18906i 0.253696i
\(804\) 20.2591 0.714483
\(805\) 4.85573 0.171142
\(806\) −56.0115 −1.97292
\(807\) 1.07648i 0.0378940i
\(808\) 7.71192 0.271304
\(809\) 4.98970i 0.175428i 0.996146 + 0.0877142i \(0.0279562\pi\)
−0.996146 + 0.0877142i \(0.972044\pi\)
\(810\) 25.5386 0.897336
\(811\) −24.9825 −0.877256 −0.438628 0.898669i \(-0.644535\pi\)
−0.438628 + 0.898669i \(0.644535\pi\)
\(812\) 2.12937 0.0747262
\(813\) 26.4424i 0.927376i
\(814\) 7.12241i 0.249640i
\(815\) 90.2670i 3.16191i
\(816\) 3.53133i 0.123621i
\(817\) 5.91962i 0.207101i
\(818\) 7.46974i 0.261173i
\(819\) 1.60528 0.0560931
\(820\) 8.80286 0.307409
\(821\) 9.72052i 0.339249i −0.985509 0.169624i \(-0.945745\pi\)
0.985509 0.169624i \(-0.0542554\pi\)
\(822\) 16.0146i 0.558573i
\(823\) 54.5879 1.90281 0.951407 0.307935i \(-0.0996379\pi\)
0.951407 + 0.307935i \(0.0996379\pi\)
\(824\) 7.76894 0.270644
\(825\) 18.0591i 0.628737i
\(826\) 1.08493i 0.0377496i
\(827\) 53.1941i 1.84974i 0.380282 + 0.924871i \(0.375827\pi\)
−0.380282 + 0.924871i \(0.624173\pi\)
\(828\) 2.69607i 0.0936948i
\(829\) 19.4302i 0.674840i 0.941354 + 0.337420i \(0.109554\pi\)
−0.941354 + 0.337420i \(0.890446\pi\)
\(830\) 22.9472i 0.796510i
\(831\) 35.5323 1.23260
\(832\) 6.53814 0.226669
\(833\) 16.2279 0.562264
\(834\) 0.732352i 0.0253593i
\(835\) 33.0292 1.14302
\(836\) 2.67844i 0.0926357i
\(837\) −48.1891 −1.66566
\(838\) 0.228861 0.00790586
\(839\) 22.0061 0.759735 0.379868 0.925041i \(-0.375970\pi\)
0.379868 + 0.925041i \(0.375970\pi\)
\(840\) 2.02653i 0.0699218i
\(841\) 13.3266 0.459538
\(842\) −24.3628 −0.839597
\(843\) 42.8992i 1.47753i
\(844\) −8.17360 −0.281347
\(845\) 122.795i 4.22426i
\(846\) 3.48953i 0.119972i
\(847\) −0.327299 −0.0112461
\(848\) −2.68277 + 6.76777i −0.0921268 + 0.232406i
\(849\) −4.51615 −0.154994
\(850\) 28.3454i 0.972239i
\(851\) 25.5979i 0.877485i
\(852\) −15.7476 −0.539505
\(853\) 22.4325i 0.768073i −0.923318 0.384036i \(-0.874534\pi\)
0.923318 0.384036i \(-0.125466\pi\)
\(854\) 2.28115 0.0780595
\(855\) −8.29405 −0.283651
\(856\) 7.06621i 0.241518i
\(857\) 4.73573 0.161769 0.0808847 0.996723i \(-0.474225\pi\)
0.0808847 + 0.996723i \(0.474225\pi\)
\(858\) 9.80686 0.334801
\(859\) 52.6047 1.79485 0.897424 0.441169i \(-0.145436\pi\)
0.897424 + 0.441169i \(0.145436\pi\)
\(860\) 9.12315i 0.311097i
\(861\) −1.04691 −0.0356788
\(862\) 32.1564i 1.09525i
\(863\) −32.9783 −1.12260 −0.561298 0.827614i \(-0.689698\pi\)
−0.561298 + 0.827614i \(0.689698\pi\)
\(864\) 5.62504 0.191368
\(865\) 47.0426 1.59950
\(866\) 13.6044i 0.462297i
\(867\) 17.1853i 0.583643i
\(868\) 2.80393i 0.0951716i
\(869\) 12.3156i 0.417779i
\(870\) 40.2824i 1.36570i
\(871\) 88.3076i 2.99219i
\(872\) −12.6393 −0.428022
\(873\) −11.5154 −0.389739
\(874\) 9.62629i 0.325614i
\(875\) 9.51126i 0.321539i
\(876\) −10.7832 −0.364331
\(877\) −17.3228 −0.584948 −0.292474 0.956273i \(-0.594479\pi\)
−0.292474 + 0.956273i \(0.594479\pi\)
\(878\) 28.1537i 0.950140i
\(879\) 5.36366i 0.180912i
\(880\) 4.12793i 0.139153i
\(881\) 40.2478i 1.35598i 0.735070 + 0.677991i \(0.237149\pi\)
−0.735070 + 0.677991i \(0.762851\pi\)
\(882\) 5.17075i 0.174108i
\(883\) 10.9614i 0.368879i −0.982844 0.184440i \(-0.940953\pi\)
0.982844 0.184440i \(-0.0590471\pi\)
\(884\) −15.3928 −0.517715
\(885\) −20.5242 −0.689915
\(886\) 13.4538 0.451991
\(887\) 16.6197i 0.558036i 0.960286 + 0.279018i \(0.0900089\pi\)
−0.960286 + 0.279018i \(0.909991\pi\)
\(888\) 10.6832 0.358506
\(889\) 5.79951i 0.194509i
\(890\) 18.0050 0.603528
\(891\) 6.18679 0.207265
\(892\) −8.11044 −0.271558
\(893\) 12.4593i 0.416936i
\(894\) 27.9516 0.934842
\(895\) 16.7872 0.561133
\(896\) 0.327299i 0.0109343i
\(897\) −35.2458 −1.17682
\(898\) 27.5238i 0.918480i
\(899\) 55.7352i 1.85887i
\(900\) 9.03177 0.301059
\(901\) 6.31606 15.9334i 0.210419 0.530818i
\(902\) 2.13251 0.0710048
\(903\) 1.08501i 0.0361068i
\(904\) 6.27797i 0.208802i
\(905\) 25.0585 0.832974
\(906\) 30.5179i 1.01389i
\(907\) 14.0523 0.466599 0.233300 0.972405i \(-0.425048\pi\)
0.233300 + 0.972405i \(0.425048\pi\)
\(908\) 6.42422 0.213195
\(909\) 5.78516i 0.191882i
\(910\) −8.83346 −0.292826
\(911\) 21.0827 0.698501 0.349250 0.937029i \(-0.386436\pi\)
0.349250 + 0.937029i \(0.386436\pi\)
\(912\) 4.01751 0.133033
\(913\) 5.55901i 0.183977i
\(914\) −0.628748 −0.0207971
\(915\) 43.1538i 1.42662i
\(916\) −17.1107 −0.565352
\(917\) −1.19407 −0.0394315
\(918\) −13.2431 −0.437086
\(919\) 14.8147i 0.488693i −0.969688 0.244347i \(-0.921427\pi\)
0.969688 0.244347i \(-0.0785735\pi\)
\(920\) 14.8358i 0.489121i
\(921\) 28.2710i 0.931562i
\(922\) 13.5706i 0.446924i
\(923\) 68.6425i 2.25940i
\(924\) 0.490931i 0.0161504i
\(925\) 85.7525 2.81953
\(926\) 19.2750 0.633416
\(927\) 5.82794i 0.191415i
\(928\) 6.50589i 0.213566i
\(929\) −45.0565 −1.47826 −0.739128 0.673565i \(-0.764762\pi\)
−0.739128 + 0.673565i \(0.764762\pi\)
\(930\) 53.0434 1.73936
\(931\) 18.4621i 0.605072i
\(932\) 6.88848i 0.225640i
\(933\) 13.8383i 0.453045i
\(934\) 4.54645i 0.148764i
\(935\) 9.71841i 0.317826i
\(936\) 4.90464i 0.160313i
\(937\) −43.5334 −1.42217 −0.711087 0.703104i \(-0.751797\pi\)
−0.711087 + 0.703104i \(0.751797\pi\)
\(938\) −4.42067 −0.144340
\(939\) 36.4391 1.18915
\(940\) 19.2020i 0.626299i
\(941\) −10.6298 −0.346521 −0.173261 0.984876i \(-0.555430\pi\)
−0.173261 + 0.984876i \(0.555430\pi\)
\(942\) 9.77169i 0.318379i
\(943\) −7.66424 −0.249582
\(944\) −3.31481 −0.107888
\(945\) −7.59980 −0.247222
\(946\) 2.21010i 0.0718566i
\(947\) −6.42018 −0.208628 −0.104314 0.994544i \(-0.533265\pi\)
−0.104314 + 0.994544i \(0.533265\pi\)
\(948\) −18.4728 −0.599968
\(949\) 47.0030i 1.52578i
\(950\) 32.2479 1.04626
\(951\) 13.5939i 0.440812i
\(952\) 0.770560i 0.0249740i
\(953\) 15.0930 0.488910 0.244455 0.969661i \(-0.421391\pi\)
0.244455 + 0.969661i \(0.421391\pi\)
\(954\) 5.07690 + 2.01251i 0.164371 + 0.0651573i
\(955\) −0.266259 −0.00861593
\(956\) 6.49626i 0.210104i
\(957\) 9.75849i 0.315447i
\(958\) −22.3517 −0.722151
\(959\) 3.49449i 0.112843i
\(960\) −6.19168 −0.199836
\(961\) −42.3916 −1.36747
\(962\) 46.5673i 1.50139i
\(963\) −5.30078 −0.170815
\(964\) 8.48537 0.273295
\(965\) −31.1215 −1.00184
\(966\) 1.76440i 0.0567687i
\(967\) 3.55566 0.114342 0.0571712 0.998364i \(-0.481792\pi\)
0.0571712 + 0.998364i \(0.481792\pi\)
\(968\) 1.00000i 0.0321412i
\(969\) −9.45845 −0.303849
\(970\) 63.3666 2.03458
\(971\) 47.8958 1.53705 0.768524 0.639821i \(-0.220992\pi\)
0.768524 + 0.639821i \(0.220992\pi\)
\(972\) 7.59527i 0.243618i
\(973\) 0.159804i 0.00512309i
\(974\) 20.1753i 0.646459i
\(975\) 118.073i 3.78136i
\(976\) 6.96964i 0.223093i
\(977\) 0.228779i 0.00731929i −0.999993 0.00365964i \(-0.998835\pi\)
0.999993 0.00365964i \(-0.00116490\pi\)
\(978\) 32.7999 1.04882
\(979\) 4.36174 0.139402
\(980\) 28.4533i 0.908908i
\(981\) 9.48152i 0.302722i
\(982\) 31.2607 0.997570
\(983\) 6.22212 0.198455 0.0992274 0.995065i \(-0.468363\pi\)
0.0992274 + 0.995065i \(0.468363\pi\)
\(984\) 3.19865i 0.101969i
\(985\) 96.9493i 3.08906i
\(986\) 15.3168i 0.487788i
\(987\) 2.28367i 0.0726900i
\(988\) 17.5120i 0.557130i
\(989\) 7.94310i 0.252576i
\(990\) 3.09660 0.0984165
\(991\) −51.0918 −1.62298 −0.811492 0.584363i \(-0.801344\pi\)
−0.811492 + 0.584363i \(0.801344\pi\)
\(992\) 8.56689 0.271999
\(993\) 43.7433i 1.38815i
\(994\) 3.43624 0.108991
\(995\) 31.9592i 1.01317i
\(996\) −8.33823 −0.264207
\(997\) −29.2437 −0.926157 −0.463078 0.886317i \(-0.653255\pi\)
−0.463078 + 0.886317i \(0.653255\pi\)
\(998\) −38.7213 −1.22570
\(999\) 40.0638i 1.26756i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1166.2.c.b.529.9 22
53.52 even 2 inner 1166.2.c.b.529.14 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1166.2.c.b.529.9 22 1.1 even 1 trivial
1166.2.c.b.529.14 yes 22 53.52 even 2 inner