Properties

Label 1166.2.c.b.529.3
Level $1166$
Weight $2$
Character 1166.529
Analytic conductor $9.311$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1166,2,Mod(529,1166)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1166, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1166.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,-22,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.31055687568\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.3
Character \(\chi\) \(=\) 1166.529
Dual form 1166.2.c.b.529.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -2.17721i q^{3} -1.00000 q^{4} +1.32192i q^{5} -2.17721 q^{6} -1.38716 q^{7} +1.00000i q^{8} -1.74022 q^{9} +1.32192 q^{10} -1.00000 q^{11} +2.17721i q^{12} -5.36704 q^{13} +1.38716i q^{14} +2.87809 q^{15} +1.00000 q^{16} -0.857557 q^{17} +1.74022i q^{18} -2.03182i q^{19} -1.32192i q^{20} +3.02013i q^{21} +1.00000i q^{22} +8.68202i q^{23} +2.17721 q^{24} +3.25253 q^{25} +5.36704i q^{26} -2.74279i q^{27} +1.38716 q^{28} -7.91739 q^{29} -2.87809i q^{30} +8.54119i q^{31} -1.00000i q^{32} +2.17721i q^{33} +0.857557i q^{34} -1.83371i q^{35} +1.74022 q^{36} +4.45516 q^{37} -2.03182 q^{38} +11.6852i q^{39} -1.32192 q^{40} +9.95008i q^{41} +3.02013 q^{42} -2.64324 q^{43} +1.00000 q^{44} -2.30044i q^{45} +8.68202 q^{46} +10.3663 q^{47} -2.17721i q^{48} -5.07579 q^{49} -3.25253i q^{50} +1.86708i q^{51} +5.36704 q^{52} +(-5.71903 - 4.50474i) q^{53} -2.74279 q^{54} -1.32192i q^{55} -1.38716i q^{56} -4.42369 q^{57} +7.91739i q^{58} -7.46518 q^{59} -2.87809 q^{60} -3.38583i q^{61} +8.54119 q^{62} +2.41397 q^{63} -1.00000 q^{64} -7.09480i q^{65} +2.17721 q^{66} +7.37868i q^{67} +0.857557 q^{68} +18.9025 q^{69} -1.83371 q^{70} +9.49215i q^{71} -1.74022i q^{72} -1.29767i q^{73} -4.45516i q^{74} -7.08142i q^{75} +2.03182i q^{76} +1.38716 q^{77} +11.6852 q^{78} +0.406000i q^{79} +1.32192i q^{80} -11.1923 q^{81} +9.95008 q^{82} -7.86709i q^{83} -3.02013i q^{84} -1.13362i q^{85} +2.64324i q^{86} +17.2378i q^{87} -1.00000i q^{88} +9.67232 q^{89} -2.30044 q^{90} +7.44493 q^{91} -8.68202i q^{92} +18.5959 q^{93} -10.3663i q^{94} +2.68590 q^{95} -2.17721 q^{96} -11.8009 q^{97} +5.07579i q^{98} +1.74022 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 22 q^{4} - 6 q^{6} - 24 q^{9} + 4 q^{10} - 22 q^{11} + 6 q^{13} + 30 q^{15} + 22 q^{16} + 18 q^{17} + 6 q^{24} - 30 q^{25} + 28 q^{29} + 24 q^{36} - 34 q^{37} - 18 q^{38} - 4 q^{40} + 4 q^{42} - 34 q^{43}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1166\mathbb{Z}\right)^\times\).

\(n\) \(849\) \(903\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.17721i 1.25701i −0.777805 0.628505i \(-0.783667\pi\)
0.777805 0.628505i \(-0.216333\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.32192i 0.591180i 0.955315 + 0.295590i \(0.0955163\pi\)
−0.955315 + 0.295590i \(0.904484\pi\)
\(6\) −2.17721 −0.888840
\(7\) −1.38716 −0.524296 −0.262148 0.965028i \(-0.584431\pi\)
−0.262148 + 0.965028i \(0.584431\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.74022 −0.580075
\(10\) 1.32192 0.418028
\(11\) −1.00000 −0.301511
\(12\) 2.17721i 0.628505i
\(13\) −5.36704 −1.48855 −0.744275 0.667873i \(-0.767205\pi\)
−0.744275 + 0.667873i \(0.767205\pi\)
\(14\) 1.38716i 0.370733i
\(15\) 2.87809 0.743120
\(16\) 1.00000 0.250000
\(17\) −0.857557 −0.207988 −0.103994 0.994578i \(-0.533162\pi\)
−0.103994 + 0.994578i \(0.533162\pi\)
\(18\) 1.74022i 0.410175i
\(19\) 2.03182i 0.466132i −0.972461 0.233066i \(-0.925124\pi\)
0.972461 0.233066i \(-0.0748757\pi\)
\(20\) 1.32192i 0.295590i
\(21\) 3.02013i 0.659046i
\(22\) 1.00000i 0.213201i
\(23\) 8.68202i 1.81033i 0.425065 + 0.905163i \(0.360251\pi\)
−0.425065 + 0.905163i \(0.639749\pi\)
\(24\) 2.17721 0.444420
\(25\) 3.25253 0.650506
\(26\) 5.36704i 1.05256i
\(27\) 2.74279i 0.527850i
\(28\) 1.38716 0.262148
\(29\) −7.91739 −1.47022 −0.735111 0.677946i \(-0.762870\pi\)
−0.735111 + 0.677946i \(0.762870\pi\)
\(30\) 2.87809i 0.525465i
\(31\) 8.54119i 1.53404i 0.641621 + 0.767022i \(0.278262\pi\)
−0.641621 + 0.767022i \(0.721738\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 2.17721i 0.379003i
\(34\) 0.857557i 0.147070i
\(35\) 1.83371i 0.309954i
\(36\) 1.74022 0.290037
\(37\) 4.45516 0.732424 0.366212 0.930531i \(-0.380654\pi\)
0.366212 + 0.930531i \(0.380654\pi\)
\(38\) −2.03182 −0.329605
\(39\) 11.6852i 1.87112i
\(40\) −1.32192 −0.209014
\(41\) 9.95008i 1.55394i 0.629537 + 0.776971i \(0.283245\pi\)
−0.629537 + 0.776971i \(0.716755\pi\)
\(42\) 3.02013 0.466016
\(43\) −2.64324 −0.403090 −0.201545 0.979479i \(-0.564596\pi\)
−0.201545 + 0.979479i \(0.564596\pi\)
\(44\) 1.00000 0.150756
\(45\) 2.30044i 0.342929i
\(46\) 8.68202 1.28009
\(47\) 10.3663 1.51208 0.756041 0.654524i \(-0.227131\pi\)
0.756041 + 0.654524i \(0.227131\pi\)
\(48\) 2.17721i 0.314253i
\(49\) −5.07579 −0.725113
\(50\) 3.25253i 0.459977i
\(51\) 1.86708i 0.261443i
\(52\) 5.36704 0.744275
\(53\) −5.71903 4.50474i −0.785569 0.618774i
\(54\) −2.74279 −0.373246
\(55\) 1.32192i 0.178248i
\(56\) 1.38716i 0.185367i
\(57\) −4.42369 −0.585932
\(58\) 7.91739i 1.03960i
\(59\) −7.46518 −0.971883 −0.485942 0.873991i \(-0.661523\pi\)
−0.485942 + 0.873991i \(0.661523\pi\)
\(60\) −2.87809 −0.371560
\(61\) 3.38583i 0.433511i −0.976226 0.216755i \(-0.930453\pi\)
0.976226 0.216755i \(-0.0695474\pi\)
\(62\) 8.54119 1.08473
\(63\) 2.41397 0.304131
\(64\) −1.00000 −0.125000
\(65\) 7.09480i 0.880001i
\(66\) 2.17721 0.267995
\(67\) 7.37868i 0.901450i 0.892663 + 0.450725i \(0.148834\pi\)
−0.892663 + 0.450725i \(0.851166\pi\)
\(68\) 0.857557 0.103994
\(69\) 18.9025 2.27560
\(70\) −1.83371 −0.219170
\(71\) 9.49215i 1.12651i 0.826283 + 0.563255i \(0.190451\pi\)
−0.826283 + 0.563255i \(0.809549\pi\)
\(72\) 1.74022i 0.205087i
\(73\) 1.29767i 0.151881i −0.997112 0.0759403i \(-0.975804\pi\)
0.997112 0.0759403i \(-0.0241958\pi\)
\(74\) 4.45516i 0.517902i
\(75\) 7.08142i 0.817692i
\(76\) 2.03182i 0.233066i
\(77\) 1.38716 0.158081
\(78\) 11.6852 1.32308
\(79\) 0.406000i 0.0456785i 0.999739 + 0.0228393i \(0.00727060\pi\)
−0.999739 + 0.0228393i \(0.992729\pi\)
\(80\) 1.32192i 0.147795i
\(81\) −11.1923 −1.24359
\(82\) 9.95008 1.09880
\(83\) 7.86709i 0.863526i −0.901987 0.431763i \(-0.857892\pi\)
0.901987 0.431763i \(-0.142108\pi\)
\(84\) 3.02013i 0.329523i
\(85\) 1.13362i 0.122958i
\(86\) 2.64324i 0.285028i
\(87\) 17.2378i 1.84808i
\(88\) 1.00000i 0.106600i
\(89\) 9.67232 1.02526 0.512632 0.858608i \(-0.328670\pi\)
0.512632 + 0.858608i \(0.328670\pi\)
\(90\) −2.30044 −0.242487
\(91\) 7.44493 0.780441
\(92\) 8.68202i 0.905163i
\(93\) 18.5959 1.92831
\(94\) 10.3663i 1.06920i
\(95\) 2.68590 0.275568
\(96\) −2.17721 −0.222210
\(97\) −11.8009 −1.19820 −0.599100 0.800675i \(-0.704475\pi\)
−0.599100 + 0.800675i \(0.704475\pi\)
\(98\) 5.07579i 0.512733i
\(99\) 1.74022 0.174899
\(100\) −3.25253 −0.325253
\(101\) 15.2396i 1.51639i −0.652026 0.758196i \(-0.726081\pi\)
0.652026 0.758196i \(-0.273919\pi\)
\(102\) 1.86708 0.184868
\(103\) 0.0304229i 0.00299766i 0.999999 + 0.00149883i \(0.000477093\pi\)
−0.999999 + 0.00149883i \(0.999523\pi\)
\(104\) 5.36704i 0.526282i
\(105\) −3.99237 −0.389615
\(106\) −4.50474 + 5.71903i −0.437539 + 0.555481i
\(107\) −10.0991 −0.976320 −0.488160 0.872754i \(-0.662332\pi\)
−0.488160 + 0.872754i \(0.662332\pi\)
\(108\) 2.74279i 0.263925i
\(109\) 8.35301i 0.800073i −0.916499 0.400037i \(-0.868997\pi\)
0.916499 0.400037i \(-0.131003\pi\)
\(110\) −1.32192 −0.126040
\(111\) 9.69981i 0.920665i
\(112\) −1.38716 −0.131074
\(113\) −13.6292 −1.28212 −0.641062 0.767489i \(-0.721506\pi\)
−0.641062 + 0.767489i \(0.721506\pi\)
\(114\) 4.42369i 0.414317i
\(115\) −11.4769 −1.07023
\(116\) 7.91739 0.735111
\(117\) 9.33986 0.863470
\(118\) 7.46518i 0.687225i
\(119\) 1.18957 0.109047
\(120\) 2.87809i 0.262733i
\(121\) 1.00000 0.0909091
\(122\) −3.38583 −0.306538
\(123\) 21.6634 1.95332
\(124\) 8.54119i 0.767022i
\(125\) 10.9092i 0.975747i
\(126\) 2.41397i 0.215053i
\(127\) 7.34805i 0.652034i −0.945364 0.326017i \(-0.894293\pi\)
0.945364 0.326017i \(-0.105707\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 5.75487i 0.506688i
\(130\) −7.09480 −0.622255
\(131\) 6.24449 0.545584 0.272792 0.962073i \(-0.412053\pi\)
0.272792 + 0.962073i \(0.412053\pi\)
\(132\) 2.17721i 0.189501i
\(133\) 2.81845i 0.244391i
\(134\) 7.37868 0.637421
\(135\) 3.62575 0.312055
\(136\) 0.857557i 0.0735349i
\(137\) 11.7374i 1.00279i −0.865218 0.501396i \(-0.832820\pi\)
0.865218 0.501396i \(-0.167180\pi\)
\(138\) 18.9025i 1.60909i
\(139\) 23.3030i 1.97653i 0.152747 + 0.988265i \(0.451188\pi\)
−0.152747 + 0.988265i \(0.548812\pi\)
\(140\) 1.83371i 0.154977i
\(141\) 22.5696i 1.90070i
\(142\) 9.49215 0.796563
\(143\) 5.36704 0.448815
\(144\) −1.74022 −0.145019
\(145\) 10.4662i 0.869167i
\(146\) −1.29767 −0.107396
\(147\) 11.0510i 0.911475i
\(148\) −4.45516 −0.366212
\(149\) 14.1854 1.16211 0.581055 0.813864i \(-0.302640\pi\)
0.581055 + 0.813864i \(0.302640\pi\)
\(150\) −7.08142 −0.578196
\(151\) 9.37198i 0.762681i −0.924435 0.381340i \(-0.875463\pi\)
0.924435 0.381340i \(-0.124537\pi\)
\(152\) 2.03182 0.164802
\(153\) 1.49234 0.120649
\(154\) 1.38716i 0.111780i
\(155\) −11.2908 −0.906896
\(156\) 11.6852i 0.935561i
\(157\) 15.3587i 1.22576i −0.790176 0.612880i \(-0.790011\pi\)
0.790176 0.612880i \(-0.209989\pi\)
\(158\) 0.406000 0.0322996
\(159\) −9.80775 + 12.4515i −0.777805 + 0.987469i
\(160\) 1.32192 0.104507
\(161\) 12.0433i 0.949147i
\(162\) 11.1923i 0.879350i
\(163\) −25.1400 −1.96912 −0.984559 0.175052i \(-0.943991\pi\)
−0.984559 + 0.175052i \(0.943991\pi\)
\(164\) 9.95008i 0.776971i
\(165\) −2.87809 −0.224059
\(166\) −7.86709 −0.610605
\(167\) 19.2301i 1.48807i 0.668141 + 0.744035i \(0.267090\pi\)
−0.668141 + 0.744035i \(0.732910\pi\)
\(168\) −3.02013 −0.233008
\(169\) 15.8051 1.21578
\(170\) −1.13362 −0.0869447
\(171\) 3.53582i 0.270391i
\(172\) 2.64324 0.201545
\(173\) 21.1747i 1.60988i 0.593354 + 0.804942i \(0.297804\pi\)
−0.593354 + 0.804942i \(0.702196\pi\)
\(174\) 17.2378 1.30679
\(175\) −4.51177 −0.341058
\(176\) −1.00000 −0.0753778
\(177\) 16.2532i 1.22167i
\(178\) 9.67232i 0.724971i
\(179\) 2.18176i 0.163072i 0.996670 + 0.0815362i \(0.0259826\pi\)
−0.996670 + 0.0815362i \(0.974017\pi\)
\(180\) 2.30044i 0.171464i
\(181\) 23.8870i 1.77551i 0.460316 + 0.887755i \(0.347736\pi\)
−0.460316 + 0.887755i \(0.652264\pi\)
\(182\) 7.44493i 0.551855i
\(183\) −7.37164 −0.544927
\(184\) −8.68202 −0.640047
\(185\) 5.88937i 0.432995i
\(186\) 18.5959i 1.36352i
\(187\) 0.857557 0.0627108
\(188\) −10.3663 −0.756041
\(189\) 3.80468i 0.276750i
\(190\) 2.68590i 0.194856i
\(191\) 8.00564i 0.579268i 0.957137 + 0.289634i \(0.0935336\pi\)
−0.957137 + 0.289634i \(0.906466\pi\)
\(192\) 2.17721i 0.157126i
\(193\) 17.2592i 1.24235i −0.783674 0.621173i \(-0.786656\pi\)
0.783674 0.621173i \(-0.213344\pi\)
\(194\) 11.8009i 0.847255i
\(195\) −15.4468 −1.10617
\(196\) 5.07579 0.362557
\(197\) −25.5123 −1.81768 −0.908839 0.417147i \(-0.863030\pi\)
−0.908839 + 0.417147i \(0.863030\pi\)
\(198\) 1.74022i 0.123672i
\(199\) −19.7608 −1.40081 −0.700405 0.713746i \(-0.746997\pi\)
−0.700405 + 0.713746i \(0.746997\pi\)
\(200\) 3.25253i 0.229989i
\(201\) 16.0649 1.13313
\(202\) −15.2396 −1.07225
\(203\) 10.9827 0.770832
\(204\) 1.86708i 0.130722i
\(205\) −13.1532 −0.918659
\(206\) 0.0304229 0.00211967
\(207\) 15.1087i 1.05012i
\(208\) −5.36704 −0.372137
\(209\) 2.03182i 0.140544i
\(210\) 3.99237i 0.275499i
\(211\) −16.2588 −1.11930 −0.559650 0.828729i \(-0.689064\pi\)
−0.559650 + 0.828729i \(0.689064\pi\)
\(212\) 5.71903 + 4.50474i 0.392785 + 0.309387i
\(213\) 20.6664 1.41604
\(214\) 10.0991i 0.690363i
\(215\) 3.49415i 0.238299i
\(216\) 2.74279 0.186623
\(217\) 11.8480i 0.804293i
\(218\) −8.35301 −0.565737
\(219\) −2.82529 −0.190916
\(220\) 1.32192i 0.0891238i
\(221\) 4.60254 0.309601
\(222\) −9.69981 −0.651008
\(223\) 22.5545 1.51036 0.755180 0.655517i \(-0.227549\pi\)
0.755180 + 0.655517i \(0.227549\pi\)
\(224\) 1.38716i 0.0926834i
\(225\) −5.66013 −0.377342
\(226\) 13.6292i 0.906599i
\(227\) 6.26650 0.415923 0.207961 0.978137i \(-0.433317\pi\)
0.207961 + 0.978137i \(0.433317\pi\)
\(228\) 4.42369 0.292966
\(229\) −29.4801 −1.94810 −0.974049 0.226338i \(-0.927325\pi\)
−0.974049 + 0.226338i \(0.927325\pi\)
\(230\) 11.4769i 0.756766i
\(231\) 3.02013i 0.198710i
\(232\) 7.91739i 0.519802i
\(233\) 22.9356i 1.50256i −0.659984 0.751279i \(-0.729437\pi\)
0.659984 0.751279i \(-0.270563\pi\)
\(234\) 9.33986i 0.610566i
\(235\) 13.7034i 0.893913i
\(236\) 7.46518 0.485942
\(237\) 0.883945 0.0574184
\(238\) 1.18957i 0.0771081i
\(239\) 4.86965i 0.314992i 0.987520 + 0.157496i \(0.0503421\pi\)
−0.987520 + 0.157496i \(0.949658\pi\)
\(240\) 2.87809 0.185780
\(241\) −4.42829 −0.285251 −0.142626 0.989777i \(-0.545554\pi\)
−0.142626 + 0.989777i \(0.545554\pi\)
\(242\) 1.00000i 0.0642824i
\(243\) 16.1396i 1.03535i
\(244\) 3.38583i 0.216755i
\(245\) 6.70979i 0.428673i
\(246\) 21.6634i 1.38121i
\(247\) 10.9049i 0.693860i
\(248\) −8.54119 −0.542366
\(249\) −17.1283 −1.08546
\(250\) 10.9092 0.689957
\(251\) 3.07178i 0.193889i −0.995290 0.0969445i \(-0.969093\pi\)
0.995290 0.0969445i \(-0.0309069\pi\)
\(252\) −2.41397 −0.152066
\(253\) 8.68202i 0.545834i
\(254\) −7.34805 −0.461058
\(255\) −2.46813 −0.154560
\(256\) 1.00000 0.0625000
\(257\) 22.7556i 1.41945i 0.704478 + 0.709726i \(0.251181\pi\)
−0.704478 + 0.709726i \(0.748819\pi\)
\(258\) 5.75487 0.358283
\(259\) −6.18001 −0.384007
\(260\) 7.09480i 0.440001i
\(261\) 13.7780 0.852839
\(262\) 6.24449i 0.385786i
\(263\) 14.4071i 0.888382i 0.895932 + 0.444191i \(0.146509\pi\)
−0.895932 + 0.444191i \(0.853491\pi\)
\(264\) −2.17721 −0.133998
\(265\) 5.95490 7.56010i 0.365807 0.464413i
\(266\) 2.81845 0.172811
\(267\) 21.0586i 1.28877i
\(268\) 7.37868i 0.450725i
\(269\) −11.1298 −0.678599 −0.339299 0.940678i \(-0.610190\pi\)
−0.339299 + 0.940678i \(0.610190\pi\)
\(270\) 3.62575i 0.220656i
\(271\) −9.31734 −0.565988 −0.282994 0.959122i \(-0.591328\pi\)
−0.282994 + 0.959122i \(0.591328\pi\)
\(272\) −0.857557 −0.0519970
\(273\) 16.2092i 0.981022i
\(274\) −11.7374 −0.709081
\(275\) −3.25253 −0.196135
\(276\) −18.9025 −1.13780
\(277\) 9.82156i 0.590120i 0.955479 + 0.295060i \(0.0953397\pi\)
−0.955479 + 0.295060i \(0.904660\pi\)
\(278\) 23.3030 1.39762
\(279\) 14.8636i 0.889860i
\(280\) 1.83371 0.109585
\(281\) −18.2965 −1.09148 −0.545739 0.837955i \(-0.683751\pi\)
−0.545739 + 0.837955i \(0.683751\pi\)
\(282\) −22.5696 −1.34400
\(283\) 16.4603i 0.978464i −0.872154 0.489232i \(-0.837277\pi\)
0.872154 0.489232i \(-0.162723\pi\)
\(284\) 9.49215i 0.563255i
\(285\) 5.84776i 0.346392i
\(286\) 5.36704i 0.317360i
\(287\) 13.8023i 0.814726i
\(288\) 1.74022i 0.102544i
\(289\) −16.2646 −0.956741
\(290\) −10.4662 −0.614594
\(291\) 25.6930i 1.50615i
\(292\) 1.29767i 0.0759403i
\(293\) 27.4941 1.60622 0.803110 0.595831i \(-0.203177\pi\)
0.803110 + 0.595831i \(0.203177\pi\)
\(294\) 11.0510 0.644510
\(295\) 9.86836i 0.574558i
\(296\) 4.45516i 0.258951i
\(297\) 2.74279i 0.159153i
\(298\) 14.1854i 0.821737i
\(299\) 46.5968i 2.69476i
\(300\) 7.08142i 0.408846i
\(301\) 3.66659 0.211339
\(302\) −9.37198 −0.539297
\(303\) −33.1796 −1.90612
\(304\) 2.03182i 0.116533i
\(305\) 4.47579 0.256283
\(306\) 1.49234i 0.0853115i
\(307\) 15.4752 0.883217 0.441608 0.897208i \(-0.354408\pi\)
0.441608 + 0.897208i \(0.354408\pi\)
\(308\) −1.38716 −0.0790406
\(309\) 0.0662370 0.00376809
\(310\) 11.2908i 0.641273i
\(311\) 19.7022 1.11721 0.558605 0.829434i \(-0.311337\pi\)
0.558605 + 0.829434i \(0.311337\pi\)
\(312\) −11.6852 −0.661542
\(313\) 23.5089i 1.32880i −0.747375 0.664402i \(-0.768686\pi\)
0.747375 0.664402i \(-0.231314\pi\)
\(314\) −15.3587 −0.866744
\(315\) 3.19107i 0.179796i
\(316\) 0.406000i 0.0228393i
\(317\) 21.8608 1.22782 0.613912 0.789374i \(-0.289595\pi\)
0.613912 + 0.789374i \(0.289595\pi\)
\(318\) 12.4515 + 9.80775i 0.698246 + 0.549991i
\(319\) 7.91739 0.443289
\(320\) 1.32192i 0.0738975i
\(321\) 21.9879i 1.22724i
\(322\) −12.0433 −0.671148
\(323\) 1.74240i 0.0969498i
\(324\) 11.1923 0.621794
\(325\) −17.4565 −0.968310
\(326\) 25.1400i 1.39238i
\(327\) −18.1862 −1.00570
\(328\) −9.95008 −0.549401
\(329\) −14.3797 −0.792779
\(330\) 2.87809i 0.158434i
\(331\) −1.48738 −0.0817540 −0.0408770 0.999164i \(-0.513015\pi\)
−0.0408770 + 0.999164i \(0.513015\pi\)
\(332\) 7.86709i 0.431763i
\(333\) −7.75299 −0.424861
\(334\) 19.2301 1.05222
\(335\) −9.75402 −0.532919
\(336\) 3.02013i 0.164761i
\(337\) 3.10448i 0.169112i −0.996419 0.0845559i \(-0.973053\pi\)
0.996419 0.0845559i \(-0.0269471\pi\)
\(338\) 15.8051i 0.859686i
\(339\) 29.6735i 1.61164i
\(340\) 1.13362i 0.0614792i
\(341\) 8.54119i 0.462532i
\(342\) 3.53582 0.191195
\(343\) 16.7510 0.904471
\(344\) 2.64324i 0.142514i
\(345\) 24.9876i 1.34529i
\(346\) 21.1747 1.13836
\(347\) 32.3640 1.73739 0.868696 0.495345i \(-0.164958\pi\)
0.868696 + 0.495345i \(0.164958\pi\)
\(348\) 17.2378i 0.924042i
\(349\) 23.2104i 1.24242i 0.783643 + 0.621212i \(0.213359\pi\)
−0.783643 + 0.621212i \(0.786641\pi\)
\(350\) 4.51177i 0.241164i
\(351\) 14.7207i 0.785731i
\(352\) 1.00000i 0.0533002i
\(353\) 18.1113i 0.963969i −0.876180 0.481985i \(-0.839916\pi\)
0.876180 0.481985i \(-0.160084\pi\)
\(354\) 16.2532 0.863849
\(355\) −12.5479 −0.665971
\(356\) −9.67232 −0.512632
\(357\) 2.58993i 0.137074i
\(358\) 2.18176 0.115310
\(359\) 3.84394i 0.202875i −0.994842 0.101438i \(-0.967656\pi\)
0.994842 0.101438i \(-0.0323442\pi\)
\(360\) 2.30044 0.121244
\(361\) 14.8717 0.782721
\(362\) 23.8870 1.25548
\(363\) 2.17721i 0.114274i
\(364\) −7.44493 −0.390221
\(365\) 1.71541 0.0897888
\(366\) 7.37164i 0.385322i
\(367\) −2.80336 −0.146334 −0.0731671 0.997320i \(-0.523311\pi\)
−0.0731671 + 0.997320i \(0.523311\pi\)
\(368\) 8.68202i 0.452581i
\(369\) 17.3154i 0.901402i
\(370\) 5.88937 0.306174
\(371\) 7.93320 + 6.24878i 0.411871 + 0.324421i
\(372\) −18.5959 −0.964154
\(373\) 25.1263i 1.30099i −0.759509 0.650497i \(-0.774561\pi\)
0.759509 0.650497i \(-0.225439\pi\)
\(374\) 0.857557i 0.0443432i
\(375\) 23.7515 1.22652
\(376\) 10.3663i 0.534602i
\(377\) 42.4930 2.18850
\(378\) 3.80468 0.195692
\(379\) 1.02127i 0.0524592i −0.999656 0.0262296i \(-0.991650\pi\)
0.999656 0.0262296i \(-0.00835010\pi\)
\(380\) −2.68590 −0.137784
\(381\) −15.9982 −0.819614
\(382\) 8.00564 0.409604
\(383\) 32.8031i 1.67616i −0.545548 0.838080i \(-0.683678\pi\)
0.545548 0.838080i \(-0.316322\pi\)
\(384\) 2.17721 0.111105
\(385\) 1.83371i 0.0934545i
\(386\) −17.2592 −0.878471
\(387\) 4.59983 0.233822
\(388\) 11.8009 0.599100
\(389\) 25.2737i 1.28143i −0.767780 0.640713i \(-0.778639\pi\)
0.767780 0.640713i \(-0.221361\pi\)
\(390\) 15.4468i 0.782181i
\(391\) 7.44532i 0.376526i
\(392\) 5.07579i 0.256366i
\(393\) 13.5955i 0.685804i
\(394\) 25.5123i 1.28529i
\(395\) −0.536699 −0.0270043
\(396\) −1.74022 −0.0874496
\(397\) 4.72481i 0.237131i 0.992946 + 0.118566i \(0.0378296\pi\)
−0.992946 + 0.118566i \(0.962170\pi\)
\(398\) 19.7608i 0.990522i
\(399\) 6.13636 0.307202
\(400\) 3.25253 0.162626
\(401\) 6.37140i 0.318172i −0.987265 0.159086i \(-0.949145\pi\)
0.987265 0.159086i \(-0.0508548\pi\)
\(402\) 16.0649i 0.801245i
\(403\) 45.8409i 2.28350i
\(404\) 15.2396i 0.758196i
\(405\) 14.7953i 0.735185i
\(406\) 10.9827i 0.545061i
\(407\) −4.45516 −0.220834
\(408\) −1.86708 −0.0924341
\(409\) −13.3300 −0.659128 −0.329564 0.944133i \(-0.606902\pi\)
−0.329564 + 0.944133i \(0.606902\pi\)
\(410\) 13.1532i 0.649590i
\(411\) −25.5547 −1.26052
\(412\) 0.0304229i 0.00149883i
\(413\) 10.3554 0.509555
\(414\) −15.1087 −0.742550
\(415\) 10.3997 0.510499
\(416\) 5.36704i 0.263141i
\(417\) 50.7353 2.48452
\(418\) 2.03182 0.0993796
\(419\) 13.8325i 0.675764i 0.941189 + 0.337882i \(0.109710\pi\)
−0.941189 + 0.337882i \(0.890290\pi\)
\(420\) 3.99237 0.194807
\(421\) 16.2907i 0.793961i 0.917827 + 0.396981i \(0.129942\pi\)
−0.917827 + 0.396981i \(0.870058\pi\)
\(422\) 16.2588i 0.791464i
\(423\) −18.0397 −0.877121
\(424\) 4.50474 5.71903i 0.218770 0.277741i
\(425\) −2.78923 −0.135297
\(426\) 20.6664i 1.00129i
\(427\) 4.69667i 0.227288i
\(428\) 10.0991 0.488160
\(429\) 11.6852i 0.564165i
\(430\) −3.49415 −0.168503
\(431\) −14.1599 −0.682060 −0.341030 0.940052i \(-0.610776\pi\)
−0.341030 + 0.940052i \(0.610776\pi\)
\(432\) 2.74279i 0.131963i
\(433\) −12.9011 −0.619985 −0.309993 0.950739i \(-0.600327\pi\)
−0.309993 + 0.950739i \(0.600327\pi\)
\(434\) −11.8480 −0.568721
\(435\) −22.7870 −1.09255
\(436\) 8.35301i 0.400037i
\(437\) 17.6403 0.843850
\(438\) 2.82529i 0.134998i
\(439\) −29.1606 −1.39176 −0.695880 0.718158i \(-0.744986\pi\)
−0.695880 + 0.718158i \(0.744986\pi\)
\(440\) 1.32192 0.0630200
\(441\) 8.83302 0.420620
\(442\) 4.60254i 0.218921i
\(443\) 5.38596i 0.255895i 0.991781 + 0.127947i \(0.0408388\pi\)
−0.991781 + 0.127947i \(0.959161\pi\)
\(444\) 9.69981i 0.460333i
\(445\) 12.7860i 0.606116i
\(446\) 22.5545i 1.06799i
\(447\) 30.8845i 1.46079i
\(448\) 1.38716 0.0655370
\(449\) 13.2476 0.625195 0.312597 0.949886i \(-0.398801\pi\)
0.312597 + 0.949886i \(0.398801\pi\)
\(450\) 5.66013i 0.266821i
\(451\) 9.95008i 0.468531i
\(452\) 13.6292 0.641062
\(453\) −20.4047 −0.958698
\(454\) 6.26650i 0.294102i
\(455\) 9.84160i 0.461381i
\(456\) 4.42369i 0.207158i
\(457\) 15.7262i 0.735640i 0.929897 + 0.367820i \(0.119896\pi\)
−0.929897 + 0.367820i \(0.880104\pi\)
\(458\) 29.4801i 1.37751i
\(459\) 2.35210i 0.109787i
\(460\) 11.4769 0.535114
\(461\) 17.3885 0.809862 0.404931 0.914347i \(-0.367296\pi\)
0.404931 + 0.914347i \(0.367296\pi\)
\(462\) −3.02013 −0.140509
\(463\) 6.43743i 0.299173i 0.988749 + 0.149586i \(0.0477942\pi\)
−0.988749 + 0.149586i \(0.952206\pi\)
\(464\) −7.91739 −0.367556
\(465\) 24.5823i 1.13998i
\(466\) −22.9356 −1.06247
\(467\) 35.2319 1.63034 0.815168 0.579225i \(-0.196645\pi\)
0.815168 + 0.579225i \(0.196645\pi\)
\(468\) −9.33986 −0.431735
\(469\) 10.2354i 0.472627i
\(470\) 13.7034 0.632092
\(471\) −33.4391 −1.54079
\(472\) 7.46518i 0.343613i
\(473\) 2.64324 0.121536
\(474\) 0.883945i 0.0406009i
\(475\) 6.60855i 0.303221i
\(476\) −1.18957 −0.0545237
\(477\) 9.95240 + 7.83926i 0.455689 + 0.358935i
\(478\) 4.86965 0.222733
\(479\) 10.9387i 0.499804i −0.968271 0.249902i \(-0.919602\pi\)
0.968271 0.249902i \(-0.0803983\pi\)
\(480\) 2.87809i 0.131366i
\(481\) −23.9111 −1.09025
\(482\) 4.42829i 0.201703i
\(483\) −26.2208 −1.19309
\(484\) −1.00000 −0.0454545
\(485\) 15.5998i 0.708352i
\(486\) 16.1396 0.732105
\(487\) 2.25381 0.102130 0.0510649 0.998695i \(-0.483738\pi\)
0.0510649 + 0.998695i \(0.483738\pi\)
\(488\) 3.38583 0.153269
\(489\) 54.7350i 2.47520i
\(490\) −6.70979 −0.303117
\(491\) 16.8369i 0.759837i −0.925020 0.379919i \(-0.875952\pi\)
0.925020 0.379919i \(-0.124048\pi\)
\(492\) −21.6634 −0.976660
\(493\) 6.78961 0.305789
\(494\) 10.9049 0.490633
\(495\) 2.30044i 0.103397i
\(496\) 8.54119i 0.383511i
\(497\) 13.1671i 0.590625i
\(498\) 17.1283i 0.767537i
\(499\) 5.92817i 0.265381i 0.991158 + 0.132691i \(0.0423617\pi\)
−0.991158 + 0.132691i \(0.957638\pi\)
\(500\) 10.9092i 0.487873i
\(501\) 41.8679 1.87052
\(502\) −3.07178 −0.137100
\(503\) 19.2911i 0.860148i 0.902794 + 0.430074i \(0.141513\pi\)
−0.902794 + 0.430074i \(0.858487\pi\)
\(504\) 2.41397i 0.107527i
\(505\) 20.1455 0.896461
\(506\) −8.68202 −0.385963
\(507\) 34.4110i 1.52825i
\(508\) 7.34805i 0.326017i
\(509\) 15.6545i 0.693872i 0.937889 + 0.346936i \(0.112778\pi\)
−0.937889 + 0.346936i \(0.887222\pi\)
\(510\) 2.46813i 0.109290i
\(511\) 1.80007i 0.0796304i
\(512\) 1.00000i 0.0441942i
\(513\) −5.57286 −0.246048
\(514\) 22.7556 1.00370
\(515\) −0.0402167 −0.00177216
\(516\) 5.75487i 0.253344i
\(517\) −10.3663 −0.455910
\(518\) 6.18001i 0.271534i
\(519\) 46.1017 2.02364
\(520\) 7.09480 0.311127
\(521\) 42.9854 1.88323 0.941613 0.336697i \(-0.109310\pi\)
0.941613 + 0.336697i \(0.109310\pi\)
\(522\) 13.7780i 0.603048i
\(523\) −19.9585 −0.872726 −0.436363 0.899771i \(-0.643734\pi\)
−0.436363 + 0.899771i \(0.643734\pi\)
\(524\) −6.24449 −0.272792
\(525\) 9.82305i 0.428713i
\(526\) 14.4071 0.628181
\(527\) 7.32456i 0.319063i
\(528\) 2.17721i 0.0947507i
\(529\) −52.3774 −2.27728
\(530\) −7.56010 5.95490i −0.328390 0.258664i
\(531\) 12.9911 0.563765
\(532\) 2.81845i 0.122196i
\(533\) 53.4025i 2.31312i
\(534\) −21.0586 −0.911296
\(535\) 13.3502i 0.577181i
\(536\) −7.37868 −0.318711
\(537\) 4.75014 0.204984
\(538\) 11.1298i 0.479842i
\(539\) 5.07579 0.218630
\(540\) −3.62575 −0.156027
\(541\) −17.9390 −0.771256 −0.385628 0.922654i \(-0.626015\pi\)
−0.385628 + 0.922654i \(0.626015\pi\)
\(542\) 9.31734i 0.400214i
\(543\) 52.0070 2.23183
\(544\) 0.857557i 0.0367674i
\(545\) 11.0420 0.472988
\(546\) −16.2092 −0.693688
\(547\) −8.91465 −0.381163 −0.190581 0.981671i \(-0.561037\pi\)
−0.190581 + 0.981671i \(0.561037\pi\)
\(548\) 11.7374i 0.501396i
\(549\) 5.89210i 0.251469i
\(550\) 3.25253i 0.138688i
\(551\) 16.0867i 0.685317i
\(552\) 18.9025i 0.804545i
\(553\) 0.563186i 0.0239491i
\(554\) 9.82156 0.417278
\(555\) 12.8224 0.544279
\(556\) 23.3030i 0.988265i
\(557\) 27.4937i 1.16495i 0.812850 + 0.582474i \(0.197915\pi\)
−0.812850 + 0.582474i \(0.802085\pi\)
\(558\) −14.8636 −0.629226
\(559\) 14.1864 0.600019
\(560\) 1.83371i 0.0774884i
\(561\) 1.86708i 0.0788281i
\(562\) 18.2965i 0.771791i
\(563\) 12.4778i 0.525879i 0.964812 + 0.262939i \(0.0846919\pi\)
−0.964812 + 0.262939i \(0.915308\pi\)
\(564\) 22.5696i 0.950351i
\(565\) 18.0167i 0.757967i
\(566\) −16.4603 −0.691878
\(567\) 15.5255 0.652009
\(568\) −9.49215 −0.398282
\(569\) 46.3059i 1.94124i 0.240610 + 0.970622i \(0.422653\pi\)
−0.240610 + 0.970622i \(0.577347\pi\)
\(570\) −5.84776 −0.244936
\(571\) 14.0526i 0.588084i 0.955792 + 0.294042i \(0.0950006\pi\)
−0.955792 + 0.294042i \(0.904999\pi\)
\(572\) −5.36704 −0.224407
\(573\) 17.4299 0.728146
\(574\) −13.8023 −0.576098
\(575\) 28.2385i 1.17763i
\(576\) 1.74022 0.0725094
\(577\) −9.12750 −0.379983 −0.189991 0.981786i \(-0.560846\pi\)
−0.189991 + 0.981786i \(0.560846\pi\)
\(578\) 16.2646i 0.676518i
\(579\) −37.5769 −1.56164
\(580\) 10.4662i 0.434583i
\(581\) 10.9129i 0.452743i
\(582\) 25.6930 1.06501
\(583\) 5.71903 + 4.50474i 0.236858 + 0.186567i
\(584\) 1.29767 0.0536979
\(585\) 12.3465i 0.510467i
\(586\) 27.4941i 1.13577i
\(587\) −23.4334 −0.967199 −0.483599 0.875289i \(-0.660671\pi\)
−0.483599 + 0.875289i \(0.660671\pi\)
\(588\) 11.0510i 0.455737i
\(589\) 17.3542 0.715066
\(590\) −9.86836 −0.406274
\(591\) 55.5456i 2.28484i
\(592\) 4.45516 0.183106
\(593\) 35.7696 1.46888 0.734441 0.678672i \(-0.237444\pi\)
0.734441 + 0.678672i \(0.237444\pi\)
\(594\) 2.74279 0.112538
\(595\) 1.57251i 0.0644667i
\(596\) −14.1854 −0.581055
\(597\) 43.0234i 1.76083i
\(598\) −46.5968 −1.90548
\(599\) 37.6923 1.54007 0.770033 0.638004i \(-0.220240\pi\)
0.770033 + 0.638004i \(0.220240\pi\)
\(600\) 7.08142 0.289098
\(601\) 23.4346i 0.955918i −0.878382 0.477959i \(-0.841377\pi\)
0.878382 0.477959i \(-0.158623\pi\)
\(602\) 3.66659i 0.149439i
\(603\) 12.8406i 0.522908i
\(604\) 9.37198i 0.381340i
\(605\) 1.32192i 0.0537437i
\(606\) 33.1796i 1.34783i
\(607\) −15.7219 −0.638132 −0.319066 0.947732i \(-0.603369\pi\)
−0.319066 + 0.947732i \(0.603369\pi\)
\(608\) −2.03182 −0.0824012
\(609\) 23.9115i 0.968944i
\(610\) 4.47579i 0.181219i
\(611\) −55.6364 −2.25081
\(612\) −1.49234 −0.0603243
\(613\) 34.2775i 1.38446i −0.721678 0.692228i \(-0.756629\pi\)
0.721678 0.692228i \(-0.243371\pi\)
\(614\) 15.4752i 0.624529i
\(615\) 28.6372i 1.15476i
\(616\) 1.38716i 0.0558902i
\(617\) 28.5966i 1.15125i −0.817712 0.575627i \(-0.804758\pi\)
0.817712 0.575627i \(-0.195242\pi\)
\(618\) 0.0662370i 0.00266444i
\(619\) −10.3771 −0.417091 −0.208546 0.978013i \(-0.566873\pi\)
−0.208546 + 0.978013i \(0.566873\pi\)
\(620\) 11.2908 0.453448
\(621\) 23.8130 0.955581
\(622\) 19.7022i 0.789987i
\(623\) −13.4170 −0.537542
\(624\) 11.6852i 0.467781i
\(625\) 1.84159 0.0736636
\(626\) −23.5089 −0.939606
\(627\) 4.42369 0.176665
\(628\) 15.3587i 0.612880i
\(629\) −3.82056 −0.152336
\(630\) 3.19107 0.127135
\(631\) 17.5509i 0.698689i 0.936994 + 0.349345i \(0.113596\pi\)
−0.936994 + 0.349345i \(0.886404\pi\)
\(632\) −0.406000 −0.0161498
\(633\) 35.3987i 1.40697i
\(634\) 21.8608i 0.868203i
\(635\) 9.71354 0.385470
\(636\) 9.80775 12.4515i 0.388902 0.493734i
\(637\) 27.2420 1.07937
\(638\) 7.91739i 0.313452i
\(639\) 16.5185i 0.653460i
\(640\) −1.32192 −0.0522535
\(641\) 3.16719i 0.125097i −0.998042 0.0625483i \(-0.980077\pi\)
0.998042 0.0625483i \(-0.0199227\pi\)
\(642\) 21.9879 0.867793
\(643\) −32.8923 −1.29715 −0.648573 0.761152i \(-0.724634\pi\)
−0.648573 + 0.761152i \(0.724634\pi\)
\(644\) 12.0433i 0.474574i
\(645\) −7.60748 −0.299544
\(646\) 1.74240 0.0685539
\(647\) 34.0414 1.33831 0.669153 0.743125i \(-0.266657\pi\)
0.669153 + 0.743125i \(0.266657\pi\)
\(648\) 11.1923i 0.439675i
\(649\) 7.46518 0.293034
\(650\) 17.4565i 0.684699i
\(651\) −25.7955 −1.01101
\(652\) 25.1400 0.984559
\(653\) 17.7473 0.694507 0.347254 0.937771i \(-0.387114\pi\)
0.347254 + 0.937771i \(0.387114\pi\)
\(654\) 18.1862i 0.711138i
\(655\) 8.25472i 0.322538i
\(656\) 9.95008i 0.388485i
\(657\) 2.25823i 0.0881021i
\(658\) 14.3797i 0.560579i
\(659\) 8.96710i 0.349309i −0.984630 0.174654i \(-0.944119\pi\)
0.984630 0.174654i \(-0.0558808\pi\)
\(660\) 2.87809 0.112030
\(661\) 48.5318 1.88767 0.943834 0.330420i \(-0.107190\pi\)
0.943834 + 0.330420i \(0.107190\pi\)
\(662\) 1.48738i 0.0578088i
\(663\) 10.0207i 0.389171i
\(664\) 7.86709 0.305302
\(665\) −3.72577 −0.144479
\(666\) 7.75299i 0.300422i
\(667\) 68.7389i 2.66158i
\(668\) 19.2301i 0.744035i
\(669\) 49.1058i 1.89854i
\(670\) 9.75402i 0.376831i
\(671\) 3.38583i 0.130708i
\(672\) 3.02013 0.116504
\(673\) 25.2982 0.975176 0.487588 0.873074i \(-0.337877\pi\)
0.487588 + 0.873074i \(0.337877\pi\)
\(674\) −3.10448 −0.119580
\(675\) 8.92100i 0.343370i
\(676\) −15.8051 −0.607890
\(677\) 48.0672i 1.84737i 0.383148 + 0.923687i \(0.374840\pi\)
−0.383148 + 0.923687i \(0.625160\pi\)
\(678\) 29.6735 1.13960
\(679\) 16.3697 0.628211
\(680\) 1.13362 0.0434724
\(681\) 13.6435i 0.522819i
\(682\) −8.54119 −0.327059
\(683\) −17.8134 −0.681613 −0.340806 0.940134i \(-0.610700\pi\)
−0.340806 + 0.940134i \(0.610700\pi\)
\(684\) 3.53582i 0.135196i
\(685\) 15.5159 0.592831
\(686\) 16.7510i 0.639557i
\(687\) 64.1842i 2.44878i
\(688\) −2.64324 −0.100772
\(689\) 30.6943 + 24.1771i 1.16936 + 0.921075i
\(690\) 24.9876 0.951263
\(691\) 13.4038i 0.509905i −0.966954 0.254952i \(-0.917940\pi\)
0.966954 0.254952i \(-0.0820598\pi\)
\(692\) 21.1747i 0.804942i
\(693\) −2.41397 −0.0916990
\(694\) 32.3640i 1.22852i
\(695\) −30.8046 −1.16849
\(696\) −17.2378 −0.653397
\(697\) 8.53276i 0.323201i
\(698\) 23.2104 0.878526
\(699\) −49.9354 −1.88873
\(700\) 4.51177 0.170529
\(701\) 2.47305i 0.0934059i 0.998909 + 0.0467030i \(0.0148714\pi\)
−0.998909 + 0.0467030i \(0.985129\pi\)
\(702\) 14.7207 0.555596
\(703\) 9.05209i 0.341406i
\(704\) 1.00000 0.0376889
\(705\) 29.8352 1.12366
\(706\) −18.1113 −0.681629
\(707\) 21.1397i 0.795039i
\(708\) 16.2532i 0.610834i
\(709\) 10.7117i 0.402285i 0.979562 + 0.201143i \(0.0644655\pi\)
−0.979562 + 0.201143i \(0.935535\pi\)
\(710\) 12.5479i 0.470912i
\(711\) 0.706531i 0.0264970i
\(712\) 9.67232i 0.362486i
\(713\) −74.1548 −2.77712
\(714\) −2.58993 −0.0969257
\(715\) 7.09480i 0.265330i
\(716\) 2.18176i 0.0815362i
\(717\) 10.6022 0.395948
\(718\) −3.84394 −0.143454
\(719\) 31.5401i 1.17625i 0.808771 + 0.588124i \(0.200133\pi\)
−0.808771 + 0.588124i \(0.799867\pi\)
\(720\) 2.30044i 0.0857322i
\(721\) 0.0422014i 0.00157166i
\(722\) 14.8717i 0.553468i
\(723\) 9.64130i 0.358564i
\(724\) 23.8870i 0.887755i
\(725\) −25.7515 −0.956388
\(726\) −2.17721 −0.0808037
\(727\) 33.5464 1.24417 0.622084 0.782950i \(-0.286286\pi\)
0.622084 + 0.782950i \(0.286286\pi\)
\(728\) 7.44493i 0.275928i
\(729\) 1.56225 0.0578610
\(730\) 1.71541i 0.0634903i
\(731\) 2.26673 0.0838379
\(732\) 7.37164 0.272464
\(733\) 35.5610 1.31348 0.656738 0.754119i \(-0.271936\pi\)
0.656738 + 0.754119i \(0.271936\pi\)
\(734\) 2.80336i 0.103474i
\(735\) −14.6086 −0.538846
\(736\) 8.68202 0.320023
\(737\) 7.37868i 0.271797i
\(738\) −17.3154 −0.637388
\(739\) 5.51947i 0.203037i 0.994834 + 0.101518i \(0.0323701\pi\)
−0.994834 + 0.101518i \(0.967630\pi\)
\(740\) 5.88937i 0.216497i
\(741\) 23.7421 0.872189
\(742\) 6.24878 7.93320i 0.229400 0.291237i
\(743\) −22.6572 −0.831212 −0.415606 0.909545i \(-0.636431\pi\)
−0.415606 + 0.909545i \(0.636431\pi\)
\(744\) 18.5959i 0.681760i
\(745\) 18.7519i 0.687017i
\(746\) −25.1263 −0.919941
\(747\) 13.6905i 0.500910i
\(748\) −0.857557 −0.0313554
\(749\) 14.0091 0.511881
\(750\) 23.7515i 0.867283i
\(751\) 24.0657 0.878171 0.439086 0.898445i \(-0.355303\pi\)
0.439086 + 0.898445i \(0.355303\pi\)
\(752\) 10.3663 0.378021
\(753\) −6.68790 −0.243721
\(754\) 42.4930i 1.54750i
\(755\) 12.3890 0.450882
\(756\) 3.80468i 0.138375i
\(757\) 0.558282 0.0202911 0.0101456 0.999949i \(-0.496771\pi\)
0.0101456 + 0.999949i \(0.496771\pi\)
\(758\) −1.02127 −0.0370943
\(759\) −18.9025 −0.686119
\(760\) 2.68590i 0.0974279i
\(761\) 8.80954i 0.319345i 0.987170 + 0.159673i \(0.0510439\pi\)
−0.987170 + 0.159673i \(0.948956\pi\)
\(762\) 15.9982i 0.579555i
\(763\) 11.5869i 0.419475i
\(764\) 8.00564i 0.289634i
\(765\) 1.97275i 0.0713251i
\(766\) −32.8031 −1.18522
\(767\) 40.0659 1.44670
\(768\) 2.17721i 0.0785631i
\(769\) 15.5824i 0.561915i −0.959720 0.280957i \(-0.909348\pi\)
0.959720 0.280957i \(-0.0906520\pi\)
\(770\) 1.83371 0.0660823
\(771\) 49.5435 1.78427
\(772\) 17.2592i 0.621173i
\(773\) 20.8995i 0.751701i −0.926680 0.375851i \(-0.877351\pi\)
0.926680 0.375851i \(-0.122649\pi\)
\(774\) 4.59983i 0.165337i
\(775\) 27.7805i 0.997904i
\(776\) 11.8009i 0.423627i
\(777\) 13.4552i 0.482701i
\(778\) −25.2737 −0.906105
\(779\) 20.2168 0.724341
\(780\) 15.4468 0.553085
\(781\) 9.49215i 0.339656i
\(782\) −7.44532 −0.266244
\(783\) 21.7157i 0.776057i
\(784\) −5.07579 −0.181278
\(785\) 20.3030 0.724645
\(786\) −13.5955 −0.484937
\(787\) 0.300152i 0.0106993i 0.999986 + 0.00534963i \(0.00170285\pi\)
−0.999986 + 0.00534963i \(0.998297\pi\)
\(788\) 25.5123 0.908839
\(789\) 31.3673 1.11670
\(790\) 0.536699i 0.0190949i
\(791\) 18.9058 0.672213
\(792\) 1.74022i 0.0618362i
\(793\) 18.1719i 0.645302i
\(794\) 4.72481 0.167677
\(795\) −16.4599 12.9650i −0.583772 0.459823i
\(796\) 19.7608 0.700405
\(797\) 1.25688i 0.0445210i 0.999752 + 0.0222605i \(0.00708633\pi\)
−0.999752 + 0.0222605i \(0.992914\pi\)
\(798\) 6.13636i 0.217225i
\(799\) −8.88970 −0.314495
\(800\) 3.25253i 0.114994i
\(801\) −16.8320 −0.594730
\(802\) −6.37140 −0.224982
\(803\) 1.29767i 0.0457937i
\(804\) −16.0649 −0.566566
\(805\) 15.9203 0.561117
\(806\) −45.8409 −1.61468
\(807\) 24.2320i 0.853006i
\(808\) 15.2396 0.536126
\(809\) 33.2912i 1.17046i −0.810869 0.585228i \(-0.801005\pi\)
0.810869 0.585228i \(-0.198995\pi\)
\(810\) −14.7953 −0.519854
\(811\) 26.5517 0.932357 0.466178 0.884691i \(-0.345630\pi\)
0.466178 + 0.884691i \(0.345630\pi\)
\(812\) −10.9827 −0.385416
\(813\) 20.2858i 0.711453i
\(814\) 4.45516i 0.156153i
\(815\) 33.2331i 1.16410i
\(816\) 1.86708i 0.0653608i
\(817\) 5.37058i 0.187893i
\(818\) 13.3300i 0.466074i
\(819\) −12.9559 −0.452714
\(820\) 13.1532 0.459330
\(821\) 13.1442i 0.458736i 0.973340 + 0.229368i \(0.0736659\pi\)
−0.973340 + 0.229368i \(0.926334\pi\)
\(822\) 25.5547i 0.891322i
\(823\) −24.1254 −0.840958 −0.420479 0.907302i \(-0.638138\pi\)
−0.420479 + 0.907302i \(0.638138\pi\)
\(824\) −0.0304229 −0.00105983
\(825\) 7.08142i 0.246544i
\(826\) 10.3554i 0.360310i
\(827\) 8.74547i 0.304110i 0.988372 + 0.152055i \(0.0485890\pi\)
−0.988372 + 0.152055i \(0.951411\pi\)
\(828\) 15.1087i 0.525062i
\(829\) 12.8669i 0.446885i −0.974717 0.223443i \(-0.928271\pi\)
0.974717 0.223443i \(-0.0717295\pi\)
\(830\) 10.3997i 0.360978i
\(831\) 21.3836 0.741787
\(832\) 5.36704 0.186069
\(833\) 4.35278 0.150815
\(834\) 50.7353i 1.75682i
\(835\) −25.4206 −0.879718
\(836\) 2.03182i 0.0702720i
\(837\) 23.4267 0.809745
\(838\) 13.8325 0.477837
\(839\) −20.5550 −0.709637 −0.354819 0.934935i \(-0.615457\pi\)
−0.354819 + 0.934935i \(0.615457\pi\)
\(840\) 3.99237i 0.137750i
\(841\) 33.6851 1.16155
\(842\) 16.2907 0.561415
\(843\) 39.8352i 1.37200i
\(844\) 16.2588 0.559650
\(845\) 20.8931i 0.718745i
\(846\) 18.0397i 0.620218i
\(847\) −1.38716 −0.0476633
\(848\) −5.71903 4.50474i −0.196392 0.154693i
\(849\) −35.8375 −1.22994
\(850\) 2.78923i 0.0956697i
\(851\) 38.6798i 1.32593i
\(852\) −20.6664 −0.708018
\(853\) 4.60833i 0.157786i 0.996883 + 0.0788931i \(0.0251386\pi\)
−0.996883 + 0.0788931i \(0.974861\pi\)
\(854\) 4.69667 0.160717
\(855\) −4.67407 −0.159850
\(856\) 10.0991i 0.345181i
\(857\) −28.1484 −0.961532 −0.480766 0.876849i \(-0.659641\pi\)
−0.480766 + 0.876849i \(0.659641\pi\)
\(858\) −11.6852 −0.398925
\(859\) −24.0926 −0.822029 −0.411014 0.911629i \(-0.634825\pi\)
−0.411014 + 0.911629i \(0.634825\pi\)
\(860\) 3.49415i 0.119149i
\(861\) −30.0505 −1.02412
\(862\) 14.1599i 0.482289i
\(863\) 29.5278 1.00514 0.502569 0.864537i \(-0.332388\pi\)
0.502569 + 0.864537i \(0.332388\pi\)
\(864\) −2.74279 −0.0933116
\(865\) −27.9913 −0.951732
\(866\) 12.9011i 0.438396i
\(867\) 35.4114i 1.20263i
\(868\) 11.8480i 0.402147i
\(869\) 0.406000i 0.0137726i
\(870\) 22.7870i 0.772550i
\(871\) 39.6017i 1.34185i
\(872\) 8.35301 0.282869
\(873\) 20.5362 0.695045
\(874\) 17.6403i 0.596692i
\(875\) 15.1327i 0.511580i
\(876\) 2.82529 0.0954578
\(877\) −12.1910 −0.411662 −0.205831 0.978588i \(-0.565990\pi\)
−0.205831 + 0.978588i \(0.565990\pi\)
\(878\) 29.1606i 0.984124i
\(879\) 59.8602i 2.01903i
\(880\) 1.32192i 0.0445619i
\(881\) 17.6044i 0.593107i −0.955016 0.296554i \(-0.904163\pi\)
0.955016 0.296554i \(-0.0958374\pi\)
\(882\) 8.83302i 0.297423i
\(883\) 34.1210i 1.14826i −0.818763 0.574132i \(-0.805340\pi\)
0.818763 0.574132i \(-0.194660\pi\)
\(884\) −4.60254 −0.154800
\(885\) −21.4855 −0.722226
\(886\) 5.38596 0.180945
\(887\) 29.7967i 1.00048i −0.865888 0.500238i \(-0.833246\pi\)
0.865888 0.500238i \(-0.166754\pi\)
\(888\) 9.69981 0.325504
\(889\) 10.1929i 0.341859i
\(890\) 12.7860 0.428589
\(891\) 11.1923 0.374956
\(892\) −22.5545 −0.755180
\(893\) 21.0625i 0.704829i
\(894\) −30.8845 −1.03293
\(895\) −2.88411 −0.0964052
\(896\) 1.38716i 0.0463417i
\(897\) −101.451 −3.38734
\(898\) 13.2476i 0.442080i
\(899\) 67.6240i 2.25539i
\(900\) 5.66013 0.188671
\(901\) 4.90439 + 3.86307i 0.163389 + 0.128698i
\(902\) −9.95008 −0.331301
\(903\) 7.98291i 0.265655i
\(904\) 13.6292i 0.453299i
\(905\) −31.5768 −1.04965
\(906\) 20.4047i 0.677902i
\(907\) 41.2563 1.36989 0.684947 0.728593i \(-0.259825\pi\)
0.684947 + 0.728593i \(0.259825\pi\)
\(908\) −6.26650 −0.207961
\(909\) 26.5202i 0.879621i
\(910\) 9.84160 0.326246
\(911\) 5.80609 0.192364 0.0961821 0.995364i \(-0.469337\pi\)
0.0961821 + 0.995364i \(0.469337\pi\)
\(912\) −4.42369 −0.146483
\(913\) 7.86709i 0.260363i
\(914\) 15.7262 0.520176
\(915\) 9.74471i 0.322150i
\(916\) 29.4801 0.974049
\(917\) −8.66209 −0.286048
\(918\) 2.35210 0.0776308
\(919\) 26.2207i 0.864942i −0.901648 0.432471i \(-0.857642\pi\)
0.901648 0.432471i \(-0.142358\pi\)
\(920\) 11.4769i 0.378383i
\(921\) 33.6927i 1.11021i
\(922\) 17.3885i 0.572659i
\(923\) 50.9447i 1.67687i
\(924\) 3.02013i 0.0993549i
\(925\) 14.4905 0.476446
\(926\) 6.43743 0.211547
\(927\) 0.0529428i 0.00173887i
\(928\) 7.91739i 0.259901i
\(929\) −33.7900 −1.10861 −0.554307 0.832312i \(-0.687017\pi\)
−0.554307 + 0.832312i \(0.687017\pi\)
\(930\) 24.5823 0.806086
\(931\) 10.3131i 0.337998i
\(932\) 22.9356i 0.751279i
\(933\) 42.8958i 1.40435i
\(934\) 35.2319i 1.15282i
\(935\) 1.13362i 0.0370734i
\(936\) 9.33986i 0.305283i
\(937\) −11.8886 −0.388383 −0.194192 0.980964i \(-0.562208\pi\)
−0.194192 + 0.980964i \(0.562208\pi\)
\(938\) −10.2354 −0.334198
\(939\) −51.1838 −1.67032
\(940\) 13.7034i 0.446957i
\(941\) −60.5445 −1.97369 −0.986847 0.161655i \(-0.948317\pi\)
−0.986847 + 0.161655i \(0.948317\pi\)
\(942\) 33.4391i 1.08951i
\(943\) −86.3867 −2.81314
\(944\) −7.46518 −0.242971
\(945\) −5.02948 −0.163609
\(946\) 2.64324i 0.0859391i
\(947\) 44.7497 1.45417 0.727085 0.686547i \(-0.240875\pi\)
0.727085 + 0.686547i \(0.240875\pi\)
\(948\) −0.883945 −0.0287092
\(949\) 6.96464i 0.226082i
\(950\) −6.60855 −0.214410
\(951\) 47.5954i 1.54339i
\(952\) 1.18957i 0.0385541i
\(953\) 12.8891 0.417519 0.208760 0.977967i \(-0.433057\pi\)
0.208760 + 0.977967i \(0.433057\pi\)
\(954\) 7.83926 9.95240i 0.253805 0.322221i
\(955\) −10.5828 −0.342452
\(956\) 4.86965i 0.157496i
\(957\) 17.2378i 0.557219i
\(958\) −10.9387 −0.353414
\(959\) 16.2816i 0.525760i
\(960\) −2.87809 −0.0928900
\(961\) −41.9520 −1.35329
\(962\) 23.9111i 0.770923i
\(963\) 17.5748 0.566339
\(964\) 4.42829 0.142626
\(965\) 22.8153 0.734450
\(966\) 26.2208i 0.843640i
\(967\) −21.0364 −0.676485 −0.338243 0.941059i \(-0.609832\pi\)
−0.338243 + 0.941059i \(0.609832\pi\)
\(968\) 1.00000i 0.0321412i
\(969\) 3.79357 0.121867
\(970\) −15.5998 −0.500880
\(971\) 30.0578 0.964599 0.482300 0.876006i \(-0.339802\pi\)
0.482300 + 0.876006i \(0.339802\pi\)
\(972\) 16.1396i 0.517676i
\(973\) 32.3249i 1.03629i
\(974\) 2.25381i 0.0722167i
\(975\) 38.0063i 1.21718i
\(976\) 3.38583i 0.108378i
\(977\) 4.89770i 0.156691i 0.996926 + 0.0783457i \(0.0249638\pi\)
−0.996926 + 0.0783457i \(0.975036\pi\)
\(978\) 54.7350 1.75023
\(979\) −9.67232 −0.309129
\(980\) 6.70979i 0.214336i
\(981\) 14.5361i 0.464102i
\(982\) −16.8369 −0.537286
\(983\) 36.0306 1.14920 0.574599 0.818435i \(-0.305158\pi\)
0.574599 + 0.818435i \(0.305158\pi\)
\(984\) 21.6634i 0.690603i
\(985\) 33.7252i 1.07458i
\(986\) 6.78961i 0.216225i
\(987\) 31.3076i 0.996532i
\(988\) 10.9049i 0.346930i
\(989\) 22.9486i 0.729724i
\(990\) 2.30044 0.0731127
\(991\) −16.0058 −0.508441 −0.254220 0.967146i \(-0.581819\pi\)
−0.254220 + 0.967146i \(0.581819\pi\)
\(992\) 8.54119 0.271183
\(993\) 3.23834i 0.102766i
\(994\) −13.1671 −0.417635
\(995\) 26.1222i 0.828131i
\(996\) 17.1283 0.542730
\(997\) 6.41561 0.203184 0.101592 0.994826i \(-0.467606\pi\)
0.101592 + 0.994826i \(0.467606\pi\)
\(998\) 5.92817 0.187653
\(999\) 12.2196i 0.386610i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1166.2.c.b.529.3 22
53.52 even 2 inner 1166.2.c.b.529.20 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1166.2.c.b.529.3 22 1.1 even 1 trivial
1166.2.c.b.529.20 yes 22 53.52 even 2 inner