Properties

Label 1166.2.c.b.529.15
Level $1166$
Weight $2$
Character 1166.529
Analytic conductor $9.311$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1166,2,Mod(529,1166)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1166, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1166.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,-22,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.31055687568\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.15
Character \(\chi\) \(=\) 1166.529
Dual form 1166.2.c.b.529.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -0.796611i q^{3} -1.00000 q^{4} +3.27208i q^{5} +0.796611 q^{6} +4.51075 q^{7} -1.00000i q^{8} +2.36541 q^{9} -3.27208 q^{10} -1.00000 q^{11} +0.796611i q^{12} +5.02256 q^{13} +4.51075i q^{14} +2.60658 q^{15} +1.00000 q^{16} +0.174521 q^{17} +2.36541i q^{18} -3.00609i q^{19} -3.27208i q^{20} -3.59331i q^{21} -1.00000i q^{22} -7.64818i q^{23} -0.796611 q^{24} -5.70652 q^{25} +5.02256i q^{26} -4.27415i q^{27} -4.51075 q^{28} -4.10897 q^{29} +2.60658i q^{30} +4.85096i q^{31} +1.00000i q^{32} +0.796611i q^{33} +0.174521i q^{34} +14.7595i q^{35} -2.36541 q^{36} +6.35354 q^{37} +3.00609 q^{38} -4.00103i q^{39} +3.27208 q^{40} +1.44458i q^{41} +3.59331 q^{42} -8.59687 q^{43} +1.00000 q^{44} +7.73982i q^{45} +7.64818 q^{46} +4.57519 q^{47} -0.796611i q^{48} +13.3468 q^{49} -5.70652i q^{50} -0.139025i q^{51} -5.02256 q^{52} +(6.74996 + 2.72727i) q^{53} +4.27415 q^{54} -3.27208i q^{55} -4.51075i q^{56} -2.39468 q^{57} -4.10897i q^{58} -15.0224 q^{59} -2.60658 q^{60} +1.30931i q^{61} -4.85096 q^{62} +10.6698 q^{63} -1.00000 q^{64} +16.4342i q^{65} -0.796611 q^{66} -9.56581i q^{67} -0.174521 q^{68} -6.09263 q^{69} -14.7595 q^{70} +13.6555i q^{71} -2.36541i q^{72} +11.2956i q^{73} +6.35354i q^{74} +4.54587i q^{75} +3.00609i q^{76} -4.51075 q^{77} +4.00103 q^{78} -2.87745i q^{79} +3.27208i q^{80} +3.69140 q^{81} -1.44458 q^{82} -5.00269i q^{83} +3.59331i q^{84} +0.571046i q^{85} -8.59687i q^{86} +3.27325i q^{87} +1.00000i q^{88} -9.69150 q^{89} -7.73982 q^{90} +22.6555 q^{91} +7.64818i q^{92} +3.86433 q^{93} +4.57519i q^{94} +9.83617 q^{95} +0.796611 q^{96} -12.4981 q^{97} +13.3468i q^{98} -2.36541 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 22 q^{4} - 6 q^{6} - 24 q^{9} + 4 q^{10} - 22 q^{11} + 6 q^{13} + 30 q^{15} + 22 q^{16} + 18 q^{17} + 6 q^{24} - 30 q^{25} + 28 q^{29} + 24 q^{36} - 34 q^{37} - 18 q^{38} - 4 q^{40} + 4 q^{42} - 34 q^{43}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1166\mathbb{Z}\right)^\times\).

\(n\) \(849\) \(903\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.796611i 0.459924i −0.973200 0.229962i \(-0.926140\pi\)
0.973200 0.229962i \(-0.0738601\pi\)
\(4\) −1.00000 −0.500000
\(5\) 3.27208i 1.46332i 0.681670 + 0.731660i \(0.261254\pi\)
−0.681670 + 0.731660i \(0.738746\pi\)
\(6\) 0.796611 0.325215
\(7\) 4.51075 1.70490 0.852451 0.522807i \(-0.175115\pi\)
0.852451 + 0.522807i \(0.175115\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.36541 0.788470
\(10\) −3.27208 −1.03472
\(11\) −1.00000 −0.301511
\(12\) 0.796611i 0.229962i
\(13\) 5.02256 1.39301 0.696504 0.717553i \(-0.254738\pi\)
0.696504 + 0.717553i \(0.254738\pi\)
\(14\) 4.51075i 1.20555i
\(15\) 2.60658 0.673015
\(16\) 1.00000 0.250000
\(17\) 0.174521 0.0423275 0.0211637 0.999776i \(-0.493263\pi\)
0.0211637 + 0.999776i \(0.493263\pi\)
\(18\) 2.36541i 0.557533i
\(19\) 3.00609i 0.689644i −0.938668 0.344822i \(-0.887939\pi\)
0.938668 0.344822i \(-0.112061\pi\)
\(20\) 3.27208i 0.731660i
\(21\) 3.59331i 0.784124i
\(22\) 1.00000i 0.213201i
\(23\) 7.64818i 1.59476i −0.603480 0.797378i \(-0.706220\pi\)
0.603480 0.797378i \(-0.293780\pi\)
\(24\) −0.796611 −0.162608
\(25\) −5.70652 −1.14130
\(26\) 5.02256i 0.985005i
\(27\) 4.27415i 0.822560i
\(28\) −4.51075 −0.852451
\(29\) −4.10897 −0.763017 −0.381508 0.924365i \(-0.624595\pi\)
−0.381508 + 0.924365i \(0.624595\pi\)
\(30\) 2.60658i 0.475894i
\(31\) 4.85096i 0.871259i 0.900126 + 0.435629i \(0.143474\pi\)
−0.900126 + 0.435629i \(0.856526\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.796611i 0.138672i
\(34\) 0.174521i 0.0299300i
\(35\) 14.7595i 2.49482i
\(36\) −2.36541 −0.394235
\(37\) 6.35354 1.04452 0.522258 0.852788i \(-0.325090\pi\)
0.522258 + 0.852788i \(0.325090\pi\)
\(38\) 3.00609 0.487652
\(39\) 4.00103i 0.640677i
\(40\) 3.27208 0.517362
\(41\) 1.44458i 0.225606i 0.993617 + 0.112803i \(0.0359829\pi\)
−0.993617 + 0.112803i \(0.964017\pi\)
\(42\) 3.59331 0.554460
\(43\) −8.59687 −1.31101 −0.655505 0.755191i \(-0.727544\pi\)
−0.655505 + 0.755191i \(0.727544\pi\)
\(44\) 1.00000 0.150756
\(45\) 7.73982i 1.15378i
\(46\) 7.64818 1.12766
\(47\) 4.57519 0.667361 0.333680 0.942686i \(-0.391709\pi\)
0.333680 + 0.942686i \(0.391709\pi\)
\(48\) 0.796611i 0.114981i
\(49\) 13.3468 1.90669
\(50\) 5.70652i 0.807024i
\(51\) 0.139025i 0.0194674i
\(52\) −5.02256 −0.696504
\(53\) 6.74996 + 2.72727i 0.927179 + 0.374619i
\(54\) 4.27415 0.581638
\(55\) 3.27208i 0.441207i
\(56\) 4.51075i 0.602774i
\(57\) −2.39468 −0.317184
\(58\) 4.10897i 0.539534i
\(59\) −15.0224 −1.95575 −0.977877 0.209180i \(-0.932921\pi\)
−0.977877 + 0.209180i \(0.932921\pi\)
\(60\) −2.60658 −0.336508
\(61\) 1.30931i 0.167639i 0.996481 + 0.0838197i \(0.0267120\pi\)
−0.996481 + 0.0838197i \(0.973288\pi\)
\(62\) −4.85096 −0.616073
\(63\) 10.6698 1.34426
\(64\) −1.00000 −0.125000
\(65\) 16.4342i 2.03842i
\(66\) −0.796611 −0.0980560
\(67\) 9.56581i 1.16865i −0.811520 0.584325i \(-0.801359\pi\)
0.811520 0.584325i \(-0.198641\pi\)
\(68\) −0.174521 −0.0211637
\(69\) −6.09263 −0.733466
\(70\) −14.7595 −1.76410
\(71\) 13.6555i 1.62061i 0.586008 + 0.810306i \(0.300699\pi\)
−0.586008 + 0.810306i \(0.699301\pi\)
\(72\) 2.36541i 0.278766i
\(73\) 11.2956i 1.32205i 0.750363 + 0.661026i \(0.229879\pi\)
−0.750363 + 0.661026i \(0.770121\pi\)
\(74\) 6.35354i 0.738584i
\(75\) 4.54587i 0.524912i
\(76\) 3.00609i 0.344822i
\(77\) −4.51075 −0.514047
\(78\) 4.00103 0.453027
\(79\) 2.87745i 0.323739i −0.986812 0.161869i \(-0.948248\pi\)
0.986812 0.161869i \(-0.0517523\pi\)
\(80\) 3.27208i 0.365830i
\(81\) 3.69140 0.410156
\(82\) −1.44458 −0.159527
\(83\) 5.00269i 0.549116i −0.961570 0.274558i \(-0.911468\pi\)
0.961570 0.274558i \(-0.0885316\pi\)
\(84\) 3.59331i 0.392062i
\(85\) 0.571046i 0.0619386i
\(86\) 8.59687i 0.927024i
\(87\) 3.27325i 0.350929i
\(88\) 1.00000i 0.106600i
\(89\) −9.69150 −1.02730 −0.513649 0.858001i \(-0.671707\pi\)
−0.513649 + 0.858001i \(0.671707\pi\)
\(90\) −7.73982 −0.815848
\(91\) 22.6555 2.37494
\(92\) 7.64818i 0.797378i
\(93\) 3.86433 0.400712
\(94\) 4.57519i 0.471895i
\(95\) 9.83617 1.00917
\(96\) 0.796611 0.0813038
\(97\) −12.4981 −1.26899 −0.634495 0.772927i \(-0.718792\pi\)
−0.634495 + 0.772927i \(0.718792\pi\)
\(98\) 13.3468i 1.34823i
\(99\) −2.36541 −0.237733
\(100\) 5.70652 0.570652
\(101\) 4.00312i 0.398326i 0.979966 + 0.199163i \(0.0638223\pi\)
−0.979966 + 0.199163i \(0.936178\pi\)
\(102\) 0.139025 0.0137655
\(103\) 3.79197i 0.373633i −0.982395 0.186817i \(-0.940183\pi\)
0.982395 0.186817i \(-0.0598171\pi\)
\(104\) 5.02256i 0.492503i
\(105\) 11.7576 1.14742
\(106\) −2.72727 + 6.74996i −0.264896 + 0.655614i
\(107\) −7.10878 −0.687232 −0.343616 0.939110i \(-0.611652\pi\)
−0.343616 + 0.939110i \(0.611652\pi\)
\(108\) 4.27415i 0.411280i
\(109\) 3.31959i 0.317959i 0.987282 + 0.158979i \(0.0508203\pi\)
−0.987282 + 0.158979i \(0.949180\pi\)
\(110\) 3.27208 0.311981
\(111\) 5.06130i 0.480397i
\(112\) 4.51075 0.426225
\(113\) 8.12574 0.764406 0.382203 0.924078i \(-0.375166\pi\)
0.382203 + 0.924078i \(0.375166\pi\)
\(114\) 2.39468i 0.224283i
\(115\) 25.0255 2.33364
\(116\) 4.10897 0.381508
\(117\) 11.8804 1.09835
\(118\) 15.0224i 1.38293i
\(119\) 0.787218 0.0721642
\(120\) 2.60658i 0.237947i
\(121\) 1.00000 0.0909091
\(122\) −1.30931 −0.118539
\(123\) 1.15077 0.103761
\(124\) 4.85096i 0.435629i
\(125\) 2.31178i 0.206772i
\(126\) 10.6698i 0.950538i
\(127\) 20.2531i 1.79717i −0.438798 0.898586i \(-0.644596\pi\)
0.438798 0.898586i \(-0.355404\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 6.84836i 0.602964i
\(130\) −16.4342 −1.44138
\(131\) −16.7787 −1.46596 −0.732981 0.680249i \(-0.761872\pi\)
−0.732981 + 0.680249i \(0.761872\pi\)
\(132\) 0.796611i 0.0693361i
\(133\) 13.5597i 1.17578i
\(134\) 9.56581 0.826360
\(135\) 13.9854 1.20367
\(136\) 0.174521i 0.0149650i
\(137\) 11.9209i 1.01847i 0.860627 + 0.509236i \(0.170072\pi\)
−0.860627 + 0.509236i \(0.829928\pi\)
\(138\) 6.09263i 0.518639i
\(139\) 9.80914i 0.832000i 0.909365 + 0.416000i \(0.136568\pi\)
−0.909365 + 0.416000i \(0.863432\pi\)
\(140\) 14.7595i 1.24741i
\(141\) 3.64465i 0.306935i
\(142\) −13.6555 −1.14595
\(143\) −5.02256 −0.420008
\(144\) 2.36541 0.197118
\(145\) 13.4449i 1.11654i
\(146\) −11.2956 −0.934832
\(147\) 10.6322i 0.876932i
\(148\) −6.35354 −0.522258
\(149\) −15.4675 −1.26714 −0.633572 0.773684i \(-0.718412\pi\)
−0.633572 + 0.773684i \(0.718412\pi\)
\(150\) −4.54587 −0.371169
\(151\) 17.9704i 1.46241i 0.682160 + 0.731203i \(0.261041\pi\)
−0.682160 + 0.731203i \(0.738959\pi\)
\(152\) −3.00609 −0.243826
\(153\) 0.412813 0.0333739
\(154\) 4.51075i 0.363486i
\(155\) −15.8727 −1.27493
\(156\) 4.00103i 0.320339i
\(157\) 3.70167i 0.295426i 0.989030 + 0.147713i \(0.0471911\pi\)
−0.989030 + 0.147713i \(0.952809\pi\)
\(158\) 2.87745 0.228918
\(159\) 2.17257 5.37709i 0.172296 0.426431i
\(160\) −3.27208 −0.258681
\(161\) 34.4990i 2.71890i
\(162\) 3.69140i 0.290024i
\(163\) −9.70825 −0.760409 −0.380204 0.924902i \(-0.624146\pi\)
−0.380204 + 0.924902i \(0.624146\pi\)
\(164\) 1.44458i 0.112803i
\(165\) −2.60658 −0.202922
\(166\) 5.00269 0.388284
\(167\) 1.95611i 0.151368i 0.997132 + 0.0756841i \(0.0241140\pi\)
−0.997132 + 0.0756841i \(0.975886\pi\)
\(168\) −3.59331 −0.277230
\(169\) 12.2261 0.940471
\(170\) −0.571046 −0.0437972
\(171\) 7.11064i 0.543764i
\(172\) 8.59687 0.655505
\(173\) 14.2962i 1.08692i −0.839434 0.543461i \(-0.817114\pi\)
0.839434 0.543461i \(-0.182886\pi\)
\(174\) −3.27325 −0.248145
\(175\) −25.7407 −1.94581
\(176\) −1.00000 −0.0753778
\(177\) 11.9670i 0.899498i
\(178\) 9.69150i 0.726409i
\(179\) 3.88510i 0.290386i 0.989403 + 0.145193i \(0.0463803\pi\)
−0.989403 + 0.145193i \(0.953620\pi\)
\(180\) 7.73982i 0.576892i
\(181\) 2.10077i 0.156149i −0.996948 0.0780746i \(-0.975123\pi\)
0.996948 0.0780746i \(-0.0248772\pi\)
\(182\) 22.6555i 1.67934i
\(183\) 1.04301 0.0771013
\(184\) −7.64818 −0.563831
\(185\) 20.7893i 1.52846i
\(186\) 3.86433i 0.283346i
\(187\) −0.174521 −0.0127622
\(188\) −4.57519 −0.333680
\(189\) 19.2796i 1.40238i
\(190\) 9.83617i 0.713591i
\(191\) 18.8194i 1.36172i −0.732413 0.680860i \(-0.761606\pi\)
0.732413 0.680860i \(-0.238394\pi\)
\(192\) 0.796611i 0.0574904i
\(193\) 19.3942i 1.39602i −0.716087 0.698011i \(-0.754068\pi\)
0.716087 0.698011i \(-0.245932\pi\)
\(194\) 12.4981i 0.897311i
\(195\) 13.0917 0.937515
\(196\) −13.3468 −0.953345
\(197\) −6.05246 −0.431220 −0.215610 0.976480i \(-0.569174\pi\)
−0.215610 + 0.976480i \(0.569174\pi\)
\(198\) 2.36541i 0.168102i
\(199\) −14.5332 −1.03023 −0.515115 0.857121i \(-0.672251\pi\)
−0.515115 + 0.857121i \(0.672251\pi\)
\(200\) 5.70652i 0.403512i
\(201\) −7.62023 −0.537489
\(202\) −4.00312 −0.281659
\(203\) −18.5345 −1.30087
\(204\) 0.139025i 0.00973370i
\(205\) −4.72679 −0.330133
\(206\) 3.79197 0.264199
\(207\) 18.0911i 1.25742i
\(208\) 5.02256 0.348252
\(209\) 3.00609i 0.207936i
\(210\) 11.7576i 0.811352i
\(211\) 11.8758 0.817561 0.408780 0.912633i \(-0.365954\pi\)
0.408780 + 0.912633i \(0.365954\pi\)
\(212\) −6.74996 2.72727i −0.463589 0.187310i
\(213\) 10.8781 0.745357
\(214\) 7.10878i 0.485946i
\(215\) 28.1296i 1.91843i
\(216\) −4.27415 −0.290819
\(217\) 21.8815i 1.48541i
\(218\) −3.31959 −0.224831
\(219\) 8.99822 0.608043
\(220\) 3.27208i 0.220604i
\(221\) 0.876540 0.0589625
\(222\) 5.06130 0.339692
\(223\) 8.02612 0.537469 0.268735 0.963214i \(-0.413395\pi\)
0.268735 + 0.963214i \(0.413395\pi\)
\(224\) 4.51075i 0.301387i
\(225\) −13.4983 −0.899884
\(226\) 8.12574i 0.540516i
\(227\) −14.8744 −0.987250 −0.493625 0.869675i \(-0.664328\pi\)
−0.493625 + 0.869675i \(0.664328\pi\)
\(228\) 2.39468 0.158592
\(229\) −1.66073 −0.109744 −0.0548721 0.998493i \(-0.517475\pi\)
−0.0548721 + 0.998493i \(0.517475\pi\)
\(230\) 25.0255i 1.65013i
\(231\) 3.59331i 0.236422i
\(232\) 4.10897i 0.269767i
\(233\) 5.88768i 0.385714i −0.981227 0.192857i \(-0.938225\pi\)
0.981227 0.192857i \(-0.0617754\pi\)
\(234\) 11.8804i 0.776648i
\(235\) 14.9704i 0.976562i
\(236\) 15.0224 0.977877
\(237\) −2.29221 −0.148895
\(238\) 0.787218i 0.0510278i
\(239\) 2.00963i 0.129992i 0.997886 + 0.0649961i \(0.0207035\pi\)
−0.997886 + 0.0649961i \(0.979297\pi\)
\(240\) 2.60658 0.168254
\(241\) 14.3687 0.925572 0.462786 0.886470i \(-0.346850\pi\)
0.462786 + 0.886470i \(0.346850\pi\)
\(242\) 1.00000i 0.0642824i
\(243\) 15.7630i 1.01120i
\(244\) 1.30931i 0.0838197i
\(245\) 43.6719i 2.79010i
\(246\) 1.15077i 0.0733704i
\(247\) 15.0983i 0.960680i
\(248\) 4.85096 0.308036
\(249\) −3.98520 −0.252552
\(250\) 2.31178 0.146210
\(251\) 6.57278i 0.414870i −0.978249 0.207435i \(-0.933488\pi\)
0.978249 0.207435i \(-0.0665116\pi\)
\(252\) −10.6698 −0.672132
\(253\) 7.64818i 0.480837i
\(254\) 20.2531 1.27079
\(255\) 0.454901 0.0284870
\(256\) 1.00000 0.0625000
\(257\) 0.238304i 0.0148650i 0.999972 + 0.00743251i \(0.00236586\pi\)
−0.999972 + 0.00743251i \(0.997634\pi\)
\(258\) −6.84836 −0.426360
\(259\) 28.6592 1.78080
\(260\) 16.4342i 1.01921i
\(261\) −9.71940 −0.601616
\(262\) 16.7787i 1.03659i
\(263\) 6.61625i 0.407976i 0.978973 + 0.203988i \(0.0653903\pi\)
−0.978973 + 0.203988i \(0.934610\pi\)
\(264\) 0.796611 0.0490280
\(265\) −8.92385 + 22.0864i −0.548188 + 1.35676i
\(266\) 13.5597 0.831399
\(267\) 7.72036i 0.472478i
\(268\) 9.56581i 0.584325i
\(269\) −31.4776 −1.91922 −0.959612 0.281326i \(-0.909226\pi\)
−0.959612 + 0.281326i \(0.909226\pi\)
\(270\) 13.9854i 0.851121i
\(271\) 24.4876 1.48752 0.743758 0.668449i \(-0.233042\pi\)
0.743758 + 0.668449i \(0.233042\pi\)
\(272\) 0.174521 0.0105819
\(273\) 18.0476i 1.09229i
\(274\) −11.9209 −0.720169
\(275\) 5.70652 0.344116
\(276\) 6.09263 0.366733
\(277\) 20.3192i 1.22086i −0.792069 0.610431i \(-0.790996\pi\)
0.792069 0.610431i \(-0.209004\pi\)
\(278\) −9.80914 −0.588313
\(279\) 11.4745i 0.686962i
\(280\) 14.7595 0.882051
\(281\) 14.2468 0.849893 0.424947 0.905218i \(-0.360293\pi\)
0.424947 + 0.905218i \(0.360293\pi\)
\(282\) 3.64465 0.217036
\(283\) 25.3971i 1.50970i 0.655896 + 0.754851i \(0.272291\pi\)
−0.655896 + 0.754851i \(0.727709\pi\)
\(284\) 13.6555i 0.810306i
\(285\) 7.83560i 0.464141i
\(286\) 5.02256i 0.296990i
\(287\) 6.51614i 0.384636i
\(288\) 2.36541i 0.139383i
\(289\) −16.9695 −0.998208
\(290\) 13.4449 0.789511
\(291\) 9.95612i 0.583638i
\(292\) 11.2956i 0.661026i
\(293\) 4.58909 0.268098 0.134049 0.990975i \(-0.457202\pi\)
0.134049 + 0.990975i \(0.457202\pi\)
\(294\) 10.6322 0.620084
\(295\) 49.1546i 2.86189i
\(296\) 6.35354i 0.369292i
\(297\) 4.27415i 0.248011i
\(298\) 15.4675i 0.896006i
\(299\) 38.4135i 2.22151i
\(300\) 4.54587i 0.262456i
\(301\) −38.7783 −2.23514
\(302\) −17.9704 −1.03408
\(303\) 3.18893 0.183199
\(304\) 3.00609i 0.172411i
\(305\) −4.28415 −0.245310
\(306\) 0.412813i 0.0235989i
\(307\) −7.68204 −0.438437 −0.219219 0.975676i \(-0.570351\pi\)
−0.219219 + 0.975676i \(0.570351\pi\)
\(308\) 4.51075 0.257024
\(309\) −3.02072 −0.171843
\(310\) 15.8727i 0.901511i
\(311\) 12.9605 0.734922 0.367461 0.930039i \(-0.380227\pi\)
0.367461 + 0.930039i \(0.380227\pi\)
\(312\) −4.00103 −0.226514
\(313\) 4.14770i 0.234442i 0.993106 + 0.117221i \(0.0373986\pi\)
−0.993106 + 0.117221i \(0.962601\pi\)
\(314\) −3.70167 −0.208898
\(315\) 34.9124i 1.96709i
\(316\) 2.87745i 0.161869i
\(317\) 2.17359 0.122081 0.0610405 0.998135i \(-0.480558\pi\)
0.0610405 + 0.998135i \(0.480558\pi\)
\(318\) 5.37709 + 2.17257i 0.301533 + 0.121832i
\(319\) 4.10897 0.230058
\(320\) 3.27208i 0.182915i
\(321\) 5.66293i 0.316074i
\(322\) 34.4990 1.92255
\(323\) 0.524625i 0.0291909i
\(324\) −3.69140 −0.205078
\(325\) −28.6613 −1.58985
\(326\) 9.70825i 0.537690i
\(327\) 2.64442 0.146237
\(328\) 1.44458 0.0797637
\(329\) 20.6375 1.13778
\(330\) 2.60658i 0.143487i
\(331\) −12.1821 −0.669588 −0.334794 0.942291i \(-0.608667\pi\)
−0.334794 + 0.942291i \(0.608667\pi\)
\(332\) 5.00269i 0.274558i
\(333\) 15.0287 0.823570
\(334\) −1.95611 −0.107033
\(335\) 31.3001 1.71011
\(336\) 3.59331i 0.196031i
\(337\) 27.1911i 1.48120i −0.671949 0.740598i \(-0.734543\pi\)
0.671949 0.740598i \(-0.265457\pi\)
\(338\) 12.2261i 0.665014i
\(339\) 6.47306i 0.351568i
\(340\) 0.571046i 0.0309693i
\(341\) 4.85096i 0.262694i
\(342\) 7.11064 0.384499
\(343\) 28.6289 1.54582
\(344\) 8.59687i 0.463512i
\(345\) 19.9356i 1.07329i
\(346\) 14.2962 0.768570
\(347\) 36.4903 1.95890 0.979452 0.201678i \(-0.0646393\pi\)
0.979452 + 0.201678i \(0.0646393\pi\)
\(348\) 3.27325i 0.175465i
\(349\) 32.7622i 1.75372i −0.480746 0.876860i \(-0.659634\pi\)
0.480746 0.876860i \(-0.340366\pi\)
\(350\) 25.7407i 1.37590i
\(351\) 21.4672i 1.14583i
\(352\) 1.00000i 0.0533002i
\(353\) 6.62203i 0.352455i −0.984349 0.176228i \(-0.943611\pi\)
0.984349 0.176228i \(-0.0563895\pi\)
\(354\) −11.9670 −0.636041
\(355\) −44.6819 −2.37147
\(356\) 9.69150 0.513649
\(357\) 0.627107i 0.0331900i
\(358\) −3.88510 −0.205334
\(359\) 26.5473i 1.40111i −0.713597 0.700557i \(-0.752935\pi\)
0.713597 0.700557i \(-0.247065\pi\)
\(360\) 7.73982 0.407924
\(361\) 9.96342 0.524391
\(362\) 2.10077 0.110414
\(363\) 0.796611i 0.0418112i
\(364\) −22.6555 −1.18747
\(365\) −36.9602 −1.93459
\(366\) 1.04301i 0.0545188i
\(367\) 34.0860 1.77928 0.889638 0.456666i \(-0.150956\pi\)
0.889638 + 0.456666i \(0.150956\pi\)
\(368\) 7.64818i 0.398689i
\(369\) 3.41703i 0.177883i
\(370\) −20.7893 −1.08078
\(371\) 30.4474 + 12.3020i 1.58075 + 0.638689i
\(372\) −3.86433 −0.200356
\(373\) 29.3821i 1.52135i −0.649134 0.760674i \(-0.724869\pi\)
0.649134 0.760674i \(-0.275131\pi\)
\(374\) 0.174521i 0.00902424i
\(375\) −1.84159 −0.0950994
\(376\) 4.57519i 0.235948i
\(377\) −20.6376 −1.06289
\(378\) 19.2796 0.991635
\(379\) 1.30743i 0.0671584i −0.999436 0.0335792i \(-0.989309\pi\)
0.999436 0.0335792i \(-0.0106906\pi\)
\(380\) −9.83617 −0.504585
\(381\) −16.1338 −0.826562
\(382\) 18.8194 0.962882
\(383\) 32.1921i 1.64494i 0.568810 + 0.822469i \(0.307404\pi\)
−0.568810 + 0.822469i \(0.692596\pi\)
\(384\) −0.796611 −0.0406519
\(385\) 14.7595i 0.752215i
\(386\) 19.3942 0.987137
\(387\) −20.3351 −1.03369
\(388\) 12.4981 0.634495
\(389\) 6.05959i 0.307234i 0.988131 + 0.153617i \(0.0490921\pi\)
−0.988131 + 0.153617i \(0.950908\pi\)
\(390\) 13.0917i 0.662923i
\(391\) 1.33477i 0.0675020i
\(392\) 13.3468i 0.674117i
\(393\) 13.3661i 0.674231i
\(394\) 6.05246i 0.304919i
\(395\) 9.41525 0.473733
\(396\) 2.36541 0.118866
\(397\) 30.3069i 1.52106i 0.649302 + 0.760531i \(0.275061\pi\)
−0.649302 + 0.760531i \(0.724939\pi\)
\(398\) 14.5332i 0.728483i
\(399\) −10.8018 −0.540767
\(400\) −5.70652 −0.285326
\(401\) 33.9699i 1.69638i 0.529695 + 0.848188i \(0.322306\pi\)
−0.529695 + 0.848188i \(0.677694\pi\)
\(402\) 7.62023i 0.380062i
\(403\) 24.3643i 1.21367i
\(404\) 4.00312i 0.199163i
\(405\) 12.0786i 0.600189i
\(406\) 18.5345i 0.919853i
\(407\) −6.35354 −0.314933
\(408\) −0.139025 −0.00688276
\(409\) 5.65474 0.279609 0.139805 0.990179i \(-0.455353\pi\)
0.139805 + 0.990179i \(0.455353\pi\)
\(410\) 4.72679i 0.233440i
\(411\) 9.49633 0.468420
\(412\) 3.79197i 0.186817i
\(413\) −67.7624 −3.33437
\(414\) 18.0911 0.889129
\(415\) 16.3692 0.803533
\(416\) 5.02256i 0.246251i
\(417\) 7.81407 0.382657
\(418\) −3.00609 −0.147033
\(419\) 29.3873i 1.43567i 0.696216 + 0.717833i \(0.254866\pi\)
−0.696216 + 0.717833i \(0.745134\pi\)
\(420\) −11.7576 −0.573712
\(421\) 21.3104i 1.03861i 0.854590 + 0.519304i \(0.173809\pi\)
−0.854590 + 0.519304i \(0.826191\pi\)
\(422\) 11.8758i 0.578103i
\(423\) 10.8222 0.526194
\(424\) 2.72727 6.74996i 0.132448 0.327807i
\(425\) −0.995905 −0.0483085
\(426\) 10.8781i 0.527047i
\(427\) 5.90594i 0.285809i
\(428\) 7.10878 0.343616
\(429\) 4.00103i 0.193171i
\(430\) 28.1296 1.35653
\(431\) 24.1342 1.16250 0.581251 0.813724i \(-0.302563\pi\)
0.581251 + 0.813724i \(0.302563\pi\)
\(432\) 4.27415i 0.205640i
\(433\) −5.60335 −0.269280 −0.134640 0.990895i \(-0.542988\pi\)
−0.134640 + 0.990895i \(0.542988\pi\)
\(434\) −21.8815 −1.05034
\(435\) −10.7103 −0.513522
\(436\) 3.31959i 0.158979i
\(437\) −22.9911 −1.09981
\(438\) 8.99822i 0.429951i
\(439\) −1.65837 −0.0791498 −0.0395749 0.999217i \(-0.512600\pi\)
−0.0395749 + 0.999217i \(0.512600\pi\)
\(440\) −3.27208 −0.155990
\(441\) 31.5707 1.50337
\(442\) 0.876540i 0.0416928i
\(443\) 29.6521i 1.40882i −0.709795 0.704408i \(-0.751213\pi\)
0.709795 0.704408i \(-0.248787\pi\)
\(444\) 5.06130i 0.240199i
\(445\) 31.7114i 1.50326i
\(446\) 8.02612i 0.380048i
\(447\) 12.3215i 0.582789i
\(448\) −4.51075 −0.213113
\(449\) −28.4016 −1.34035 −0.670177 0.742201i \(-0.733782\pi\)
−0.670177 + 0.742201i \(0.733782\pi\)
\(450\) 13.4983i 0.636314i
\(451\) 1.44458i 0.0680227i
\(452\) −8.12574 −0.382203
\(453\) 14.3154 0.672595
\(454\) 14.8744i 0.698091i
\(455\) 74.1306i 3.47530i
\(456\) 2.39468i 0.112141i
\(457\) 4.62908i 0.216539i 0.994122 + 0.108270i \(0.0345310\pi\)
−0.994122 + 0.108270i \(0.965469\pi\)
\(458\) 1.66073i 0.0776009i
\(459\) 0.745926i 0.0348169i
\(460\) −25.0255 −1.16682
\(461\) 4.27370 0.199046 0.0995231 0.995035i \(-0.468268\pi\)
0.0995231 + 0.995035i \(0.468268\pi\)
\(462\) −3.59331 −0.167176
\(463\) 19.9497i 0.927140i 0.886060 + 0.463570i \(0.153432\pi\)
−0.886060 + 0.463570i \(0.846568\pi\)
\(464\) −4.10897 −0.190754
\(465\) 12.6444i 0.586370i
\(466\) 5.88768 0.272741
\(467\) 37.7361 1.74622 0.873110 0.487524i \(-0.162100\pi\)
0.873110 + 0.487524i \(0.162100\pi\)
\(468\) −11.8804 −0.549173
\(469\) 43.1489i 1.99243i
\(470\) −14.9704 −0.690534
\(471\) 2.94879 0.135873
\(472\) 15.0224i 0.691464i
\(473\) 8.59687 0.395284
\(474\) 2.29221i 0.105285i
\(475\) 17.1543i 0.787094i
\(476\) −0.787218 −0.0360821
\(477\) 15.9664 + 6.45111i 0.731053 + 0.295376i
\(478\) −2.00963 −0.0919184
\(479\) 7.61371i 0.347879i −0.984756 0.173940i \(-0.944350\pi\)
0.984756 0.173940i \(-0.0556498\pi\)
\(480\) 2.60658i 0.118973i
\(481\) 31.9111 1.45502
\(482\) 14.3687i 0.654478i
\(483\) −27.4823 −1.25049
\(484\) −1.00000 −0.0454545
\(485\) 40.8948i 1.85694i
\(486\) 15.7630 0.715026
\(487\) −22.0930 −1.00113 −0.500565 0.865699i \(-0.666874\pi\)
−0.500565 + 0.865699i \(0.666874\pi\)
\(488\) 1.30931 0.0592695
\(489\) 7.73370i 0.349730i
\(490\) −43.6719 −1.97290
\(491\) 14.1397i 0.638116i −0.947735 0.319058i \(-0.896634\pi\)
0.947735 0.319058i \(-0.103366\pi\)
\(492\) −1.15077 −0.0518807
\(493\) −0.717100 −0.0322966
\(494\) 15.0983 0.679303
\(495\) 7.73982i 0.347879i
\(496\) 4.85096i 0.217815i
\(497\) 61.5965i 2.76298i
\(498\) 3.98520i 0.178581i
\(499\) 6.96383i 0.311744i −0.987777 0.155872i \(-0.950181\pi\)
0.987777 0.155872i \(-0.0498187\pi\)
\(500\) 2.31178i 0.103386i
\(501\) 1.55826 0.0696178
\(502\) 6.57278 0.293357
\(503\) 5.84542i 0.260634i 0.991472 + 0.130317i \(0.0415996\pi\)
−0.991472 + 0.130317i \(0.958400\pi\)
\(504\) 10.6698i 0.475269i
\(505\) −13.0985 −0.582878
\(506\) −7.64818 −0.340003
\(507\) 9.73947i 0.432545i
\(508\) 20.2531i 0.898586i
\(509\) 11.2865i 0.500264i 0.968212 + 0.250132i \(0.0804740\pi\)
−0.968212 + 0.250132i \(0.919526\pi\)
\(510\) 0.454901i 0.0201434i
\(511\) 50.9517i 2.25397i
\(512\) 1.00000i 0.0441942i
\(513\) −12.8485 −0.567274
\(514\) −0.238304 −0.0105112
\(515\) 12.4076 0.546745
\(516\) 6.84836i 0.301482i
\(517\) −4.57519 −0.201217
\(518\) 28.6592i 1.25921i
\(519\) −11.3885 −0.499901
\(520\) 16.4342 0.720689
\(521\) 20.9967 0.919882 0.459941 0.887950i \(-0.347871\pi\)
0.459941 + 0.887950i \(0.347871\pi\)
\(522\) 9.71940i 0.425407i
\(523\) −3.85329 −0.168493 −0.0842463 0.996445i \(-0.526848\pi\)
−0.0842463 + 0.996445i \(0.526848\pi\)
\(524\) 16.7787 0.732981
\(525\) 20.5053i 0.894924i
\(526\) −6.61625 −0.288482
\(527\) 0.846593i 0.0368782i
\(528\) 0.796611i 0.0346680i
\(529\) −35.4947 −1.54325
\(530\) −22.0864 8.92385i −0.959373 0.387627i
\(531\) −35.5342 −1.54205
\(532\) 13.5597i 0.587888i
\(533\) 7.25550i 0.314271i
\(534\) −7.72036 −0.334093
\(535\) 23.2605i 1.00564i
\(536\) −9.56581 −0.413180
\(537\) 3.09491 0.133555
\(538\) 31.4776i 1.35710i
\(539\) −13.3468 −0.574889
\(540\) −13.9854 −0.601834
\(541\) −40.9597 −1.76100 −0.880498 0.474050i \(-0.842792\pi\)
−0.880498 + 0.474050i \(0.842792\pi\)
\(542\) 24.4876i 1.05183i
\(543\) −1.67350 −0.0718167
\(544\) 0.174521i 0.00748251i
\(545\) −10.8620 −0.465275
\(546\) 18.0476 0.772367
\(547\) 18.3046 0.782649 0.391324 0.920253i \(-0.372017\pi\)
0.391324 + 0.920253i \(0.372017\pi\)
\(548\) 11.9209i 0.509236i
\(549\) 3.09704i 0.132179i
\(550\) 5.70652i 0.243327i
\(551\) 12.3519i 0.526210i
\(552\) 6.09263i 0.259319i
\(553\) 12.9794i 0.551942i
\(554\) 20.3192 0.863280
\(555\) 16.5610 0.702975
\(556\) 9.80914i 0.416000i
\(557\) 32.7523i 1.38776i 0.720091 + 0.693880i \(0.244100\pi\)
−0.720091 + 0.693880i \(0.755900\pi\)
\(558\) −11.4745 −0.485755
\(559\) −43.1783 −1.82625
\(560\) 14.7595i 0.623704i
\(561\) 0.139025i 0.00586964i
\(562\) 14.2468i 0.600965i
\(563\) 38.0682i 1.60438i −0.597067 0.802191i \(-0.703667\pi\)
0.597067 0.802191i \(-0.296333\pi\)
\(564\) 3.64465i 0.153467i
\(565\) 26.5881i 1.11857i
\(566\) −25.3971 −1.06752
\(567\) 16.6510 0.699275
\(568\) 13.6555 0.572973
\(569\) 9.63290i 0.403832i −0.979403 0.201916i \(-0.935283\pi\)
0.979403 0.201916i \(-0.0647169\pi\)
\(570\) 7.83560 0.328197
\(571\) 18.0561i 0.755626i 0.925882 + 0.377813i \(0.123324\pi\)
−0.925882 + 0.377813i \(0.876676\pi\)
\(572\) 5.02256 0.210004
\(573\) −14.9917 −0.626287
\(574\) −6.51614 −0.271979
\(575\) 43.6445i 1.82010i
\(576\) −2.36541 −0.0985588
\(577\) −13.2376 −0.551087 −0.275543 0.961289i \(-0.588858\pi\)
−0.275543 + 0.961289i \(0.588858\pi\)
\(578\) 16.9695i 0.705840i
\(579\) −15.4496 −0.642064
\(580\) 13.4449i 0.558269i
\(581\) 22.5659i 0.936190i
\(582\) −9.95612 −0.412694
\(583\) −6.74996 2.72727i −0.279555 0.112952i
\(584\) 11.2956 0.467416
\(585\) 38.8737i 1.60723i
\(586\) 4.58909i 0.189574i
\(587\) 10.4098 0.429657 0.214829 0.976652i \(-0.431081\pi\)
0.214829 + 0.976652i \(0.431081\pi\)
\(588\) 10.6322i 0.438466i
\(589\) 14.5824 0.600859
\(590\) 49.1546 2.02366
\(591\) 4.82146i 0.198328i
\(592\) 6.35354 0.261129
\(593\) 22.2149 0.912257 0.456128 0.889914i \(-0.349236\pi\)
0.456128 + 0.889914i \(0.349236\pi\)
\(594\) −4.27415 −0.175370
\(595\) 2.57584i 0.105599i
\(596\) 15.4675 0.633572
\(597\) 11.5773i 0.473827i
\(598\) 38.4135 1.57084
\(599\) −23.9417 −0.978230 −0.489115 0.872219i \(-0.662680\pi\)
−0.489115 + 0.872219i \(0.662680\pi\)
\(600\) 4.54587 0.185585
\(601\) 27.2624i 1.11206i −0.831163 0.556028i \(-0.812325\pi\)
0.831163 0.556028i \(-0.187675\pi\)
\(602\) 38.7783i 1.58048i
\(603\) 22.6271i 0.921445i
\(604\) 17.9704i 0.731203i
\(605\) 3.27208i 0.133029i
\(606\) 3.18893i 0.129542i
\(607\) 0.841343 0.0341491 0.0170745 0.999854i \(-0.494565\pi\)
0.0170745 + 0.999854i \(0.494565\pi\)
\(608\) 3.00609 0.121913
\(609\) 14.7648i 0.598300i
\(610\) 4.28415i 0.173460i
\(611\) 22.9792 0.929639
\(612\) −0.412813 −0.0166870
\(613\) 24.2340i 0.978801i 0.872059 + 0.489400i \(0.162784\pi\)
−0.872059 + 0.489400i \(0.837216\pi\)
\(614\) 7.68204i 0.310022i
\(615\) 3.76541i 0.151836i
\(616\) 4.51075i 0.181743i
\(617\) 29.6900i 1.19528i −0.801766 0.597638i \(-0.796106\pi\)
0.801766 0.597638i \(-0.203894\pi\)
\(618\) 3.02072i 0.121511i
\(619\) 20.9984 0.843998 0.421999 0.906596i \(-0.361329\pi\)
0.421999 + 0.906596i \(0.361329\pi\)
\(620\) 15.8727 0.637465
\(621\) −32.6894 −1.31178
\(622\) 12.9605i 0.519668i
\(623\) −43.7159 −1.75144
\(624\) 4.00103i 0.160169i
\(625\) −20.9682 −0.838730
\(626\) −4.14770 −0.165776
\(627\) 2.39468 0.0956345
\(628\) 3.70167i 0.147713i
\(629\) 1.10882 0.0442117
\(630\) −34.9124 −1.39094
\(631\) 26.5709i 1.05777i −0.848694 0.528885i \(-0.822610\pi\)
0.848694 0.528885i \(-0.177390\pi\)
\(632\) −2.87745 −0.114459
\(633\) 9.46036i 0.376015i
\(634\) 2.17359i 0.0863242i
\(635\) 66.2698 2.62984
\(636\) −2.17257 + 5.37709i −0.0861481 + 0.213216i
\(637\) 67.0353 2.65603
\(638\) 4.10897i 0.162676i
\(639\) 32.3009i 1.27780i
\(640\) 3.27208 0.129340
\(641\) 15.3070i 0.604592i 0.953214 + 0.302296i \(0.0977531\pi\)
−0.953214 + 0.302296i \(0.902247\pi\)
\(642\) −5.66293 −0.223498
\(643\) −46.5575 −1.83605 −0.918024 0.396526i \(-0.870216\pi\)
−0.918024 + 0.396526i \(0.870216\pi\)
\(644\) 34.4990i 1.35945i
\(645\) −22.4084 −0.882329
\(646\) 0.524625 0.0206411
\(647\) −6.36078 −0.250068 −0.125034 0.992152i \(-0.539904\pi\)
−0.125034 + 0.992152i \(0.539904\pi\)
\(648\) 3.69140i 0.145012i
\(649\) 15.0224 0.589682
\(650\) 28.6613i 1.12419i
\(651\) 17.4310 0.683175
\(652\) 9.70825 0.380204
\(653\) 47.1086 1.84350 0.921751 0.387783i \(-0.126759\pi\)
0.921751 + 0.387783i \(0.126759\pi\)
\(654\) 2.64442i 0.103405i
\(655\) 54.9013i 2.14517i
\(656\) 1.44458i 0.0564015i
\(657\) 26.7188i 1.04240i
\(658\) 20.6375i 0.804535i
\(659\) 3.80570i 0.148249i −0.997249 0.0741245i \(-0.976384\pi\)
0.997249 0.0741245i \(-0.0236162\pi\)
\(660\) 2.60658 0.101461
\(661\) −35.2225 −1.37000 −0.684999 0.728544i \(-0.740197\pi\)
−0.684999 + 0.728544i \(0.740197\pi\)
\(662\) 12.1821i 0.473470i
\(663\) 0.698262i 0.0271182i
\(664\) −5.00269 −0.194142
\(665\) 44.3685 1.72054
\(666\) 15.0287i 0.582352i
\(667\) 31.4262i 1.21683i
\(668\) 1.95611i 0.0756841i
\(669\) 6.39370i 0.247195i
\(670\) 31.3001i 1.20923i
\(671\) 1.30931i 0.0505452i
\(672\) 3.59331 0.138615
\(673\) −19.5702 −0.754375 −0.377187 0.926137i \(-0.623109\pi\)
−0.377187 + 0.926137i \(0.623109\pi\)
\(674\) 27.1911 1.04736
\(675\) 24.3905i 0.938790i
\(676\) −12.2261 −0.470236
\(677\) 8.23197i 0.316380i −0.987409 0.158190i \(-0.949434\pi\)
0.987409 0.158190i \(-0.0505659\pi\)
\(678\) 6.47306 0.248596
\(679\) −56.3757 −2.16350
\(680\) 0.571046 0.0218986
\(681\) 11.8491i 0.454059i
\(682\) 4.85096 0.185753
\(683\) 9.92169 0.379643 0.189821 0.981819i \(-0.439209\pi\)
0.189821 + 0.981819i \(0.439209\pi\)
\(684\) 7.11064i 0.271882i
\(685\) −39.0062 −1.49035
\(686\) 28.6289i 1.09306i
\(687\) 1.32296i 0.0504740i
\(688\) −8.59687 −0.327752
\(689\) 33.9021 + 13.6979i 1.29157 + 0.521848i
\(690\) 19.9356 0.758934
\(691\) 4.14952i 0.157855i −0.996880 0.0789276i \(-0.974850\pi\)
0.996880 0.0789276i \(-0.0251496\pi\)
\(692\) 14.2962i 0.543461i
\(693\) −10.6698 −0.405311
\(694\) 36.4903i 1.38515i
\(695\) −32.0963 −1.21748
\(696\) 3.27325 0.124072
\(697\) 0.252109i 0.00954932i
\(698\) 32.7622 1.24007
\(699\) −4.69019 −0.177399
\(700\) 25.7407 0.972905
\(701\) 40.5716i 1.53237i −0.642621 0.766184i \(-0.722153\pi\)
0.642621 0.766184i \(-0.277847\pi\)
\(702\) 21.4672 0.810226
\(703\) 19.0993i 0.720344i
\(704\) 1.00000 0.0376889
\(705\) 11.9256 0.449144
\(706\) 6.62203 0.249223
\(707\) 18.0571i 0.679106i
\(708\) 11.9670i 0.449749i
\(709\) 30.9456i 1.16219i 0.813837 + 0.581093i \(0.197375\pi\)
−0.813837 + 0.581093i \(0.802625\pi\)
\(710\) 44.6819i 1.67688i
\(711\) 6.80635i 0.255258i
\(712\) 9.69150i 0.363204i
\(713\) 37.1010 1.38944
\(714\) 0.627107 0.0234689
\(715\) 16.4342i 0.614605i
\(716\) 3.88510i 0.145193i
\(717\) 1.60089 0.0597865
\(718\) 26.5473 0.990737
\(719\) 3.99630i 0.149037i −0.997220 0.0745185i \(-0.976258\pi\)
0.997220 0.0745185i \(-0.0237420\pi\)
\(720\) 7.73982i 0.288446i
\(721\) 17.1046i 0.637008i
\(722\) 9.96342i 0.370800i
\(723\) 11.4463i 0.425692i
\(724\) 2.10077i 0.0780746i
\(725\) 23.4479 0.870834
\(726\) 0.796611 0.0295650
\(727\) 33.3401 1.23651 0.618257 0.785976i \(-0.287839\pi\)
0.618257 + 0.785976i \(0.287839\pi\)
\(728\) 22.6555i 0.839669i
\(729\) −1.48281 −0.0549190
\(730\) 36.9602i 1.36796i
\(731\) −1.50033 −0.0554917
\(732\) −1.04301 −0.0385506
\(733\) −20.6818 −0.763898 −0.381949 0.924183i \(-0.624747\pi\)
−0.381949 + 0.924183i \(0.624747\pi\)
\(734\) 34.0860i 1.25814i
\(735\) 34.7895 1.28323
\(736\) 7.64818 0.281916
\(737\) 9.56581i 0.352361i
\(738\) −3.41703 −0.125783
\(739\) 19.4792i 0.716553i 0.933616 + 0.358276i \(0.116635\pi\)
−0.933616 + 0.358276i \(0.883365\pi\)
\(740\) 20.7893i 0.764230i
\(741\) −12.0275 −0.441839
\(742\) −12.3020 + 30.4474i −0.451621 + 1.11776i
\(743\) −44.3204 −1.62596 −0.812979 0.582293i \(-0.802156\pi\)
−0.812979 + 0.582293i \(0.802156\pi\)
\(744\) 3.86433i 0.141673i
\(745\) 50.6108i 1.85424i
\(746\) 29.3821 1.07576
\(747\) 11.8334i 0.432962i
\(748\) 0.174521 0.00638110
\(749\) −32.0659 −1.17166
\(750\) 1.84159i 0.0672455i
\(751\) 32.5216 1.18673 0.593365 0.804933i \(-0.297799\pi\)
0.593365 + 0.804933i \(0.297799\pi\)
\(752\) 4.57519 0.166840
\(753\) −5.23595 −0.190809
\(754\) 20.6376i 0.751576i
\(755\) −58.8005 −2.13997
\(756\) 19.2796i 0.701192i
\(757\) 0.375859 0.0136608 0.00683042 0.999977i \(-0.497826\pi\)
0.00683042 + 0.999977i \(0.497826\pi\)
\(758\) 1.30743 0.0474881
\(759\) 6.09263 0.221148
\(760\) 9.83617i 0.356795i
\(761\) 34.2962i 1.24324i −0.783320 0.621618i \(-0.786475\pi\)
0.783320 0.621618i \(-0.213525\pi\)
\(762\) 16.1338i 0.584467i
\(763\) 14.9738i 0.542088i
\(764\) 18.8194i 0.680860i
\(765\) 1.35076i 0.0488367i
\(766\) −32.1921 −1.16315
\(767\) −75.4511 −2.72438
\(768\) 0.796611i 0.0287452i
\(769\) 19.3731i 0.698612i −0.937009 0.349306i \(-0.886417\pi\)
0.937009 0.349306i \(-0.113583\pi\)
\(770\) 14.7595 0.531897
\(771\) 0.189836 0.00683677
\(772\) 19.3942i 0.698011i
\(773\) 54.5901i 1.96347i 0.190256 + 0.981735i \(0.439068\pi\)
−0.190256 + 0.981735i \(0.560932\pi\)
\(774\) 20.3351i 0.730931i
\(775\) 27.6821i 0.994371i
\(776\) 12.4981i 0.448655i
\(777\) 22.8302i 0.819030i
\(778\) −6.05959 −0.217247
\(779\) 4.34254 0.155588
\(780\) −13.0917 −0.468758
\(781\) 13.6555i 0.488633i
\(782\) 1.33477 0.0477311
\(783\) 17.5623i 0.627627i
\(784\) 13.3468 0.476672
\(785\) −12.1122 −0.432302
\(786\) −13.3661 −0.476753
\(787\) 43.6996i 1.55772i 0.627195 + 0.778862i \(0.284203\pi\)
−0.627195 + 0.778862i \(0.715797\pi\)
\(788\) 6.05246 0.215610
\(789\) 5.27058 0.187638
\(790\) 9.41525i 0.334980i
\(791\) 36.6532 1.30324
\(792\) 2.36541i 0.0840512i
\(793\) 6.57607i 0.233523i
\(794\) −30.3069 −1.07555
\(795\) 17.5943 + 7.10883i 0.624005 + 0.252124i
\(796\) 14.5332 0.515115
\(797\) 7.88840i 0.279421i −0.990192 0.139711i \(-0.955383\pi\)
0.990192 0.139711i \(-0.0446173\pi\)
\(798\) 10.8018i 0.382380i
\(799\) 0.798466 0.0282477
\(800\) 5.70652i 0.201756i
\(801\) −22.9244 −0.809994
\(802\) −33.9699 −1.19952
\(803\) 11.2956i 0.398614i
\(804\) 7.62023 0.268745
\(805\) 112.884 3.97862
\(806\) −24.3643 −0.858194
\(807\) 25.0754i 0.882697i
\(808\) 4.00312 0.140829
\(809\) 37.5640i 1.32068i −0.750967 0.660340i \(-0.770412\pi\)
0.750967 0.660340i \(-0.229588\pi\)
\(810\) −12.0786 −0.424398
\(811\) 37.0173 1.29985 0.649926 0.759997i \(-0.274800\pi\)
0.649926 + 0.759997i \(0.274800\pi\)
\(812\) 18.5345 0.650434
\(813\) 19.5071i 0.684143i
\(814\) 6.35354i 0.222692i
\(815\) 31.7662i 1.11272i
\(816\) 0.139025i 0.00486685i
\(817\) 25.8430i 0.904131i
\(818\) 5.65474i 0.197713i
\(819\) 53.5896 1.87257
\(820\) 4.72679 0.165067
\(821\) 39.9133i 1.39298i 0.717564 + 0.696492i \(0.245257\pi\)
−0.717564 + 0.696492i \(0.754743\pi\)
\(822\) 9.49633i 0.331223i
\(823\) −21.6020 −0.752998 −0.376499 0.926417i \(-0.622872\pi\)
−0.376499 + 0.926417i \(0.622872\pi\)
\(824\) −3.79197 −0.132099
\(825\) 4.54587i 0.158267i
\(826\) 67.7624i 2.35776i
\(827\) 47.1672i 1.64017i 0.572245 + 0.820083i \(0.306073\pi\)
−0.572245 + 0.820083i \(0.693927\pi\)
\(828\) 18.0911i 0.628709i
\(829\) 17.3200i 0.601548i −0.953695 0.300774i \(-0.902755\pi\)
0.953695 0.300774i \(-0.0972449\pi\)
\(830\) 16.3692i 0.568183i
\(831\) −16.1865 −0.561503
\(832\) −5.02256 −0.174126
\(833\) 2.32930 0.0807053
\(834\) 7.81407i 0.270579i
\(835\) −6.40054 −0.221500
\(836\) 3.00609i 0.103968i
\(837\) 20.7337 0.716662
\(838\) −29.3873 −1.01517
\(839\) 27.7513 0.958081 0.479040 0.877793i \(-0.340985\pi\)
0.479040 + 0.877793i \(0.340985\pi\)
\(840\) 11.7576i 0.405676i
\(841\) −12.1164 −0.417805
\(842\) −21.3104 −0.734406
\(843\) 11.3492i 0.390886i
\(844\) −11.8758 −0.408780
\(845\) 40.0049i 1.37621i
\(846\) 10.8222i 0.372075i
\(847\) 4.51075 0.154991
\(848\) 6.74996 + 2.72727i 0.231795 + 0.0936548i
\(849\) 20.2316 0.694348
\(850\) 0.995905i 0.0341593i
\(851\) 48.5930i 1.66575i
\(852\) −10.8781 −0.372679
\(853\) 33.2720i 1.13921i −0.821918 0.569605i \(-0.807096\pi\)
0.821918 0.569605i \(-0.192904\pi\)
\(854\) −5.90594 −0.202097
\(855\) 23.2666 0.795701
\(856\) 7.10878i 0.242973i
\(857\) −5.75736 −0.196668 −0.0983339 0.995153i \(-0.531351\pi\)
−0.0983339 + 0.995153i \(0.531351\pi\)
\(858\) −4.00103 −0.136593
\(859\) −18.2582 −0.622962 −0.311481 0.950252i \(-0.600825\pi\)
−0.311481 + 0.950252i \(0.600825\pi\)
\(860\) 28.1296i 0.959213i
\(861\) 5.19083 0.176903
\(862\) 24.1342i 0.822013i
\(863\) 51.9820 1.76949 0.884744 0.466077i \(-0.154333\pi\)
0.884744 + 0.466077i \(0.154333\pi\)
\(864\) 4.27415 0.145409
\(865\) 46.7784 1.59051
\(866\) 5.60335i 0.190409i
\(867\) 13.5181i 0.459100i
\(868\) 21.8815i 0.742705i
\(869\) 2.87745i 0.0976108i
\(870\) 10.7103i 0.363115i
\(871\) 48.0449i 1.62794i
\(872\) 3.31959 0.112415
\(873\) −29.5631 −1.00056
\(874\) 22.9911i 0.777686i
\(875\) 10.4279i 0.352526i
\(876\) −8.99822 −0.304022
\(877\) 11.1878 0.377786 0.188893 0.981998i \(-0.439510\pi\)
0.188893 + 0.981998i \(0.439510\pi\)
\(878\) 1.65837i 0.0559674i
\(879\) 3.65572i 0.123304i
\(880\) 3.27208i 0.110302i
\(881\) 30.9296i 1.04205i −0.853543 0.521023i \(-0.825551\pi\)
0.853543 0.521023i \(-0.174449\pi\)
\(882\) 31.5707i 1.06304i
\(883\) 26.1207i 0.879032i −0.898235 0.439516i \(-0.855150\pi\)
0.898235 0.439516i \(-0.144850\pi\)
\(884\) −0.876540 −0.0294812
\(885\) −39.1571 −1.31625
\(886\) 29.6521 0.996183
\(887\) 28.2694i 0.949192i 0.880204 + 0.474596i \(0.157406\pi\)
−0.880204 + 0.474596i \(0.842594\pi\)
\(888\) −5.06130 −0.169846
\(889\) 91.3566i 3.06400i
\(890\) 31.7114 1.06297
\(891\) −3.69140 −0.123667
\(892\) −8.02612 −0.268735
\(893\) 13.7534i 0.460242i
\(894\) −12.3215 −0.412094
\(895\) −12.7124 −0.424927
\(896\) 4.51075i 0.150693i
\(897\) −30.6006 −1.02172
\(898\) 28.4016i 0.947774i
\(899\) 19.9325i 0.664785i
\(900\) 13.4983 0.449942
\(901\) 1.17801 + 0.475965i 0.0392451 + 0.0158567i
\(902\) 1.44458 0.0480993
\(903\) 30.8912i 1.02799i
\(904\) 8.12574i 0.270258i
\(905\) 6.87390 0.228496
\(906\) 14.3154i 0.475597i
\(907\) −8.24411 −0.273741 −0.136871 0.990589i \(-0.543704\pi\)
−0.136871 + 0.990589i \(0.543704\pi\)
\(908\) 14.8744 0.493625
\(909\) 9.46903i 0.314068i
\(910\) −74.1306 −2.45741
\(911\) 8.31503 0.275489 0.137745 0.990468i \(-0.456015\pi\)
0.137745 + 0.990468i \(0.456015\pi\)
\(912\) −2.39468 −0.0792959
\(913\) 5.00269i 0.165565i
\(914\) −4.62908 −0.153116
\(915\) 3.41280i 0.112824i
\(916\) 1.66073 0.0548721
\(917\) −75.6845 −2.49932
\(918\) 0.745926 0.0246192
\(919\) 15.3888i 0.507630i −0.967253 0.253815i \(-0.918315\pi\)
0.967253 0.253815i \(-0.0816854\pi\)
\(920\) 25.0255i 0.825065i
\(921\) 6.11960i 0.201648i
\(922\) 4.27370i 0.140747i
\(923\) 68.5856i 2.25752i
\(924\) 3.59331i 0.118211i
\(925\) −36.2566 −1.19211
\(926\) −19.9497 −0.655587
\(927\) 8.96956i 0.294599i
\(928\) 4.10897i 0.134884i
\(929\) 39.4274 1.29357 0.646786 0.762672i \(-0.276113\pi\)
0.646786 + 0.762672i \(0.276113\pi\)
\(930\) −12.6444 −0.414626
\(931\) 40.1218i 1.31494i
\(932\) 5.88768i 0.192857i
\(933\) 10.3245i 0.338008i
\(934\) 37.7361i 1.23476i
\(935\) 0.571046i 0.0186752i
\(936\) 11.8804i 0.388324i
\(937\) −18.9409 −0.618771 −0.309385 0.950937i \(-0.600123\pi\)
−0.309385 + 0.950937i \(0.600123\pi\)
\(938\) 43.1489 1.40886
\(939\) 3.30411 0.107825
\(940\) 14.9704i 0.488281i
\(941\) 37.8160 1.23277 0.616384 0.787446i \(-0.288597\pi\)
0.616384 + 0.787446i \(0.288597\pi\)
\(942\) 2.94879i 0.0960769i
\(943\) 11.0484 0.359786
\(944\) −15.0224 −0.488939
\(945\) 63.0844 2.05213
\(946\) 8.59687i 0.279508i
\(947\) 8.93343 0.290297 0.145149 0.989410i \(-0.453634\pi\)
0.145149 + 0.989410i \(0.453634\pi\)
\(948\) 2.29221 0.0744475
\(949\) 56.7330i 1.84163i
\(950\) −17.1543 −0.556559
\(951\) 1.73150i 0.0561479i
\(952\) 0.787218i 0.0255139i
\(953\) −22.6755 −0.734531 −0.367265 0.930116i \(-0.619706\pi\)
−0.367265 + 0.930116i \(0.619706\pi\)
\(954\) −6.45111 + 15.9664i −0.208862 + 0.516932i
\(955\) 61.5785 1.99263
\(956\) 2.00963i 0.0649961i
\(957\) 3.27325i 0.105809i
\(958\) 7.61371 0.245988
\(959\) 53.7722i 1.73640i
\(960\) −2.60658 −0.0841269
\(961\) 7.46816 0.240908
\(962\) 31.9111i 1.02885i
\(963\) −16.8152 −0.541862
\(964\) −14.3687 −0.462786
\(965\) 63.4593 2.04283
\(966\) 27.4823i 0.884228i
\(967\) −28.4943 −0.916315 −0.458157 0.888871i \(-0.651490\pi\)
−0.458157 + 0.888871i \(0.651490\pi\)
\(968\) 1.00000i 0.0321412i
\(969\) −0.417922 −0.0134256
\(970\) 40.8948 1.31305
\(971\) −54.1978 −1.73929 −0.869645 0.493677i \(-0.835652\pi\)
−0.869645 + 0.493677i \(0.835652\pi\)
\(972\) 15.7630i 0.505600i
\(973\) 44.2465i 1.41848i
\(974\) 22.0930i 0.707906i
\(975\) 22.8319i 0.731207i
\(976\) 1.30931i 0.0419098i
\(977\) 44.7287i 1.43100i 0.698614 + 0.715499i \(0.253800\pi\)
−0.698614 + 0.715499i \(0.746200\pi\)
\(978\) −7.73370 −0.247296
\(979\) 9.69150 0.309742
\(980\) 43.6719i 1.39505i
\(981\) 7.85218i 0.250701i
\(982\) 14.1397 0.451216
\(983\) −39.5761 −1.26228 −0.631141 0.775668i \(-0.717413\pi\)
−0.631141 + 0.775668i \(0.717413\pi\)
\(984\) 1.15077i 0.0366852i
\(985\) 19.8041i 0.631013i
\(986\) 0.717100i 0.0228371i
\(987\) 16.4401i 0.523294i
\(988\) 15.0983i 0.480340i
\(989\) 65.7504i 2.09074i
\(990\) 7.73982 0.245988
\(991\) −38.5406 −1.22428 −0.612140 0.790749i \(-0.709691\pi\)
−0.612140 + 0.790749i \(0.709691\pi\)
\(992\) −4.85096 −0.154018
\(993\) 9.70439i 0.307959i
\(994\) −61.5965 −1.95372
\(995\) 47.5538i 1.50756i
\(996\) 3.98520 0.126276
\(997\) 13.6761 0.433128 0.216564 0.976268i \(-0.430515\pi\)
0.216564 + 0.976268i \(0.430515\pi\)
\(998\) 6.96383 0.220436
\(999\) 27.1560i 0.859177i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1166.2.c.b.529.15 yes 22
53.52 even 2 inner 1166.2.c.b.529.8 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1166.2.c.b.529.8 22 53.52 even 2 inner
1166.2.c.b.529.15 yes 22 1.1 even 1 trivial