Properties

Label 1166.2.c.b.529.13
Level $1166$
Weight $2$
Character 1166.529
Analytic conductor $9.311$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1166,2,Mod(529,1166)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1166, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1166.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,-22,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.31055687568\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.13
Character \(\chi\) \(=\) 1166.529
Dual form 1166.2.c.b.529.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -2.09046i q^{3} -1.00000 q^{4} -2.97150i q^{5} +2.09046 q^{6} +2.18061 q^{7} -1.00000i q^{8} -1.37003 q^{9} +2.97150 q^{10} -1.00000 q^{11} +2.09046i q^{12} +4.61763 q^{13} +2.18061i q^{14} -6.21181 q^{15} +1.00000 q^{16} +8.09440 q^{17} -1.37003i q^{18} -1.69881i q^{19} +2.97150i q^{20} -4.55848i q^{21} -1.00000i q^{22} +2.72722i q^{23} -2.09046 q^{24} -3.82981 q^{25} +4.61763i q^{26} -3.40739i q^{27} -2.18061 q^{28} +2.19291 q^{29} -6.21181i q^{30} +1.47980i q^{31} +1.00000i q^{32} +2.09046i q^{33} +8.09440i q^{34} -6.47968i q^{35} +1.37003 q^{36} -3.94126 q^{37} +1.69881 q^{38} -9.65298i q^{39} -2.97150 q^{40} -4.33225i q^{41} +4.55848 q^{42} -6.81756 q^{43} +1.00000 q^{44} +4.07105i q^{45} -2.72722 q^{46} -3.68770 q^{47} -2.09046i q^{48} -2.24495 q^{49} -3.82981i q^{50} -16.9210i q^{51} -4.61763 q^{52} +(-7.06251 + 1.76662i) q^{53} +3.40739 q^{54} +2.97150i q^{55} -2.18061i q^{56} -3.55129 q^{57} +2.19291i q^{58} -2.80552 q^{59} +6.21181 q^{60} +6.67241i q^{61} -1.47980 q^{62} -2.98750 q^{63} -1.00000 q^{64} -13.7213i q^{65} -2.09046 q^{66} -2.96227i q^{67} -8.09440 q^{68} +5.70115 q^{69} +6.47968 q^{70} -9.69546i q^{71} +1.37003i q^{72} +5.69259i q^{73} -3.94126i q^{74} +8.00607i q^{75} +1.69881i q^{76} -2.18061 q^{77} +9.65298 q^{78} +9.23645i q^{79} -2.97150i q^{80} -11.2331 q^{81} +4.33225 q^{82} +3.96253i q^{83} +4.55848i q^{84} -24.0525i q^{85} -6.81756i q^{86} -4.58419i q^{87} +1.00000i q^{88} +15.5276 q^{89} -4.07105 q^{90} +10.0692 q^{91} -2.72722i q^{92} +3.09347 q^{93} -3.68770i q^{94} -5.04800 q^{95} +2.09046 q^{96} +2.25689 q^{97} -2.24495i q^{98} +1.37003 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 22 q^{4} - 6 q^{6} - 24 q^{9} + 4 q^{10} - 22 q^{11} + 6 q^{13} + 30 q^{15} + 22 q^{16} + 18 q^{17} + 6 q^{24} - 30 q^{25} + 28 q^{29} + 24 q^{36} - 34 q^{37} - 18 q^{38} - 4 q^{40} + 4 q^{42} - 34 q^{43}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1166\mathbb{Z}\right)^\times\).

\(n\) \(849\) \(903\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.09046i 1.20693i −0.797390 0.603464i \(-0.793787\pi\)
0.797390 0.603464i \(-0.206213\pi\)
\(4\) −1.00000 −0.500000
\(5\) 2.97150i 1.32889i −0.747335 0.664447i \(-0.768667\pi\)
0.747335 0.664447i \(-0.231333\pi\)
\(6\) 2.09046 0.853427
\(7\) 2.18061 0.824193 0.412096 0.911140i \(-0.364797\pi\)
0.412096 + 0.911140i \(0.364797\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.37003 −0.456677
\(10\) 2.97150 0.939671
\(11\) −1.00000 −0.301511
\(12\) 2.09046i 0.603464i
\(13\) 4.61763 1.28070 0.640350 0.768083i \(-0.278789\pi\)
0.640350 + 0.768083i \(0.278789\pi\)
\(14\) 2.18061i 0.582792i
\(15\) −6.21181 −1.60388
\(16\) 1.00000 0.250000
\(17\) 8.09440 1.96318 0.981591 0.190997i \(-0.0611722\pi\)
0.981591 + 0.190997i \(0.0611722\pi\)
\(18\) 1.37003i 0.322919i
\(19\) 1.69881i 0.389733i −0.980830 0.194866i \(-0.937573\pi\)
0.980830 0.194866i \(-0.0624273\pi\)
\(20\) 2.97150i 0.664447i
\(21\) 4.55848i 0.994742i
\(22\) 1.00000i 0.213201i
\(23\) 2.72722i 0.568664i 0.958726 + 0.284332i \(0.0917719\pi\)
−0.958726 + 0.284332i \(0.908228\pi\)
\(24\) −2.09046 −0.426714
\(25\) −3.82981 −0.765962
\(26\) 4.61763i 0.905592i
\(27\) 3.40739i 0.655752i
\(28\) −2.18061 −0.412096
\(29\) 2.19291 0.407213 0.203606 0.979053i \(-0.434734\pi\)
0.203606 + 0.979053i \(0.434734\pi\)
\(30\) 6.21181i 1.13412i
\(31\) 1.47980i 0.265781i 0.991131 + 0.132890i \(0.0424258\pi\)
−0.991131 + 0.132890i \(0.957574\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 2.09046i 0.363903i
\(34\) 8.09440i 1.38818i
\(35\) 6.47968i 1.09527i
\(36\) 1.37003 0.228338
\(37\) −3.94126 −0.647939 −0.323969 0.946068i \(-0.605017\pi\)
−0.323969 + 0.946068i \(0.605017\pi\)
\(38\) 1.69881 0.275583
\(39\) 9.65298i 1.54571i
\(40\) −2.97150 −0.469835
\(41\) 4.33225i 0.676583i −0.941041 0.338292i \(-0.890151\pi\)
0.941041 0.338292i \(-0.109849\pi\)
\(42\) 4.55848 0.703389
\(43\) −6.81756 −1.03967 −0.519834 0.854267i \(-0.674006\pi\)
−0.519834 + 0.854267i \(0.674006\pi\)
\(44\) 1.00000 0.150756
\(45\) 4.07105i 0.606876i
\(46\) −2.72722 −0.402107
\(47\) −3.68770 −0.537906 −0.268953 0.963153i \(-0.586678\pi\)
−0.268953 + 0.963153i \(0.586678\pi\)
\(48\) 2.09046i 0.301732i
\(49\) −2.24495 −0.320707
\(50\) 3.82981i 0.541617i
\(51\) 16.9210i 2.36942i
\(52\) −4.61763 −0.640350
\(53\) −7.06251 + 1.76662i −0.970110 + 0.242665i
\(54\) 3.40739 0.463687
\(55\) 2.97150i 0.400677i
\(56\) 2.18061i 0.291396i
\(57\) −3.55129 −0.470380
\(58\) 2.19291i 0.287943i
\(59\) −2.80552 −0.365248 −0.182624 0.983183i \(-0.558459\pi\)
−0.182624 + 0.983183i \(0.558459\pi\)
\(60\) 6.21181 0.801941
\(61\) 6.67241i 0.854315i 0.904177 + 0.427157i \(0.140485\pi\)
−0.904177 + 0.427157i \(0.859515\pi\)
\(62\) −1.47980 −0.187935
\(63\) −2.98750 −0.376390
\(64\) −1.00000 −0.125000
\(65\) 13.7213i 1.70192i
\(66\) −2.09046 −0.257318
\(67\) 2.96227i 0.361899i −0.983492 0.180949i \(-0.942083\pi\)
0.983492 0.180949i \(-0.0579170\pi\)
\(68\) −8.09440 −0.981591
\(69\) 5.70115 0.686337
\(70\) 6.47968 0.774469
\(71\) 9.69546i 1.15064i −0.817929 0.575319i \(-0.804878\pi\)
0.817929 0.575319i \(-0.195122\pi\)
\(72\) 1.37003i 0.161460i
\(73\) 5.69259i 0.666267i 0.942880 + 0.333134i \(0.108106\pi\)
−0.942880 + 0.333134i \(0.891894\pi\)
\(74\) 3.94126i 0.458162i
\(75\) 8.00607i 0.924461i
\(76\) 1.69881i 0.194866i
\(77\) −2.18061 −0.248503
\(78\) 9.65298 1.09298
\(79\) 9.23645i 1.03918i 0.854415 + 0.519591i \(0.173916\pi\)
−0.854415 + 0.519591i \(0.826084\pi\)
\(80\) 2.97150i 0.332224i
\(81\) −11.2331 −1.24812
\(82\) 4.33225 0.478417
\(83\) 3.96253i 0.434944i 0.976067 + 0.217472i \(0.0697811\pi\)
−0.976067 + 0.217472i \(0.930219\pi\)
\(84\) 4.55848i 0.497371i
\(85\) 24.0525i 2.60886i
\(86\) 6.81756i 0.735157i
\(87\) 4.58419i 0.491477i
\(88\) 1.00000i 0.106600i
\(89\) 15.5276 1.64592 0.822961 0.568098i \(-0.192321\pi\)
0.822961 + 0.568098i \(0.192321\pi\)
\(90\) −4.07105 −0.429126
\(91\) 10.0692 1.05554
\(92\) 2.72722i 0.284332i
\(93\) 3.09347 0.320778
\(94\) 3.68770i 0.380357i
\(95\) −5.04800 −0.517914
\(96\) 2.09046 0.213357
\(97\) 2.25689 0.229152 0.114576 0.993414i \(-0.463449\pi\)
0.114576 + 0.993414i \(0.463449\pi\)
\(98\) 2.24495i 0.226774i
\(99\) 1.37003 0.137693
\(100\) 3.82981 0.382981
\(101\) 13.4471i 1.33804i −0.743246 0.669018i \(-0.766715\pi\)
0.743246 0.669018i \(-0.233285\pi\)
\(102\) 16.9210 1.67543
\(103\) 16.5709i 1.63278i 0.577502 + 0.816389i \(0.304028\pi\)
−0.577502 + 0.816389i \(0.695972\pi\)
\(104\) 4.61763i 0.452796i
\(105\) −13.5455 −1.32191
\(106\) −1.76662 7.06251i −0.171590 0.685972i
\(107\) −3.52801 −0.341065 −0.170533 0.985352i \(-0.554549\pi\)
−0.170533 + 0.985352i \(0.554549\pi\)
\(108\) 3.40739i 0.327876i
\(109\) 2.20263i 0.210973i 0.994421 + 0.105487i \(0.0336400\pi\)
−0.994421 + 0.105487i \(0.966360\pi\)
\(110\) −2.97150 −0.283321
\(111\) 8.23905i 0.782016i
\(112\) 2.18061 0.206048
\(113\) −3.81030 −0.358443 −0.179222 0.983809i \(-0.557358\pi\)
−0.179222 + 0.983809i \(0.557358\pi\)
\(114\) 3.55129i 0.332609i
\(115\) 8.10393 0.755695
\(116\) −2.19291 −0.203606
\(117\) −6.32629 −0.584866
\(118\) 2.80552i 0.258269i
\(119\) 17.6507 1.61804
\(120\) 6.21181i 0.567058i
\(121\) 1.00000 0.0909091
\(122\) −6.67241 −0.604092
\(123\) −9.05640 −0.816588
\(124\) 1.47980i 0.132890i
\(125\) 3.47722i 0.311012i
\(126\) 2.98750i 0.266148i
\(127\) 4.61021i 0.409090i 0.978857 + 0.204545i \(0.0655715\pi\)
−0.978857 + 0.204545i \(0.934429\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 14.2519i 1.25481i
\(130\) 13.7213 1.20344
\(131\) 10.1879 0.890119 0.445060 0.895501i \(-0.353182\pi\)
0.445060 + 0.895501i \(0.353182\pi\)
\(132\) 2.09046i 0.181951i
\(133\) 3.70443i 0.321215i
\(134\) 2.96227 0.255901
\(135\) −10.1251 −0.871426
\(136\) 8.09440i 0.694089i
\(137\) 19.5375i 1.66920i 0.550855 + 0.834601i \(0.314302\pi\)
−0.550855 + 0.834601i \(0.685698\pi\)
\(138\) 5.70115i 0.485314i
\(139\) 9.98558i 0.846966i 0.905904 + 0.423483i \(0.139193\pi\)
−0.905904 + 0.423483i \(0.860807\pi\)
\(140\) 6.47968i 0.547633i
\(141\) 7.70899i 0.649214i
\(142\) 9.69546 0.813625
\(143\) −4.61763 −0.386146
\(144\) −1.37003 −0.114169
\(145\) 6.51623i 0.541143i
\(146\) −5.69259 −0.471122
\(147\) 4.69298i 0.387070i
\(148\) 3.94126 0.323969
\(149\) −0.111768 −0.00915637 −0.00457818 0.999990i \(-0.501457\pi\)
−0.00457818 + 0.999990i \(0.501457\pi\)
\(150\) −8.00607 −0.653693
\(151\) 4.40211i 0.358239i 0.983827 + 0.179119i \(0.0573249\pi\)
−0.983827 + 0.179119i \(0.942675\pi\)
\(152\) −1.69881 −0.137791
\(153\) −11.0896 −0.896539
\(154\) 2.18061i 0.175718i
\(155\) 4.39724 0.353195
\(156\) 9.65298i 0.772857i
\(157\) 7.35304i 0.586836i −0.955984 0.293418i \(-0.905207\pi\)
0.955984 0.293418i \(-0.0947928\pi\)
\(158\) −9.23645 −0.734812
\(159\) 3.69306 + 14.7639i 0.292879 + 1.17085i
\(160\) 2.97150 0.234918
\(161\) 5.94700i 0.468689i
\(162\) 11.2331i 0.882556i
\(163\) 3.90417 0.305798 0.152899 0.988242i \(-0.451139\pi\)
0.152899 + 0.988242i \(0.451139\pi\)
\(164\) 4.33225i 0.338292i
\(165\) 6.21181 0.483588
\(166\) −3.96253 −0.307552
\(167\) 0.280131i 0.0216772i −0.999941 0.0108386i \(-0.996550\pi\)
0.999941 0.0108386i \(-0.00345010\pi\)
\(168\) −4.55848 −0.351694
\(169\) 8.32250 0.640192
\(170\) 24.0525 1.84474
\(171\) 2.32742i 0.177982i
\(172\) 6.81756 0.519834
\(173\) 14.0444i 1.06778i 0.845555 + 0.533888i \(0.179270\pi\)
−0.845555 + 0.533888i \(0.820730\pi\)
\(174\) 4.58419 0.347527
\(175\) −8.35131 −0.631300
\(176\) −1.00000 −0.0753778
\(177\) 5.86484i 0.440828i
\(178\) 15.5276i 1.16384i
\(179\) 10.9758i 0.820372i −0.912002 0.410186i \(-0.865464\pi\)
0.912002 0.410186i \(-0.134536\pi\)
\(180\) 4.07105i 0.303438i
\(181\) 12.3420i 0.917373i −0.888598 0.458686i \(-0.848320\pi\)
0.888598 0.458686i \(-0.151680\pi\)
\(182\) 10.0692i 0.746382i
\(183\) 13.9484 1.03110
\(184\) 2.72722 0.201053
\(185\) 11.7114i 0.861042i
\(186\) 3.09347i 0.226824i
\(187\) −8.09440 −0.591921
\(188\) 3.68770 0.268953
\(189\) 7.43018i 0.540466i
\(190\) 5.04800i 0.366220i
\(191\) 15.6388i 1.13159i −0.824547 0.565794i \(-0.808570\pi\)
0.824547 0.565794i \(-0.191430\pi\)
\(192\) 2.09046i 0.150866i
\(193\) 20.0467i 1.44299i 0.692420 + 0.721495i \(0.256545\pi\)
−0.692420 + 0.721495i \(0.743455\pi\)
\(194\) 2.25689i 0.162035i
\(195\) −28.6838 −2.05409
\(196\) 2.24495 0.160353
\(197\) 19.6508 1.40006 0.700031 0.714112i \(-0.253169\pi\)
0.700031 + 0.714112i \(0.253169\pi\)
\(198\) 1.37003i 0.0973638i
\(199\) 7.31092 0.518257 0.259129 0.965843i \(-0.416565\pi\)
0.259129 + 0.965843i \(0.416565\pi\)
\(200\) 3.82981i 0.270808i
\(201\) −6.19251 −0.436786
\(202\) 13.4471 0.946134
\(203\) 4.78187 0.335622
\(204\) 16.9210i 1.18471i
\(205\) −12.8733 −0.899108
\(206\) −16.5709 −1.15455
\(207\) 3.73637i 0.259696i
\(208\) 4.61763 0.320175
\(209\) 1.69881i 0.117509i
\(210\) 13.5455i 0.934729i
\(211\) −14.1838 −0.976454 −0.488227 0.872717i \(-0.662356\pi\)
−0.488227 + 0.872717i \(0.662356\pi\)
\(212\) 7.06251 1.76662i 0.485055 0.121332i
\(213\) −20.2680 −1.38874
\(214\) 3.52801i 0.241170i
\(215\) 20.2584i 1.38161i
\(216\) −3.40739 −0.231843
\(217\) 3.22687i 0.219054i
\(218\) −2.20263 −0.149181
\(219\) 11.9001 0.804137
\(220\) 2.97150i 0.200338i
\(221\) 37.3769 2.51425
\(222\) −8.23905 −0.552969
\(223\) −2.98063 −0.199598 −0.0997990 0.995008i \(-0.531820\pi\)
−0.0997990 + 0.995008i \(0.531820\pi\)
\(224\) 2.18061i 0.145698i
\(225\) 5.24696 0.349797
\(226\) 3.81030i 0.253458i
\(227\) −13.9981 −0.929085 −0.464542 0.885551i \(-0.653781\pi\)
−0.464542 + 0.885551i \(0.653781\pi\)
\(228\) 3.55129 0.235190
\(229\) −23.5756 −1.55792 −0.778960 0.627074i \(-0.784253\pi\)
−0.778960 + 0.627074i \(0.784253\pi\)
\(230\) 8.10393i 0.534357i
\(231\) 4.55848i 0.299926i
\(232\) 2.19291i 0.143971i
\(233\) 14.8095i 0.970200i −0.874459 0.485100i \(-0.838783\pi\)
0.874459 0.485100i \(-0.161217\pi\)
\(234\) 6.32629i 0.413563i
\(235\) 10.9580i 0.714820i
\(236\) 2.80552 0.182624
\(237\) 19.3084 1.25422
\(238\) 17.6507i 1.14413i
\(239\) 15.0125i 0.971080i 0.874214 + 0.485540i \(0.161377\pi\)
−0.874214 + 0.485540i \(0.838623\pi\)
\(240\) −6.21181 −0.400970
\(241\) −0.519115 −0.0334391 −0.0167196 0.999860i \(-0.505322\pi\)
−0.0167196 + 0.999860i \(0.505322\pi\)
\(242\) 1.00000i 0.0642824i
\(243\) 13.2602i 0.850643i
\(244\) 6.67241i 0.427157i
\(245\) 6.67086i 0.426185i
\(246\) 9.05640i 0.577415i
\(247\) 7.84445i 0.499131i
\(248\) 1.47980 0.0939676
\(249\) 8.28352 0.524947
\(250\) 3.47722 0.219919
\(251\) 20.2151i 1.27596i 0.770052 + 0.637982i \(0.220230\pi\)
−0.770052 + 0.637982i \(0.779770\pi\)
\(252\) 2.98750 0.188195
\(253\) 2.72722i 0.171459i
\(254\) −4.61021 −0.289270
\(255\) −50.2809 −3.14871
\(256\) 1.00000 0.0625000
\(257\) 10.4298i 0.650594i −0.945612 0.325297i \(-0.894536\pi\)
0.945612 0.325297i \(-0.105464\pi\)
\(258\) −14.2519 −0.887282
\(259\) −8.59434 −0.534026
\(260\) 13.7213i 0.850958i
\(261\) −3.00435 −0.185965
\(262\) 10.1879i 0.629409i
\(263\) 28.8298i 1.77772i −0.458179 0.888860i \(-0.651498\pi\)
0.458179 0.888860i \(-0.348502\pi\)
\(264\) 2.09046 0.128659
\(265\) 5.24952 + 20.9862i 0.322476 + 1.28917i
\(266\) 3.70443 0.227133
\(267\) 32.4598i 1.98651i
\(268\) 2.96227i 0.180949i
\(269\) 3.60039 0.219520 0.109760 0.993958i \(-0.464992\pi\)
0.109760 + 0.993958i \(0.464992\pi\)
\(270\) 10.1251i 0.616191i
\(271\) −29.8102 −1.81084 −0.905420 0.424518i \(-0.860444\pi\)
−0.905420 + 0.424518i \(0.860444\pi\)
\(272\) 8.09440 0.490795
\(273\) 21.0494i 1.27397i
\(274\) −19.5375 −1.18030
\(275\) 3.82981 0.230946
\(276\) −5.70115 −0.343169
\(277\) 7.27912i 0.437360i −0.975797 0.218680i \(-0.929825\pi\)
0.975797 0.218680i \(-0.0701751\pi\)
\(278\) −9.98558 −0.598895
\(279\) 2.02738i 0.121376i
\(280\) −6.47968 −0.387235
\(281\) −19.5468 −1.16607 −0.583033 0.812449i \(-0.698134\pi\)
−0.583033 + 0.812449i \(0.698134\pi\)
\(282\) −7.70899 −0.459063
\(283\) 20.4074i 1.21309i −0.795048 0.606546i \(-0.792555\pi\)
0.795048 0.606546i \(-0.207445\pi\)
\(284\) 9.69546i 0.575319i
\(285\) 10.5527i 0.625085i
\(286\) 4.61763i 0.273046i
\(287\) 9.44693i 0.557635i
\(288\) 1.37003i 0.0807298i
\(289\) 48.5194 2.85408
\(290\) 6.51623 0.382646
\(291\) 4.71794i 0.276571i
\(292\) 5.69259i 0.333134i
\(293\) 26.6856 1.55899 0.779494 0.626410i \(-0.215476\pi\)
0.779494 + 0.626410i \(0.215476\pi\)
\(294\) −4.69298 −0.273700
\(295\) 8.33661i 0.485376i
\(296\) 3.94126i 0.229081i
\(297\) 3.40739i 0.197717i
\(298\) 0.111768i 0.00647453i
\(299\) 12.5933i 0.728288i
\(300\) 8.00607i 0.462231i
\(301\) −14.8664 −0.856887
\(302\) −4.40211 −0.253313
\(303\) −28.1106 −1.61491
\(304\) 1.69881i 0.0974332i
\(305\) 19.8271 1.13529
\(306\) 11.0896i 0.633949i
\(307\) 26.9561 1.53846 0.769232 0.638970i \(-0.220639\pi\)
0.769232 + 0.638970i \(0.220639\pi\)
\(308\) 2.18061 0.124252
\(309\) 34.6408 1.97065
\(310\) 4.39724i 0.249746i
\(311\) 19.8853 1.12759 0.563795 0.825915i \(-0.309341\pi\)
0.563795 + 0.825915i \(0.309341\pi\)
\(312\) −9.65298 −0.546492
\(313\) 8.44322i 0.477239i 0.971113 + 0.238620i \(0.0766949\pi\)
−0.971113 + 0.238620i \(0.923305\pi\)
\(314\) 7.35304 0.414956
\(315\) 8.87736i 0.500182i
\(316\) 9.23645i 0.519591i
\(317\) 23.3810 1.31321 0.656603 0.754236i \(-0.271993\pi\)
0.656603 + 0.754236i \(0.271993\pi\)
\(318\) −14.7639 + 3.69306i −0.827919 + 0.207097i
\(319\) −2.19291 −0.122779
\(320\) 2.97150i 0.166112i
\(321\) 7.37516i 0.411641i
\(322\) −5.94700 −0.331413
\(323\) 13.7508i 0.765116i
\(324\) 11.2331 0.624062
\(325\) −17.6846 −0.980967
\(326\) 3.90417i 0.216232i
\(327\) 4.60451 0.254630
\(328\) −4.33225 −0.239208
\(329\) −8.04142 −0.443338
\(330\) 6.21181i 0.341949i
\(331\) −24.5436 −1.34904 −0.674519 0.738257i \(-0.735649\pi\)
−0.674519 + 0.738257i \(0.735649\pi\)
\(332\) 3.96253i 0.217472i
\(333\) 5.39964 0.295899
\(334\) 0.280131 0.0153281
\(335\) −8.80238 −0.480925
\(336\) 4.55848i 0.248685i
\(337\) 21.7740i 1.18610i −0.805165 0.593051i \(-0.797923\pi\)
0.805165 0.593051i \(-0.202077\pi\)
\(338\) 8.32250i 0.452684i
\(339\) 7.96529i 0.432615i
\(340\) 24.0525i 1.30443i
\(341\) 1.47980i 0.0801359i
\(342\) −2.32742 −0.125852
\(343\) −20.1596 −1.08852
\(344\) 6.81756i 0.367578i
\(345\) 16.9410i 0.912070i
\(346\) −14.0444 −0.755032
\(347\) −25.3463 −1.36066 −0.680331 0.732905i \(-0.738164\pi\)
−0.680331 + 0.732905i \(0.738164\pi\)
\(348\) 4.58419i 0.245738i
\(349\) 16.7038i 0.894136i 0.894500 + 0.447068i \(0.147532\pi\)
−0.894500 + 0.447068i \(0.852468\pi\)
\(350\) 8.35131i 0.446396i
\(351\) 15.7341i 0.839822i
\(352\) 1.00000i 0.0533002i
\(353\) 7.74252i 0.412093i 0.978542 + 0.206047i \(0.0660598\pi\)
−0.978542 + 0.206047i \(0.933940\pi\)
\(354\) −5.86484 −0.311713
\(355\) −28.8100 −1.52908
\(356\) −15.5276 −0.822961
\(357\) 36.8982i 1.95286i
\(358\) 10.9758 0.580091
\(359\) 28.7106i 1.51529i 0.652668 + 0.757644i \(0.273650\pi\)
−0.652668 + 0.757644i \(0.726350\pi\)
\(360\) 4.07105 0.214563
\(361\) 16.1141 0.848108
\(362\) 12.3420 0.648681
\(363\) 2.09046i 0.109721i
\(364\) −10.0692 −0.527772
\(365\) 16.9155 0.885399
\(366\) 13.9484i 0.729096i
\(367\) −28.7385 −1.50014 −0.750070 0.661359i \(-0.769980\pi\)
−0.750070 + 0.661359i \(0.769980\pi\)
\(368\) 2.72722i 0.142166i
\(369\) 5.93531i 0.308980i
\(370\) −11.7114 −0.608849
\(371\) −15.4006 + 3.85232i −0.799558 + 0.200002i
\(372\) −3.09347 −0.160389
\(373\) 10.5039i 0.543869i 0.962316 + 0.271934i \(0.0876634\pi\)
−0.962316 + 0.271934i \(0.912337\pi\)
\(374\) 8.09440i 0.418552i
\(375\) −7.26900 −0.375370
\(376\) 3.68770i 0.190178i
\(377\) 10.1260 0.521517
\(378\) 7.43018 0.382167
\(379\) 12.4284i 0.638406i 0.947686 + 0.319203i \(0.103415\pi\)
−0.947686 + 0.319203i \(0.896585\pi\)
\(380\) 5.04800 0.258957
\(381\) 9.63747 0.493742
\(382\) 15.6388 0.800153
\(383\) 24.3727i 1.24539i 0.782467 + 0.622693i \(0.213961\pi\)
−0.782467 + 0.622693i \(0.786039\pi\)
\(384\) −2.09046 −0.106678
\(385\) 6.47968i 0.330235i
\(386\) −20.0467 −1.02035
\(387\) 9.34027 0.474793
\(388\) −2.25689 −0.114576
\(389\) 11.2239i 0.569072i 0.958665 + 0.284536i \(0.0918396\pi\)
−0.958665 + 0.284536i \(0.908160\pi\)
\(390\) 28.6838i 1.45246i
\(391\) 22.0752i 1.11639i
\(392\) 2.24495i 0.113387i
\(393\) 21.2974i 1.07431i
\(394\) 19.6508i 0.989994i
\(395\) 27.4461 1.38096
\(396\) −1.37003 −0.0688466
\(397\) 4.80277i 0.241044i 0.992711 + 0.120522i \(0.0384568\pi\)
−0.992711 + 0.120522i \(0.961543\pi\)
\(398\) 7.31092i 0.366463i
\(399\) −7.74397 −0.387683
\(400\) −3.82981 −0.191490
\(401\) 1.51978i 0.0758941i 0.999280 + 0.0379471i \(0.0120818\pi\)
−0.999280 + 0.0379471i \(0.987918\pi\)
\(402\) 6.19251i 0.308854i
\(403\) 6.83318i 0.340385i
\(404\) 13.4471i 0.669018i
\(405\) 33.3792i 1.65862i
\(406\) 4.78187i 0.237320i
\(407\) 3.94126 0.195361
\(408\) −16.9210 −0.837716
\(409\) −6.29925 −0.311478 −0.155739 0.987798i \(-0.549776\pi\)
−0.155739 + 0.987798i \(0.549776\pi\)
\(410\) 12.8733i 0.635765i
\(411\) 40.8424 2.01461
\(412\) 16.5709i 0.816389i
\(413\) −6.11775 −0.301035
\(414\) 3.73637 0.183633
\(415\) 11.7747 0.577995
\(416\) 4.61763i 0.226398i
\(417\) 20.8745 1.02223
\(418\) −1.69881 −0.0830913
\(419\) 20.2458i 0.989074i −0.869157 0.494537i \(-0.835338\pi\)
0.869157 0.494537i \(-0.164662\pi\)
\(420\) 13.5455 0.660954
\(421\) 32.9704i 1.60688i 0.595385 + 0.803441i \(0.297000\pi\)
−0.595385 + 0.803441i \(0.703000\pi\)
\(422\) 14.1838i 0.690457i
\(423\) 5.05226 0.245649
\(424\) 1.76662 + 7.06251i 0.0857949 + 0.342986i
\(425\) −31.0000 −1.50372
\(426\) 20.2680i 0.981987i
\(427\) 14.5499i 0.704120i
\(428\) 3.52801 0.170533
\(429\) 9.65298i 0.466050i
\(430\) −20.2584 −0.976946
\(431\) −15.8484 −0.763391 −0.381696 0.924288i \(-0.624660\pi\)
−0.381696 + 0.924288i \(0.624660\pi\)
\(432\) 3.40739i 0.163938i
\(433\) 21.0688 1.01250 0.506251 0.862386i \(-0.331031\pi\)
0.506251 + 0.862386i \(0.331031\pi\)
\(434\) −3.22687 −0.154895
\(435\) −13.6219 −0.653121
\(436\) 2.20263i 0.105487i
\(437\) 4.63302 0.221627
\(438\) 11.9001i 0.568611i
\(439\) 12.2922 0.586677 0.293338 0.956009i \(-0.405234\pi\)
0.293338 + 0.956009i \(0.405234\pi\)
\(440\) 2.97150 0.141661
\(441\) 3.07565 0.146459
\(442\) 37.3769i 1.77784i
\(443\) 14.7934i 0.702857i −0.936215 0.351429i \(-0.885696\pi\)
0.936215 0.351429i \(-0.114304\pi\)
\(444\) 8.23905i 0.391008i
\(445\) 46.1402i 2.18726i
\(446\) 2.98063i 0.141137i
\(447\) 0.233646i 0.0110511i
\(448\) −2.18061 −0.103024
\(449\) −21.1485 −0.998060 −0.499030 0.866585i \(-0.666310\pi\)
−0.499030 + 0.866585i \(0.666310\pi\)
\(450\) 5.24696i 0.247344i
\(451\) 4.33225i 0.203998i
\(452\) 3.81030 0.179222
\(453\) 9.20245 0.432369
\(454\) 13.9981i 0.656962i
\(455\) 29.9207i 1.40271i
\(456\) 3.55129i 0.166304i
\(457\) 1.95093i 0.0912608i 0.998958 + 0.0456304i \(0.0145296\pi\)
−0.998958 + 0.0456304i \(0.985470\pi\)
\(458\) 23.5756i 1.10162i
\(459\) 27.5808i 1.28736i
\(460\) −8.10393 −0.377848
\(461\) 2.03290 0.0946818 0.0473409 0.998879i \(-0.484925\pi\)
0.0473409 + 0.998879i \(0.484925\pi\)
\(462\) −4.55848 −0.212080
\(463\) 20.8861i 0.970659i 0.874331 + 0.485329i \(0.161300\pi\)
−0.874331 + 0.485329i \(0.838700\pi\)
\(464\) 2.19291 0.101803
\(465\) 9.19225i 0.426281i
\(466\) 14.8095 0.686035
\(467\) −26.1018 −1.20785 −0.603925 0.797041i \(-0.706397\pi\)
−0.603925 + 0.797041i \(0.706397\pi\)
\(468\) 6.32629 0.292433
\(469\) 6.45955i 0.298274i
\(470\) −10.9580 −0.505454
\(471\) −15.3712 −0.708269
\(472\) 2.80552i 0.129135i
\(473\) 6.81756 0.313472
\(474\) 19.3084i 0.886866i
\(475\) 6.50610i 0.298520i
\(476\) −17.6507 −0.809020
\(477\) 9.67585 2.42033i 0.443027 0.110819i
\(478\) −15.0125 −0.686657
\(479\) 4.97176i 0.227166i 0.993529 + 0.113583i \(0.0362327\pi\)
−0.993529 + 0.113583i \(0.963767\pi\)
\(480\) 6.21181i 0.283529i
\(481\) −18.1993 −0.829815
\(482\) 0.519115i 0.0236450i
\(483\) 12.4320 0.565674
\(484\) −1.00000 −0.0454545
\(485\) 6.70634i 0.304519i
\(486\) −13.2602 −0.601496
\(487\) 16.8100 0.761734 0.380867 0.924630i \(-0.375626\pi\)
0.380867 + 0.924630i \(0.375626\pi\)
\(488\) 6.67241 0.302046
\(489\) 8.16152i 0.369077i
\(490\) −6.67086 −0.301359
\(491\) 35.4330i 1.59907i −0.600620 0.799534i \(-0.705080\pi\)
0.600620 0.799534i \(-0.294920\pi\)
\(492\) 9.05640 0.408294
\(493\) 17.7503 0.799433
\(494\) 7.84445 0.352939
\(495\) 4.07105i 0.182980i
\(496\) 1.47980i 0.0664452i
\(497\) 21.1420i 0.948348i
\(498\) 8.28352i 0.371193i
\(499\) 22.7739i 1.01950i 0.860322 + 0.509750i \(0.170262\pi\)
−0.860322 + 0.509750i \(0.829738\pi\)
\(500\) 3.47722i 0.155506i
\(501\) −0.585603 −0.0261628
\(502\) −20.2151 −0.902242
\(503\) 16.5270i 0.736902i −0.929647 0.368451i \(-0.879888\pi\)
0.929647 0.368451i \(-0.120112\pi\)
\(504\) 2.98750i 0.133074i
\(505\) −39.9580 −1.77811
\(506\) 2.72722 0.121240
\(507\) 17.3979i 0.772666i
\(508\) 4.61021i 0.204545i
\(509\) 21.3048i 0.944319i −0.881513 0.472159i \(-0.843475\pi\)
0.881513 0.472159i \(-0.156525\pi\)
\(510\) 50.2809i 2.22647i
\(511\) 12.4133i 0.549133i
\(512\) 1.00000i 0.0441942i
\(513\) −5.78849 −0.255568
\(514\) 10.4298 0.460040
\(515\) 49.2404 2.16979
\(516\) 14.2519i 0.627403i
\(517\) 3.68770 0.162185
\(518\) 8.59434i 0.377613i
\(519\) 29.3593 1.28873
\(520\) −13.7213 −0.601718
\(521\) 39.6735 1.73813 0.869064 0.494700i \(-0.164722\pi\)
0.869064 + 0.494700i \(0.164722\pi\)
\(522\) 3.00435i 0.131497i
\(523\) 34.1734 1.49430 0.747149 0.664656i \(-0.231422\pi\)
0.747149 + 0.664656i \(0.231422\pi\)
\(524\) −10.1879 −0.445060
\(525\) 17.4581i 0.761934i
\(526\) 28.8298 1.25704
\(527\) 11.9781i 0.521775i
\(528\) 2.09046i 0.0909757i
\(529\) 15.5623 0.676621
\(530\) −20.9862 + 5.24952i −0.911584 + 0.228025i
\(531\) 3.84365 0.166800
\(532\) 3.70443i 0.160607i
\(533\) 20.0047i 0.866500i
\(534\) 32.4598 1.40467
\(535\) 10.4835i 0.453240i
\(536\) −2.96227 −0.127951
\(537\) −22.9446 −0.990131
\(538\) 3.60039i 0.155224i
\(539\) 2.24495 0.0966967
\(540\) 10.1251 0.435713
\(541\) 21.5603 0.926948 0.463474 0.886111i \(-0.346603\pi\)
0.463474 + 0.886111i \(0.346603\pi\)
\(542\) 29.8102i 1.28046i
\(543\) −25.8005 −1.10720
\(544\) 8.09440i 0.347045i
\(545\) 6.54510 0.280361
\(546\) 21.0494 0.900830
\(547\) 10.9124 0.466580 0.233290 0.972407i \(-0.425051\pi\)
0.233290 + 0.972407i \(0.425051\pi\)
\(548\) 19.5375i 0.834601i
\(549\) 9.14141i 0.390146i
\(550\) 3.82981i 0.163304i
\(551\) 3.72533i 0.158704i
\(552\) 5.70115i 0.242657i
\(553\) 20.1411i 0.856486i
\(554\) 7.27912 0.309260
\(555\) 24.4823 1.03922
\(556\) 9.98558i 0.423483i
\(557\) 18.9885i 0.804570i −0.915515 0.402285i \(-0.868216\pi\)
0.915515 0.402285i \(-0.131784\pi\)
\(558\) 2.02738 0.0858257
\(559\) −31.4810 −1.33150
\(560\) 6.47968i 0.273816i
\(561\) 16.9210i 0.714407i
\(562\) 19.5468i 0.824533i
\(563\) 25.0830i 1.05712i −0.848895 0.528561i \(-0.822732\pi\)
0.848895 0.528561i \(-0.177268\pi\)
\(564\) 7.70899i 0.324607i
\(565\) 11.3223i 0.476333i
\(566\) 20.4074 0.857785
\(567\) −24.4950 −1.02869
\(568\) −9.69546 −0.406812
\(569\) 40.1190i 1.68188i 0.541131 + 0.840938i \(0.317996\pi\)
−0.541131 + 0.840938i \(0.682004\pi\)
\(570\) −10.5527 −0.442002
\(571\) 21.4344i 0.897003i 0.893782 + 0.448501i \(0.148042\pi\)
−0.893782 + 0.448501i \(0.851958\pi\)
\(572\) 4.61763 0.193073
\(573\) −32.6924 −1.36575
\(574\) 9.44693 0.394307
\(575\) 10.4447i 0.435575i
\(576\) 1.37003 0.0570846
\(577\) −46.3264 −1.92860 −0.964298 0.264821i \(-0.914687\pi\)
−0.964298 + 0.264821i \(0.914687\pi\)
\(578\) 48.5194i 2.01814i
\(579\) 41.9068 1.74159
\(580\) 6.51623i 0.270572i
\(581\) 8.64073i 0.358478i
\(582\) 4.71794 0.195565
\(583\) 7.06251 1.76662i 0.292499 0.0731661i
\(584\) 5.69259 0.235561
\(585\) 18.7986i 0.777225i
\(586\) 26.6856i 1.10237i
\(587\) 37.7710 1.55898 0.779488 0.626417i \(-0.215479\pi\)
0.779488 + 0.626417i \(0.215479\pi\)
\(588\) 4.69298i 0.193535i
\(589\) 2.51390 0.103583
\(590\) −8.33661 −0.343213
\(591\) 41.0793i 1.68978i
\(592\) −3.94126 −0.161985
\(593\) 14.7029 0.603774 0.301887 0.953344i \(-0.402383\pi\)
0.301887 + 0.953344i \(0.402383\pi\)
\(594\) −3.40739 −0.139807
\(595\) 52.4491i 2.15020i
\(596\) 0.111768 0.00457818
\(597\) 15.2832i 0.625500i
\(598\) −12.5933 −0.514978
\(599\) 29.9578 1.22404 0.612020 0.790842i \(-0.290357\pi\)
0.612020 + 0.790842i \(0.290357\pi\)
\(600\) 8.00607 0.326846
\(601\) 10.3892i 0.423783i −0.977293 0.211892i \(-0.932038\pi\)
0.977293 0.211892i \(-0.0679624\pi\)
\(602\) 14.8664i 0.605911i
\(603\) 4.05840i 0.165271i
\(604\) 4.40211i 0.179119i
\(605\) 2.97150i 0.120809i
\(606\) 28.1106i 1.14192i
\(607\) 30.2655 1.22844 0.614219 0.789136i \(-0.289471\pi\)
0.614219 + 0.789136i \(0.289471\pi\)
\(608\) 1.69881 0.0688957
\(609\) 9.99633i 0.405072i
\(610\) 19.8271i 0.802775i
\(611\) −17.0284 −0.688896
\(612\) 11.0896 0.448270
\(613\) 47.7048i 1.92678i −0.268110 0.963388i \(-0.586399\pi\)
0.268110 0.963388i \(-0.413601\pi\)
\(614\) 26.9561i 1.08786i
\(615\) 26.9111i 1.08516i
\(616\) 2.18061i 0.0878592i
\(617\) 34.1216i 1.37368i −0.726808 0.686841i \(-0.758997\pi\)
0.726808 0.686841i \(-0.241003\pi\)
\(618\) 34.6408i 1.39346i
\(619\) 15.9001 0.639080 0.319540 0.947573i \(-0.396472\pi\)
0.319540 + 0.947573i \(0.396472\pi\)
\(620\) −4.39724 −0.176597
\(621\) 9.29270 0.372903
\(622\) 19.8853i 0.797326i
\(623\) 33.8596 1.35656
\(624\) 9.65298i 0.386428i
\(625\) −29.4816 −1.17926
\(626\) −8.44322 −0.337459
\(627\) 3.55129 0.141825
\(628\) 7.35304i 0.293418i
\(629\) −31.9021 −1.27202
\(630\) −8.87736 −0.353682
\(631\) 13.1376i 0.523000i 0.965204 + 0.261500i \(0.0842171\pi\)
−0.965204 + 0.261500i \(0.915783\pi\)
\(632\) 9.23645 0.367406
\(633\) 29.6507i 1.17851i
\(634\) 23.3810i 0.928577i
\(635\) 13.6992 0.543638
\(636\) −3.69306 14.7639i −0.146439 0.585427i
\(637\) −10.3663 −0.410729
\(638\) 2.19291i 0.0868181i
\(639\) 13.2831i 0.525470i
\(640\) −2.97150 −0.117459
\(641\) 25.8353i 1.02043i 0.860046 + 0.510216i \(0.170435\pi\)
−0.860046 + 0.510216i \(0.829565\pi\)
\(642\) −7.37516 −0.291074
\(643\) −47.5078 −1.87353 −0.936763 0.349965i \(-0.886194\pi\)
−0.936763 + 0.349965i \(0.886194\pi\)
\(644\) 5.94700i 0.234345i
\(645\) 42.3494 1.66751
\(646\) 13.7508 0.541019
\(647\) 32.7958 1.28934 0.644668 0.764463i \(-0.276996\pi\)
0.644668 + 0.764463i \(0.276996\pi\)
\(648\) 11.2331i 0.441278i
\(649\) 2.80552 0.110126
\(650\) 17.6846i 0.693648i
\(651\) 6.74565 0.264383
\(652\) −3.90417 −0.152899
\(653\) 43.4149 1.69896 0.849479 0.527622i \(-0.176916\pi\)
0.849479 + 0.527622i \(0.176916\pi\)
\(654\) 4.60451i 0.180050i
\(655\) 30.2733i 1.18287i
\(656\) 4.33225i 0.169146i
\(657\) 7.79902i 0.304269i
\(658\) 8.04142i 0.313487i
\(659\) 24.4657i 0.953047i −0.879162 0.476523i \(-0.841897\pi\)
0.879162 0.476523i \(-0.158103\pi\)
\(660\) −6.21181 −0.241794
\(661\) −13.6853 −0.532296 −0.266148 0.963932i \(-0.585751\pi\)
−0.266148 + 0.963932i \(0.585751\pi\)
\(662\) 24.5436i 0.953914i
\(663\) 78.1351i 3.03452i
\(664\) 3.96253 0.153776
\(665\) −11.0077 −0.426861
\(666\) 5.39964i 0.209232i
\(667\) 5.98054i 0.231567i
\(668\) 0.280131i 0.0108386i
\(669\) 6.23090i 0.240901i
\(670\) 8.80238i 0.340066i
\(671\) 6.67241i 0.257586i
\(672\) 4.55848 0.175847
\(673\) 21.7204 0.837261 0.418631 0.908157i \(-0.362510\pi\)
0.418631 + 0.908157i \(0.362510\pi\)
\(674\) 21.7740 0.838701
\(675\) 13.0496i 0.502281i
\(676\) −8.32250 −0.320096
\(677\) 39.6496i 1.52386i 0.647660 + 0.761930i \(0.275748\pi\)
−0.647660 + 0.761930i \(0.724252\pi\)
\(678\) −7.96529 −0.305905
\(679\) 4.92139 0.188866
\(680\) −24.0525 −0.922372
\(681\) 29.2624i 1.12134i
\(682\) 1.47980 0.0566646
\(683\) 0.348258 0.0133257 0.00666286 0.999978i \(-0.497879\pi\)
0.00666286 + 0.999978i \(0.497879\pi\)
\(684\) 2.32742i 0.0889910i
\(685\) 58.0557 2.21819
\(686\) 20.1596i 0.769697i
\(687\) 49.2839i 1.88030i
\(688\) −6.81756 −0.259917
\(689\) −32.6120 + 8.15762i −1.24242 + 0.310780i
\(690\) 16.9410 0.644931
\(691\) 33.8600i 1.28809i −0.764986 0.644047i \(-0.777254\pi\)
0.764986 0.644047i \(-0.222746\pi\)
\(692\) 14.0444i 0.533888i
\(693\) 2.98750 0.113486
\(694\) 25.3463i 0.962134i
\(695\) 29.6721 1.12553
\(696\) −4.58419 −0.173763
\(697\) 35.0670i 1.32826i
\(698\) −16.7038 −0.632250
\(699\) −30.9586 −1.17096
\(700\) 8.35131 0.315650
\(701\) 18.8917i 0.713531i −0.934194 0.356765i \(-0.883880\pi\)
0.934194 0.356765i \(-0.116120\pi\)
\(702\) 15.7341 0.593844
\(703\) 6.69543i 0.252523i
\(704\) 1.00000 0.0376889
\(705\) 22.9072 0.862737
\(706\) −7.74252 −0.291394
\(707\) 29.3228i 1.10280i
\(708\) 5.86484i 0.220414i
\(709\) 29.1472i 1.09465i 0.836922 + 0.547323i \(0.184353\pi\)
−0.836922 + 0.547323i \(0.815647\pi\)
\(710\) 28.8100i 1.08122i
\(711\) 12.6542i 0.474570i
\(712\) 15.5276i 0.581921i
\(713\) −4.03575 −0.151140
\(714\) 36.8982 1.38088
\(715\) 13.7213i 0.513147i
\(716\) 10.9758i 0.410186i
\(717\) 31.3831 1.17202
\(718\) −28.7106 −1.07147
\(719\) 45.1874i 1.68521i 0.538535 + 0.842603i \(0.318978\pi\)
−0.538535 + 0.842603i \(0.681022\pi\)
\(720\) 4.07105i 0.151719i
\(721\) 36.1346i 1.34572i
\(722\) 16.1141i 0.599703i
\(723\) 1.08519i 0.0403586i
\(724\) 12.3420i 0.458686i
\(725\) −8.39842 −0.311909
\(726\) 2.09046 0.0775843
\(727\) 5.06598 0.187887 0.0939434 0.995578i \(-0.470053\pi\)
0.0939434 + 0.995578i \(0.470053\pi\)
\(728\) 10.0692i 0.373191i
\(729\) −5.97935 −0.221457
\(730\) 16.9155i 0.626072i
\(731\) −55.1841 −2.04106
\(732\) −13.9484 −0.515549
\(733\) 12.0701 0.445820 0.222910 0.974839i \(-0.428444\pi\)
0.222910 + 0.974839i \(0.428444\pi\)
\(734\) 28.7385i 1.06076i
\(735\) 13.9452 0.514375
\(736\) −2.72722 −0.100527
\(737\) 2.96227i 0.109117i
\(738\) −5.93531 −0.218482
\(739\) 2.17096i 0.0798600i 0.999202 + 0.0399300i \(0.0127135\pi\)
−0.999202 + 0.0399300i \(0.987287\pi\)
\(740\) 11.7114i 0.430521i
\(741\) −16.3985 −0.602415
\(742\) −3.85232 15.4006i −0.141423 0.565373i
\(743\) 5.82815 0.213814 0.106907 0.994269i \(-0.465905\pi\)
0.106907 + 0.994269i \(0.465905\pi\)
\(744\) 3.09347i 0.113412i
\(745\) 0.332118i 0.0121679i
\(746\) −10.5039 −0.384573
\(747\) 5.42879i 0.198629i
\(748\) 8.09440 0.295961
\(749\) −7.69320 −0.281103
\(750\) 7.26900i 0.265426i
\(751\) 28.9849 1.05767 0.528837 0.848723i \(-0.322628\pi\)
0.528837 + 0.848723i \(0.322628\pi\)
\(752\) −3.68770 −0.134476
\(753\) 42.2588 1.54000
\(754\) 10.1260i 0.368769i
\(755\) 13.0809 0.476062
\(756\) 7.43018i 0.270233i
\(757\) 9.18980 0.334009 0.167004 0.985956i \(-0.446591\pi\)
0.167004 + 0.985956i \(0.446591\pi\)
\(758\) −12.4284 −0.451421
\(759\) −5.70115 −0.206939
\(760\) 5.04800i 0.183110i
\(761\) 23.9981i 0.869929i −0.900448 0.434965i \(-0.856761\pi\)
0.900448 0.434965i \(-0.143239\pi\)
\(762\) 9.63747i 0.349129i
\(763\) 4.80307i 0.173883i
\(764\) 15.6388i 0.565794i
\(765\) 32.9527i 1.19141i
\(766\) −24.3727 −0.880620
\(767\) −12.9549 −0.467773
\(768\) 2.09046i 0.0754330i
\(769\) 33.4261i 1.20538i −0.797976 0.602689i \(-0.794096\pi\)
0.797976 0.602689i \(-0.205904\pi\)
\(770\) −6.47968 −0.233511
\(771\) −21.8031 −0.785221
\(772\) 20.0467i 0.721495i
\(773\) 29.9311i 1.07655i −0.842770 0.538274i \(-0.819077\pi\)
0.842770 0.538274i \(-0.180923\pi\)
\(774\) 9.34027i 0.335729i
\(775\) 5.66737i 0.203578i
\(776\) 2.25689i 0.0810176i
\(777\) 17.9661i 0.644531i
\(778\) −11.2239 −0.402395
\(779\) −7.35965 −0.263687
\(780\) 28.6838 1.02705
\(781\) 9.69546i 0.346931i
\(782\) −22.0752 −0.789408
\(783\) 7.47209i 0.267031i
\(784\) −2.24495 −0.0801767
\(785\) −21.8495 −0.779844
\(786\) 21.2974 0.759652
\(787\) 1.54889i 0.0552121i 0.999619 + 0.0276060i \(0.00878839\pi\)
−0.999619 + 0.0276060i \(0.991212\pi\)
\(788\) −19.6508 −0.700031
\(789\) −60.2675 −2.14558
\(790\) 27.4461i 0.976488i
\(791\) −8.30878 −0.295426
\(792\) 1.37003i 0.0486819i
\(793\) 30.8107i 1.09412i
\(794\) −4.80277 −0.170444
\(795\) 43.8709 10.9739i 1.55594 0.389205i
\(796\) −7.31092 −0.259129
\(797\) 9.60741i 0.340312i 0.985417 + 0.170156i \(0.0544271\pi\)
−0.985417 + 0.170156i \(0.945573\pi\)
\(798\) 7.74397i 0.274134i
\(799\) −29.8497 −1.05601
\(800\) 3.82981i 0.135404i
\(801\) −21.2733 −0.751654
\(802\) −1.51978 −0.0536653
\(803\) 5.69259i 0.200887i
\(804\) 6.19251 0.218393
\(805\) 17.6715 0.622838
\(806\) −6.83318 −0.240689
\(807\) 7.52648i 0.264945i
\(808\) −13.4471 −0.473067
\(809\) 22.6301i 0.795632i 0.917465 + 0.397816i \(0.130232\pi\)
−0.917465 + 0.397816i \(0.869768\pi\)
\(810\) −33.3792 −1.17282
\(811\) 5.19001 0.182246 0.0911230 0.995840i \(-0.470954\pi\)
0.0911230 + 0.995840i \(0.470954\pi\)
\(812\) −4.78187 −0.167811
\(813\) 62.3170i 2.18555i
\(814\) 3.94126i 0.138141i
\(815\) 11.6012i 0.406374i
\(816\) 16.9210i 0.592355i
\(817\) 11.5817i 0.405193i
\(818\) 6.29925i 0.220248i
\(819\) −13.7952 −0.482042
\(820\) 12.8733 0.449554
\(821\) 36.5452i 1.27544i 0.770269 + 0.637719i \(0.220122\pi\)
−0.770269 + 0.637719i \(0.779878\pi\)
\(822\) 40.8424i 1.42454i
\(823\) −44.1692 −1.53964 −0.769822 0.638259i \(-0.779655\pi\)
−0.769822 + 0.638259i \(0.779655\pi\)
\(824\) 16.5709 0.577275
\(825\) 8.00607i 0.278736i
\(826\) 6.11775i 0.212864i
\(827\) 55.2958i 1.92282i 0.275115 + 0.961411i \(0.411284\pi\)
−0.275115 + 0.961411i \(0.588716\pi\)
\(828\) 3.73637i 0.129848i
\(829\) 47.6204i 1.65392i −0.562258 0.826962i \(-0.690067\pi\)
0.562258 0.826962i \(-0.309933\pi\)
\(830\) 11.7747i 0.408704i
\(831\) −15.2167 −0.527862
\(832\) −4.61763 −0.160087
\(833\) −18.1715 −0.629605
\(834\) 20.8745i 0.722824i
\(835\) −0.832409 −0.0288067
\(836\) 1.69881i 0.0587544i
\(837\) 5.04227 0.174286
\(838\) 20.2458 0.699381
\(839\) −8.85568 −0.305732 −0.152866 0.988247i \(-0.548850\pi\)
−0.152866 + 0.988247i \(0.548850\pi\)
\(840\) 13.5455i 0.467365i
\(841\) −24.1912 −0.834178
\(842\) −32.9704 −1.13624
\(843\) 40.8619i 1.40736i
\(844\) 14.1838 0.488227
\(845\) 24.7303i 0.850748i
\(846\) 5.05226i 0.173700i
\(847\) 2.18061 0.0749266
\(848\) −7.06251 + 1.76662i −0.242528 + 0.0606661i
\(849\) −42.6608 −1.46412
\(850\) 31.0000i 1.06329i
\(851\) 10.7487i 0.368460i
\(852\) 20.2680 0.694370
\(853\) 6.47478i 0.221692i 0.993838 + 0.110846i \(0.0353560\pi\)
−0.993838 + 0.110846i \(0.964644\pi\)
\(854\) −14.5499 −0.497888
\(855\) 6.91591 0.236519
\(856\) 3.52801i 0.120585i
\(857\) −53.8722 −1.84024 −0.920119 0.391638i \(-0.871908\pi\)
−0.920119 + 0.391638i \(0.871908\pi\)
\(858\) −9.65298 −0.329547
\(859\) −35.7026 −1.21816 −0.609078 0.793110i \(-0.708460\pi\)
−0.609078 + 0.793110i \(0.708460\pi\)
\(860\) 20.2584i 0.690805i
\(861\) −19.7485 −0.673026
\(862\) 15.8484i 0.539799i
\(863\) −35.0799 −1.19413 −0.597066 0.802192i \(-0.703667\pi\)
−0.597066 + 0.802192i \(0.703667\pi\)
\(864\) 3.40739 0.115922
\(865\) 41.7329 1.41896
\(866\) 21.0688i 0.715947i
\(867\) 101.428i 3.44467i
\(868\) 3.22687i 0.109527i
\(869\) 9.23645i 0.313325i
\(870\) 13.6219i 0.461826i
\(871\) 13.6787i 0.463484i
\(872\) 2.20263 0.0745904
\(873\) −3.09201 −0.104649
\(874\) 4.63302i 0.156714i
\(875\) 7.58246i 0.256334i
\(876\) −11.9001 −0.402069
\(877\) 17.6294 0.595304 0.297652 0.954674i \(-0.403796\pi\)
0.297652 + 0.954674i \(0.403796\pi\)
\(878\) 12.2922i 0.414843i
\(879\) 55.7852i 1.88159i
\(880\) 2.97150i 0.100169i
\(881\) 12.5325i 0.422232i −0.977461 0.211116i \(-0.932290\pi\)
0.977461 0.211116i \(-0.0677098\pi\)
\(882\) 3.07565i 0.103562i
\(883\) 4.93061i 0.165928i −0.996553 0.0829641i \(-0.973561\pi\)
0.996553 0.0829641i \(-0.0264387\pi\)
\(884\) −37.3769 −1.25712
\(885\) 17.4274 0.585814
\(886\) 14.7934 0.496995
\(887\) 46.7626i 1.57013i 0.619410 + 0.785067i \(0.287372\pi\)
−0.619410 + 0.785067i \(0.712628\pi\)
\(888\) 8.23905 0.276484
\(889\) 10.0531i 0.337169i
\(890\) 46.1402 1.54662
\(891\) 11.2331 0.376323
\(892\) 2.98063 0.0997990
\(893\) 6.26468i 0.209639i
\(894\) −0.233646 −0.00781430
\(895\) −32.6147 −1.09019
\(896\) 2.18061i 0.0728490i
\(897\) 26.3258 0.878992
\(898\) 21.1485i 0.705735i
\(899\) 3.24507i 0.108229i
\(900\) −5.24696 −0.174899
\(901\) −57.1668 + 14.2998i −1.90450 + 0.476394i
\(902\) −4.33225 −0.144248
\(903\) 31.0777i 1.03420i
\(904\) 3.81030i 0.126729i
\(905\) −36.6742 −1.21909
\(906\) 9.20245i 0.305731i
\(907\) −39.8615 −1.32358 −0.661790 0.749689i \(-0.730203\pi\)
−0.661790 + 0.749689i \(0.730203\pi\)
\(908\) 13.9981 0.464542
\(909\) 18.4229i 0.611050i
\(910\) 29.9207 0.991863
\(911\) −2.97911 −0.0987023 −0.0493511 0.998781i \(-0.515715\pi\)
−0.0493511 + 0.998781i \(0.515715\pi\)
\(912\) −3.55129 −0.117595
\(913\) 3.96253i 0.131141i
\(914\) −1.95093 −0.0645311
\(915\) 41.4477i 1.37022i
\(916\) 23.5756 0.778960
\(917\) 22.2158 0.733630
\(918\) 27.5808 0.910301
\(919\) 40.9986i 1.35242i 0.736709 + 0.676210i \(0.236379\pi\)
−0.736709 + 0.676210i \(0.763621\pi\)
\(920\) 8.10393i 0.267179i
\(921\) 56.3506i 1.85682i
\(922\) 2.03290i 0.0669501i
\(923\) 44.7700i 1.47362i
\(924\) 4.55848i 0.149963i
\(925\) 15.0943 0.496296
\(926\) −20.8861 −0.686359
\(927\) 22.7026i 0.745652i
\(928\) 2.19291i 0.0719857i
\(929\) −4.75451 −0.155991 −0.0779953 0.996954i \(-0.524852\pi\)
−0.0779953 + 0.996954i \(0.524852\pi\)
\(930\) 9.19225 0.301426
\(931\) 3.81373i 0.124990i
\(932\) 14.8095i 0.485100i
\(933\) 41.5694i 1.36092i
\(934\) 26.1018i 0.854078i
\(935\) 24.0525i 0.786601i
\(936\) 6.32629i 0.206781i
\(937\) 28.7004 0.937603 0.468801 0.883304i \(-0.344686\pi\)
0.468801 + 0.883304i \(0.344686\pi\)
\(938\) 6.45955 0.210912
\(939\) 17.6502 0.575993
\(940\) 10.9580i 0.357410i
\(941\) −14.5228 −0.473431 −0.236715 0.971579i \(-0.576071\pi\)
−0.236715 + 0.971579i \(0.576071\pi\)
\(942\) 15.3712i 0.500822i
\(943\) 11.8150 0.384749
\(944\) −2.80552 −0.0913120
\(945\) −22.0788 −0.718223
\(946\) 6.81756i 0.221658i
\(947\) −2.52723 −0.0821241 −0.0410620 0.999157i \(-0.513074\pi\)
−0.0410620 + 0.999157i \(0.513074\pi\)
\(948\) −19.3084 −0.627109
\(949\) 26.2863i 0.853288i
\(950\) −6.50610 −0.211086
\(951\) 48.8770i 1.58495i
\(952\) 17.6507i 0.572063i
\(953\) −52.7796 −1.70970 −0.854849 0.518877i \(-0.826350\pi\)
−0.854849 + 0.518877i \(0.826350\pi\)
\(954\) 2.42033 + 9.67585i 0.0783611 + 0.313267i
\(955\) −46.4708 −1.50376
\(956\) 15.0125i 0.485540i
\(957\) 4.58419i 0.148186i
\(958\) −4.97176 −0.160630
\(959\) 42.6037i 1.37574i
\(960\) 6.21181 0.200485
\(961\) 28.8102 0.929361
\(962\) 18.1993i 0.586768i
\(963\) 4.83348 0.155757
\(964\) 0.519115 0.0167196
\(965\) 59.5686 1.91758
\(966\) 12.4320i 0.399992i
\(967\) −53.5446 −1.72188 −0.860939 0.508708i \(-0.830123\pi\)
−0.860939 + 0.508708i \(0.830123\pi\)
\(968\) 1.00000i 0.0321412i
\(969\) −28.7456 −0.923440
\(970\) 6.70634 0.215328
\(971\) −50.5617 −1.62260 −0.811302 0.584628i \(-0.801241\pi\)
−0.811302 + 0.584628i \(0.801241\pi\)
\(972\) 13.2602i 0.425322i
\(973\) 21.7746i 0.698063i
\(974\) 16.8100i 0.538627i
\(975\) 36.9691i 1.18396i
\(976\) 6.67241i 0.213579i
\(977\) 20.3181i 0.650032i −0.945708 0.325016i \(-0.894630\pi\)
0.945708 0.325016i \(-0.105370\pi\)
\(978\) 8.16152 0.260977
\(979\) −15.5276 −0.496264
\(980\) 6.67086i 0.213093i
\(981\) 3.01767i 0.0963467i
\(982\) 35.4330 1.13071
\(983\) −29.8383 −0.951695 −0.475848 0.879528i \(-0.657859\pi\)
−0.475848 + 0.879528i \(0.657859\pi\)
\(984\) 9.05640i 0.288707i
\(985\) 58.3924i 1.86054i
\(986\) 17.7503i 0.565284i
\(987\) 16.8103i 0.535077i
\(988\) 7.84445i 0.249565i
\(989\) 18.5930i 0.591223i
\(990\) 4.07105 0.129386
\(991\) −21.2041 −0.673572 −0.336786 0.941581i \(-0.609340\pi\)
−0.336786 + 0.941581i \(0.609340\pi\)
\(992\) −1.47980 −0.0469838
\(993\) 51.3075i 1.62819i
\(994\) 21.1420 0.670583
\(995\) 21.7244i 0.688709i
\(996\) −8.28352 −0.262473
\(997\) 45.2147 1.43196 0.715982 0.698119i \(-0.245979\pi\)
0.715982 + 0.698119i \(0.245979\pi\)
\(998\) −22.7739 −0.720896
\(999\) 13.4294i 0.424887i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1166.2.c.b.529.13 yes 22
53.52 even 2 inner 1166.2.c.b.529.10 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1166.2.c.b.529.10 22 53.52 even 2 inner
1166.2.c.b.529.13 yes 22 1.1 even 1 trivial