Properties

Label 1166.2.a.k
Level $1166$
Weight $2$
Character orbit 1166.a
Self dual yes
Analytic conductor $9.311$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1166,2,Mod(1,1166)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1166, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1166.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,-1,6,-1,1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.31055687568\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.390126348.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 6x^{3} + 20x^{2} - 5x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta_{3} q^{3} + q^{4} - \beta_{2} q^{5} - \beta_{3} q^{6} - \beta_1 q^{7} - q^{8} + (\beta_{5} + 2) q^{9} + \beta_{2} q^{10} + q^{11} + \beta_{3} q^{12} + (\beta_{5} + 1) q^{13} + \beta_1 q^{14}+ \cdots + (\beta_{5} + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - q^{3} + 6 q^{4} - q^{5} + q^{6} - 2 q^{7} - 6 q^{8} + 11 q^{9} + q^{10} + 6 q^{11} - q^{12} + 5 q^{13} + 2 q^{14} - 10 q^{15} + 6 q^{16} - 2 q^{17} - 11 q^{18} + 20 q^{19} - q^{20}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 9x^{4} + 6x^{3} + 20x^{2} - 5x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 5\nu^{2} - 2\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - \nu^{4} - 8\nu^{3} + 5\nu^{2} + 15\nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{3} + 5\beta _1 + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 5\beta_{2} + \beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2\beta_{5} + 2\beta_{4} + 16\beta_{3} + 27\beta _1 + 20 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.452438
2.14414
−2.26536
−0.221299
2.52121
−1.63114
−1.00000 −3.16958 1.00000 2.79530 3.16958 −0.904876 −1.00000 7.04622 −2.79530
1.2 −1.00000 −1.86335 1.00000 −1.59734 1.86335 −4.28828 −1.00000 0.472079 1.59734
1.3 −1.00000 −1.29869 1.00000 −2.13185 1.29869 4.53072 −1.00000 −1.31340 2.13185
1.4 −1.00000 0.0956587 1.00000 2.95103 −0.0956587 0.442599 −1.00000 −2.99085 −2.95103
1.5 −1.00000 2.42009 1.00000 −3.35652 −2.42009 −5.04243 −1.00000 2.85683 3.35652
1.6 −1.00000 2.81587 1.00000 0.339393 −2.81587 3.26227 −1.00000 4.92912 −0.339393
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( -1 \)
\(53\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1166.2.a.k 6
4.b odd 2 1 9328.2.a.be 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1166.2.a.k 6 1.a even 1 1 trivial
9328.2.a.be 6 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1166))\):

\( T_{3}^{6} + T_{3}^{5} - 14T_{3}^{4} - 13T_{3}^{3} + 46T_{3}^{2} + 48T_{3} - 5 \) Copy content Toggle raw display
\( T_{7}^{6} + 2T_{7}^{5} - 36T_{7}^{4} - 48T_{7}^{3} + 320T_{7}^{2} + 160T_{7} - 128 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + T^{5} - 14 T^{4} + \cdots - 5 \) Copy content Toggle raw display
$5$ \( T^{6} + T^{5} + \cdots - 32 \) Copy content Toggle raw display
$7$ \( T^{6} + 2 T^{5} + \cdots - 128 \) Copy content Toggle raw display
$11$ \( (T - 1)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} - 5 T^{5} + \cdots - 215 \) Copy content Toggle raw display
$17$ \( T^{6} + 2 T^{5} + \cdots + 1312 \) Copy content Toggle raw display
$19$ \( T^{6} - 20 T^{5} + \cdots - 11360 \) Copy content Toggle raw display
$23$ \( T^{6} + 14 T^{5} + \cdots - 1280 \) Copy content Toggle raw display
$29$ \( T^{6} - 13 T^{5} + \cdots - 1514 \) Copy content Toggle raw display
$31$ \( T^{6} \) Copy content Toggle raw display
$37$ \( T^{6} + 2 T^{5} + \cdots + 1312 \) Copy content Toggle raw display
$41$ \( T^{6} - 13 T^{5} + \cdots + 1912 \) Copy content Toggle raw display
$43$ \( T^{6} - 3 T^{5} + \cdots - 32 \) Copy content Toggle raw display
$47$ \( T^{6} + 25 T^{5} + \cdots + 35848 \) Copy content Toggle raw display
$53$ \( (T + 1)^{6} \) Copy content Toggle raw display
$59$ \( T^{6} - 8 T^{5} + \cdots + 40192 \) Copy content Toggle raw display
$61$ \( T^{6} - 34 T^{5} + \cdots - 2048 \) Copy content Toggle raw display
$67$ \( T^{6} - 29 T^{5} + \cdots - 3728 \) Copy content Toggle raw display
$71$ \( T^{6} - 8 T^{5} + \cdots - 363200 \) Copy content Toggle raw display
$73$ \( T^{6} - 41 T^{5} + \cdots - 1539968 \) Copy content Toggle raw display
$79$ \( T^{6} - 17 T^{5} + \cdots - 58265 \) Copy content Toggle raw display
$83$ \( T^{6} + 2 T^{5} + \cdots + 15280 \) Copy content Toggle raw display
$89$ \( T^{6} - 17 T^{5} + \cdots - 1208 \) Copy content Toggle raw display
$97$ \( T^{6} - 3 T^{5} + \cdots + 70846 \) Copy content Toggle raw display
show more
show less