Properties

Label 1166.2.a.j.1.1
Level $1166$
Weight $2$
Character 1166.1
Self dual yes
Analytic conductor $9.311$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1166,2,Mod(1,1166)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1166, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1166.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,2,4,1,2,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.31055687568\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.67348.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 10x^{2} + 10x + 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.47808\) of defining polynomial
Character \(\chi\) \(=\) 1166.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -2.47808 q^{3} +1.00000 q^{4} +1.50599 q^{5} -2.47808 q^{6} +4.61899 q^{7} +1.00000 q^{8} +3.14090 q^{9} +1.50599 q^{10} -1.00000 q^{11} -2.47808 q^{12} +5.95617 q^{13} +4.61899 q^{14} -3.73198 q^{15} +1.00000 q^{16} -7.12498 q^{17} +3.14090 q^{18} -2.50599 q^{19} +1.50599 q^{20} -11.4462 q^{21} -1.00000 q^{22} +5.36509 q^{23} -2.47808 q^{24} -2.73198 q^{25} +5.95617 q^{26} -0.349170 q^{27} +4.61899 q^{28} +0.634909 q^{29} -3.73198 q^{30} +8.09707 q^{31} +1.00000 q^{32} +2.47808 q^{33} -7.12498 q^{34} +6.95617 q^{35} +3.14090 q^{36} +0.972090 q^{37} -2.50599 q^{38} -14.7599 q^{39} +1.50599 q^{40} -12.3510 q^{41} -11.4462 q^{42} -5.75989 q^{43} -1.00000 q^{44} +4.73018 q^{45} +5.36509 q^{46} +7.21007 q^{47} -2.47808 q^{48} +14.3350 q^{49} -2.73198 q^{50} +17.6563 q^{51} +5.95617 q^{52} -1.00000 q^{53} -0.349170 q^{54} -1.50599 q^{55} +4.61899 q^{56} +6.21007 q^{57} +0.634909 q^{58} +3.38101 q^{59} -3.73198 q^{60} +13.2380 q^{61} +8.09707 q^{62} +14.5078 q^{63} +1.00000 q^{64} +8.96996 q^{65} +2.47808 q^{66} +8.74397 q^{67} -7.12498 q^{68} -13.2951 q^{69} +6.95617 q^{70} -4.57909 q^{71} +3.14090 q^{72} +3.71819 q^{73} +0.972090 q^{74} +6.77008 q^{75} -2.50599 q^{76} -4.61899 q^{77} -14.7599 q^{78} +1.59501 q^{79} +1.50599 q^{80} -8.55744 q^{81} -12.3510 q^{82} +12.3452 q^{83} -11.4462 q^{84} -10.7302 q^{85} -5.75989 q^{86} -1.57336 q^{87} -1.00000 q^{88} -7.81527 q^{89} +4.73018 q^{90} +27.5115 q^{91} +5.36509 q^{92} -20.0652 q^{93} +7.21007 q^{94} -3.77401 q^{95} -2.47808 q^{96} +5.64690 q^{97} +14.3350 q^{98} -3.14090 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 2 q^{3} + 4 q^{4} + q^{5} + 2 q^{6} + 6 q^{7} + 4 q^{8} + 12 q^{9} + q^{10} - 4 q^{11} + 2 q^{12} + 6 q^{14} + 5 q^{15} + 4 q^{16} - 11 q^{17} + 12 q^{18} - 5 q^{19} + q^{20} - 4 q^{22}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −2.47808 −1.43072 −0.715361 0.698755i \(-0.753738\pi\)
−0.715361 + 0.698755i \(0.753738\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.50599 0.673501 0.336751 0.941594i \(-0.390672\pi\)
0.336751 + 0.941594i \(0.390672\pi\)
\(6\) −2.47808 −1.01167
\(7\) 4.61899 1.74581 0.872907 0.487887i \(-0.162232\pi\)
0.872907 + 0.487887i \(0.162232\pi\)
\(8\) 1.00000 0.353553
\(9\) 3.14090 1.04697
\(10\) 1.50599 0.476237
\(11\) −1.00000 −0.301511
\(12\) −2.47808 −0.715361
\(13\) 5.95617 1.65194 0.825972 0.563711i \(-0.190627\pi\)
0.825972 + 0.563711i \(0.190627\pi\)
\(14\) 4.61899 1.23448
\(15\) −3.73198 −0.963593
\(16\) 1.00000 0.250000
\(17\) −7.12498 −1.72806 −0.864031 0.503439i \(-0.832068\pi\)
−0.864031 + 0.503439i \(0.832068\pi\)
\(18\) 3.14090 0.740318
\(19\) −2.50599 −0.574915 −0.287457 0.957793i \(-0.592810\pi\)
−0.287457 + 0.957793i \(0.592810\pi\)
\(20\) 1.50599 0.336751
\(21\) −11.4462 −2.49777
\(22\) −1.00000 −0.213201
\(23\) 5.36509 1.11870 0.559349 0.828932i \(-0.311051\pi\)
0.559349 + 0.828932i \(0.311051\pi\)
\(24\) −2.47808 −0.505837
\(25\) −2.73198 −0.546396
\(26\) 5.95617 1.16810
\(27\) −0.349170 −0.0671978
\(28\) 4.61899 0.872907
\(29\) 0.634909 0.117900 0.0589498 0.998261i \(-0.481225\pi\)
0.0589498 + 0.998261i \(0.481225\pi\)
\(30\) −3.73198 −0.681363
\(31\) 8.09707 1.45428 0.727139 0.686491i \(-0.240850\pi\)
0.727139 + 0.686491i \(0.240850\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.47808 0.431379
\(34\) −7.12498 −1.22192
\(35\) 6.95617 1.17581
\(36\) 3.14090 0.523484
\(37\) 0.972090 0.159811 0.0799053 0.996802i \(-0.474538\pi\)
0.0799053 + 0.996802i \(0.474538\pi\)
\(38\) −2.50599 −0.406526
\(39\) −14.7599 −2.36347
\(40\) 1.50599 0.238119
\(41\) −12.3510 −1.92890 −0.964449 0.264270i \(-0.914869\pi\)
−0.964449 + 0.264270i \(0.914869\pi\)
\(42\) −11.4462 −1.76619
\(43\) −5.75989 −0.878375 −0.439188 0.898395i \(-0.644734\pi\)
−0.439188 + 0.898395i \(0.644734\pi\)
\(44\) −1.00000 −0.150756
\(45\) 4.73018 0.705134
\(46\) 5.36509 0.791040
\(47\) 7.21007 1.05170 0.525848 0.850578i \(-0.323748\pi\)
0.525848 + 0.850578i \(0.323748\pi\)
\(48\) −2.47808 −0.357681
\(49\) 14.3350 2.04786
\(50\) −2.73198 −0.386360
\(51\) 17.6563 2.47238
\(52\) 5.95617 0.825972
\(53\) −1.00000 −0.137361
\(54\) −0.349170 −0.0475160
\(55\) −1.50599 −0.203068
\(56\) 4.61899 0.617238
\(57\) 6.21007 0.822543
\(58\) 0.634909 0.0833676
\(59\) 3.38101 0.440170 0.220085 0.975481i \(-0.429366\pi\)
0.220085 + 0.975481i \(0.429366\pi\)
\(60\) −3.73198 −0.481797
\(61\) 13.2380 1.69495 0.847475 0.530836i \(-0.178122\pi\)
0.847475 + 0.530836i \(0.178122\pi\)
\(62\) 8.09707 1.02833
\(63\) 14.5078 1.82781
\(64\) 1.00000 0.125000
\(65\) 8.96996 1.11259
\(66\) 2.47808 0.305031
\(67\) 8.74397 1.06825 0.534123 0.845407i \(-0.320642\pi\)
0.534123 + 0.845407i \(0.320642\pi\)
\(68\) −7.12498 −0.864031
\(69\) −13.2951 −1.60055
\(70\) 6.95617 0.831421
\(71\) −4.57909 −0.543438 −0.271719 0.962377i \(-0.587592\pi\)
−0.271719 + 0.962377i \(0.587592\pi\)
\(72\) 3.14090 0.370159
\(73\) 3.71819 0.435182 0.217591 0.976040i \(-0.430180\pi\)
0.217591 + 0.976040i \(0.430180\pi\)
\(74\) 0.972090 0.113003
\(75\) 6.77008 0.781742
\(76\) −2.50599 −0.287457
\(77\) −4.61899 −0.526383
\(78\) −14.7599 −1.67123
\(79\) 1.59501 0.179453 0.0897264 0.995966i \(-0.471401\pi\)
0.0897264 + 0.995966i \(0.471401\pi\)
\(80\) 1.50599 0.168375
\(81\) −8.55744 −0.950826
\(82\) −12.3510 −1.36394
\(83\) 12.3452 1.35507 0.677533 0.735492i \(-0.263049\pi\)
0.677533 + 0.735492i \(0.263049\pi\)
\(84\) −11.4462 −1.24889
\(85\) −10.7302 −1.16385
\(86\) −5.75989 −0.621105
\(87\) −1.57336 −0.168682
\(88\) −1.00000 −0.106600
\(89\) −7.81527 −0.828417 −0.414208 0.910182i \(-0.635941\pi\)
−0.414208 + 0.910182i \(0.635941\pi\)
\(90\) 4.73018 0.498605
\(91\) 27.5115 2.88399
\(92\) 5.36509 0.559349
\(93\) −20.0652 −2.08067
\(94\) 7.21007 0.743662
\(95\) −3.77401 −0.387206
\(96\) −2.47808 −0.252918
\(97\) 5.64690 0.573356 0.286678 0.958027i \(-0.407449\pi\)
0.286678 + 0.958027i \(0.407449\pi\)
\(98\) 14.3350 1.44806
\(99\) −3.14090 −0.315673
\(100\) −2.73198 −0.273198
\(101\) 4.74790 0.472434 0.236217 0.971700i \(-0.424092\pi\)
0.236217 + 0.971700i \(0.424092\pi\)
\(102\) 17.6563 1.74824
\(103\) −6.47415 −0.637917 −0.318959 0.947769i \(-0.603333\pi\)
−0.318959 + 0.947769i \(0.603333\pi\)
\(104\) 5.95617 0.584050
\(105\) −17.2380 −1.68225
\(106\) −1.00000 −0.0971286
\(107\) 4.47629 0.432739 0.216369 0.976312i \(-0.430578\pi\)
0.216369 + 0.976312i \(0.430578\pi\)
\(108\) −0.349170 −0.0335989
\(109\) −4.49007 −0.430071 −0.215036 0.976606i \(-0.568987\pi\)
−0.215036 + 0.976606i \(0.568987\pi\)
\(110\) −1.50599 −0.143591
\(111\) −2.40892 −0.228645
\(112\) 4.61899 0.436453
\(113\) −17.2500 −1.62274 −0.811370 0.584533i \(-0.801278\pi\)
−0.811370 + 0.584533i \(0.801278\pi\)
\(114\) 6.21007 0.581626
\(115\) 8.07980 0.753445
\(116\) 0.634909 0.0589498
\(117\) 18.7078 1.72953
\(118\) 3.38101 0.311247
\(119\) −32.9102 −3.01687
\(120\) −3.73198 −0.340682
\(121\) 1.00000 0.0909091
\(122\) 13.2380 1.19851
\(123\) 30.6067 2.75972
\(124\) 8.09707 0.727139
\(125\) −11.6443 −1.04150
\(126\) 14.5078 1.29246
\(127\) 1.11119 0.0986026 0.0493013 0.998784i \(-0.484301\pi\)
0.0493013 + 0.998784i \(0.484301\pi\)
\(128\) 1.00000 0.0883883
\(129\) 14.2735 1.25671
\(130\) 8.96996 0.786717
\(131\) −7.70014 −0.672764 −0.336382 0.941726i \(-0.609203\pi\)
−0.336382 + 0.941726i \(0.609203\pi\)
\(132\) 2.47808 0.215690
\(133\) −11.5752 −1.00369
\(134\) 8.74397 0.755364
\(135\) −0.525848 −0.0452578
\(136\) −7.12498 −0.610962
\(137\) −16.4343 −1.40407 −0.702037 0.712141i \(-0.747726\pi\)
−0.702037 + 0.712141i \(0.747726\pi\)
\(138\) −13.2951 −1.13176
\(139\) −22.3152 −1.89275 −0.946375 0.323070i \(-0.895285\pi\)
−0.946375 + 0.323070i \(0.895285\pi\)
\(140\) 6.95617 0.587904
\(141\) −17.8672 −1.50469
\(142\) −4.57909 −0.384269
\(143\) −5.95617 −0.498080
\(144\) 3.14090 0.261742
\(145\) 0.956169 0.0794055
\(146\) 3.71819 0.307720
\(147\) −35.5235 −2.92993
\(148\) 0.972090 0.0799053
\(149\) −13.9003 −1.13876 −0.569381 0.822074i \(-0.692817\pi\)
−0.569381 + 0.822074i \(0.692817\pi\)
\(150\) 6.77008 0.552775
\(151\) −3.92826 −0.319677 −0.159839 0.987143i \(-0.551097\pi\)
−0.159839 + 0.987143i \(0.551097\pi\)
\(152\) −2.50599 −0.203263
\(153\) −22.3789 −1.80923
\(154\) −4.61899 −0.372209
\(155\) 12.1941 0.979457
\(156\) −14.7599 −1.18174
\(157\) 10.4382 0.833058 0.416529 0.909122i \(-0.363246\pi\)
0.416529 + 0.909122i \(0.363246\pi\)
\(158\) 1.59501 0.126892
\(159\) 2.47808 0.196525
\(160\) 1.50599 0.119059
\(161\) 24.7813 1.95304
\(162\) −8.55744 −0.672336
\(163\) −9.09921 −0.712705 −0.356352 0.934352i \(-0.615980\pi\)
−0.356352 + 0.934352i \(0.615980\pi\)
\(164\) −12.3510 −0.964449
\(165\) 3.73198 0.290534
\(166\) 12.3452 0.958176
\(167\) 16.6824 1.29092 0.645462 0.763792i \(-0.276665\pi\)
0.645462 + 0.763792i \(0.276665\pi\)
\(168\) −11.4462 −0.883097
\(169\) 22.4760 1.72892
\(170\) −10.7302 −0.822967
\(171\) −7.87109 −0.601917
\(172\) −5.75989 −0.439188
\(173\) 17.7103 1.34649 0.673246 0.739419i \(-0.264900\pi\)
0.673246 + 0.739419i \(0.264900\pi\)
\(174\) −1.57336 −0.119276
\(175\) −12.6190 −0.953906
\(176\) −1.00000 −0.0753778
\(177\) −8.37843 −0.629762
\(178\) −7.81527 −0.585779
\(179\) 22.8526 1.70808 0.854041 0.520205i \(-0.174145\pi\)
0.854041 + 0.520205i \(0.174145\pi\)
\(180\) 4.73018 0.352567
\(181\) −15.4875 −1.15118 −0.575588 0.817740i \(-0.695227\pi\)
−0.575588 + 0.817740i \(0.695227\pi\)
\(182\) 27.5115 2.03929
\(183\) −32.8048 −2.42500
\(184\) 5.36509 0.395520
\(185\) 1.46396 0.107633
\(186\) −20.0652 −1.47125
\(187\) 7.12498 0.521030
\(188\) 7.21007 0.525848
\(189\) −1.61281 −0.117315
\(190\) −3.77401 −0.273796
\(191\) 6.24817 0.452101 0.226051 0.974116i \(-0.427419\pi\)
0.226051 + 0.974116i \(0.427419\pi\)
\(192\) −2.47808 −0.178840
\(193\) −19.7560 −1.42206 −0.711032 0.703159i \(-0.751772\pi\)
−0.711032 + 0.703159i \(0.751772\pi\)
\(194\) 5.64690 0.405424
\(195\) −22.2283 −1.59180
\(196\) 14.3350 1.02393
\(197\) 5.54725 0.395225 0.197612 0.980280i \(-0.436681\pi\)
0.197612 + 0.980280i \(0.436681\pi\)
\(198\) −3.14090 −0.223214
\(199\) −20.9063 −1.48201 −0.741003 0.671502i \(-0.765650\pi\)
−0.741003 + 0.671502i \(0.765650\pi\)
\(200\) −2.73198 −0.193180
\(201\) −21.6683 −1.52836
\(202\) 4.74790 0.334061
\(203\) 2.93264 0.205831
\(204\) 17.6563 1.23619
\(205\) −18.6005 −1.29911
\(206\) −6.47415 −0.451076
\(207\) 16.8512 1.17124
\(208\) 5.95617 0.412986
\(209\) 2.50599 0.173343
\(210\) −17.2380 −1.18953
\(211\) −13.2899 −0.914912 −0.457456 0.889232i \(-0.651239\pi\)
−0.457456 + 0.889232i \(0.651239\pi\)
\(212\) −1.00000 −0.0686803
\(213\) 11.3474 0.777509
\(214\) 4.47629 0.305993
\(215\) −8.67436 −0.591587
\(216\) −0.349170 −0.0237580
\(217\) 37.4003 2.53890
\(218\) −4.49007 −0.304106
\(219\) −9.21400 −0.622624
\(220\) −1.50599 −0.101534
\(221\) −42.4376 −2.85466
\(222\) −2.40892 −0.161676
\(223\) −7.07174 −0.473559 −0.236779 0.971563i \(-0.576092\pi\)
−0.236779 + 0.971563i \(0.576092\pi\)
\(224\) 4.61899 0.308619
\(225\) −8.58089 −0.572059
\(226\) −17.2500 −1.14745
\(227\) −10.2460 −0.680053 −0.340026 0.940416i \(-0.610436\pi\)
−0.340026 + 0.940416i \(0.610436\pi\)
\(228\) 6.21007 0.411272
\(229\) 9.29515 0.614241 0.307120 0.951671i \(-0.400635\pi\)
0.307120 + 0.951671i \(0.400635\pi\)
\(230\) 8.07980 0.532766
\(231\) 11.4462 0.753107
\(232\) 0.634909 0.0416838
\(233\) −16.1804 −1.06001 −0.530005 0.847994i \(-0.677810\pi\)
−0.530005 + 0.847994i \(0.677810\pi\)
\(234\) 18.7078 1.22296
\(235\) 10.8583 0.708319
\(236\) 3.38101 0.220085
\(237\) −3.95257 −0.256747
\(238\) −32.9102 −2.13325
\(239\) 8.55924 0.553651 0.276825 0.960920i \(-0.410718\pi\)
0.276825 + 0.960920i \(0.410718\pi\)
\(240\) −3.73198 −0.240898
\(241\) 8.07174 0.519947 0.259973 0.965616i \(-0.416286\pi\)
0.259973 + 0.965616i \(0.416286\pi\)
\(242\) 1.00000 0.0642824
\(243\) 22.2536 1.42757
\(244\) 13.2380 0.847475
\(245\) 21.5885 1.37924
\(246\) 30.6067 1.95141
\(247\) −14.9261 −0.949727
\(248\) 8.09707 0.514165
\(249\) −30.5925 −1.93872
\(250\) −11.6443 −0.736451
\(251\) 1.71819 0.108451 0.0542257 0.998529i \(-0.482731\pi\)
0.0542257 + 0.998529i \(0.482731\pi\)
\(252\) 14.5078 0.913905
\(253\) −5.36509 −0.337300
\(254\) 1.11119 0.0697225
\(255\) 26.5903 1.66515
\(256\) 1.00000 0.0625000
\(257\) −8.97029 −0.559551 −0.279776 0.960065i \(-0.590260\pi\)
−0.279776 + 0.960065i \(0.590260\pi\)
\(258\) 14.2735 0.888629
\(259\) 4.49007 0.279000
\(260\) 8.96996 0.556293
\(261\) 1.99419 0.123437
\(262\) −7.70014 −0.475716
\(263\) −8.01379 −0.494151 −0.247076 0.968996i \(-0.579470\pi\)
−0.247076 + 0.968996i \(0.579470\pi\)
\(264\) 2.47808 0.152516
\(265\) −1.50599 −0.0925125
\(266\) −11.5752 −0.709718
\(267\) 19.3669 1.18523
\(268\) 8.74397 0.534123
\(269\) 24.3630 1.48544 0.742718 0.669604i \(-0.233536\pi\)
0.742718 + 0.669604i \(0.233536\pi\)
\(270\) −0.525848 −0.0320021
\(271\) 0.281806 0.0171185 0.00855926 0.999963i \(-0.497275\pi\)
0.00855926 + 0.999963i \(0.497275\pi\)
\(272\) −7.12498 −0.432015
\(273\) −68.1758 −4.12618
\(274\) −16.4343 −0.992830
\(275\) 2.73198 0.164745
\(276\) −13.2951 −0.800274
\(277\) 11.1644 0.670806 0.335403 0.942075i \(-0.391128\pi\)
0.335403 + 0.942075i \(0.391128\pi\)
\(278\) −22.3152 −1.33838
\(279\) 25.4321 1.52258
\(280\) 6.95617 0.415711
\(281\) 11.2873 0.673343 0.336671 0.941622i \(-0.390699\pi\)
0.336671 + 0.941622i \(0.390699\pi\)
\(282\) −17.8672 −1.06397
\(283\) −1.50342 −0.0893688 −0.0446844 0.999001i \(-0.514228\pi\)
−0.0446844 + 0.999001i \(0.514228\pi\)
\(284\) −4.57909 −0.271719
\(285\) 9.35232 0.553984
\(286\) −5.95617 −0.352196
\(287\) −57.0490 −3.36749
\(288\) 3.14090 0.185079
\(289\) 33.7654 1.98620
\(290\) 0.956169 0.0561482
\(291\) −13.9935 −0.820313
\(292\) 3.71819 0.217591
\(293\) −19.2654 −1.12550 −0.562750 0.826627i \(-0.690256\pi\)
−0.562750 + 0.826627i \(0.690256\pi\)
\(294\) −35.5235 −2.07177
\(295\) 5.09179 0.296455
\(296\) 0.972090 0.0565016
\(297\) 0.349170 0.0202609
\(298\) −13.9003 −0.805226
\(299\) 31.9554 1.84803
\(300\) 6.77008 0.390871
\(301\) −26.6049 −1.53348
\(302\) −3.92826 −0.226046
\(303\) −11.7657 −0.675922
\(304\) −2.50599 −0.143729
\(305\) 19.9363 1.14155
\(306\) −22.3789 −1.27932
\(307\) −18.4861 −1.05506 −0.527530 0.849536i \(-0.676882\pi\)
−0.527530 + 0.849536i \(0.676882\pi\)
\(308\) −4.61899 −0.263191
\(309\) 16.0435 0.912683
\(310\) 12.1941 0.692581
\(311\) −5.28001 −0.299402 −0.149701 0.988731i \(-0.547831\pi\)
−0.149701 + 0.988731i \(0.547831\pi\)
\(312\) −14.7599 −0.835614
\(313\) −15.1963 −0.858944 −0.429472 0.903080i \(-0.641300\pi\)
−0.429472 + 0.903080i \(0.641300\pi\)
\(314\) 10.4382 0.589061
\(315\) 21.8487 1.23103
\(316\) 1.59501 0.0897264
\(317\) −21.8964 −1.22983 −0.614913 0.788595i \(-0.710809\pi\)
−0.614913 + 0.788595i \(0.710809\pi\)
\(318\) 2.47808 0.138964
\(319\) −0.634909 −0.0355481
\(320\) 1.50599 0.0841876
\(321\) −11.0926 −0.619129
\(322\) 24.7813 1.38101
\(323\) 17.8552 0.993488
\(324\) −8.55744 −0.475413
\(325\) −16.2721 −0.902616
\(326\) −9.09921 −0.503958
\(327\) 11.1268 0.615312
\(328\) −12.3510 −0.681968
\(329\) 33.3032 1.83607
\(330\) 3.73198 0.205439
\(331\) 26.5318 1.45832 0.729159 0.684344i \(-0.239911\pi\)
0.729159 + 0.684344i \(0.239911\pi\)
\(332\) 12.3452 0.677533
\(333\) 3.05324 0.167317
\(334\) 16.6824 0.912821
\(335\) 13.1684 0.719465
\(336\) −11.4462 −0.624444
\(337\) −19.8113 −1.07919 −0.539596 0.841924i \(-0.681423\pi\)
−0.539596 + 0.841924i \(0.681423\pi\)
\(338\) 22.4760 1.22253
\(339\) 42.7469 2.32169
\(340\) −10.7302 −0.581926
\(341\) −8.09707 −0.438481
\(342\) −7.87109 −0.425620
\(343\) 33.8805 1.82937
\(344\) −5.75989 −0.310553
\(345\) −20.0224 −1.07797
\(346\) 17.7103 0.952113
\(347\) −16.9841 −0.911753 −0.455877 0.890043i \(-0.650674\pi\)
−0.455877 + 0.890043i \(0.650674\pi\)
\(348\) −1.57336 −0.0843408
\(349\) 4.92859 0.263822 0.131911 0.991262i \(-0.457889\pi\)
0.131911 + 0.991262i \(0.457889\pi\)
\(350\) −12.6190 −0.674513
\(351\) −2.07972 −0.111007
\(352\) −1.00000 −0.0533002
\(353\) 2.00787 0.106868 0.0534339 0.998571i \(-0.482983\pi\)
0.0534339 + 0.998571i \(0.482983\pi\)
\(354\) −8.37843 −0.445309
\(355\) −6.89608 −0.366006
\(356\) −7.81527 −0.414208
\(357\) 81.5543 4.31631
\(358\) 22.8526 1.20780
\(359\) −19.7494 −1.04234 −0.521168 0.853454i \(-0.674504\pi\)
−0.521168 + 0.853454i \(0.674504\pi\)
\(360\) 4.73018 0.249302
\(361\) −12.7200 −0.669473
\(362\) −15.4875 −0.814005
\(363\) −2.47808 −0.130066
\(364\) 27.5115 1.44199
\(365\) 5.59958 0.293095
\(366\) −32.8048 −1.71474
\(367\) 18.6882 0.975514 0.487757 0.872980i \(-0.337815\pi\)
0.487757 + 0.872980i \(0.337815\pi\)
\(368\) 5.36509 0.279675
\(369\) −38.7932 −2.01949
\(370\) 1.46396 0.0761078
\(371\) −4.61899 −0.239806
\(372\) −20.0652 −1.04033
\(373\) −24.4441 −1.26567 −0.632834 0.774288i \(-0.718108\pi\)
−0.632834 + 0.774288i \(0.718108\pi\)
\(374\) 7.12498 0.368424
\(375\) 28.8556 1.49010
\(376\) 7.21007 0.371831
\(377\) 3.78162 0.194764
\(378\) −1.61281 −0.0829541
\(379\) 30.3759 1.56030 0.780151 0.625591i \(-0.215142\pi\)
0.780151 + 0.625591i \(0.215142\pi\)
\(380\) −3.77401 −0.193603
\(381\) −2.75363 −0.141073
\(382\) 6.24817 0.319684
\(383\) −17.2155 −0.879673 −0.439837 0.898078i \(-0.644964\pi\)
−0.439837 + 0.898078i \(0.644964\pi\)
\(384\) −2.47808 −0.126459
\(385\) −6.95617 −0.354519
\(386\) −19.7560 −1.00555
\(387\) −18.0913 −0.919630
\(388\) 5.64690 0.286678
\(389\) 9.56181 0.484803 0.242402 0.970176i \(-0.422065\pi\)
0.242402 + 0.970176i \(0.422065\pi\)
\(390\) −22.2283 −1.12557
\(391\) −38.2262 −1.93318
\(392\) 14.3350 0.724029
\(393\) 19.0816 0.962539
\(394\) 5.54725 0.279466
\(395\) 2.40208 0.120862
\(396\) −3.14090 −0.157836
\(397\) 12.0055 0.602538 0.301269 0.953539i \(-0.402590\pi\)
0.301269 + 0.953539i \(0.402590\pi\)
\(398\) −20.9063 −1.04794
\(399\) 28.6842 1.43601
\(400\) −2.73198 −0.136599
\(401\) −2.79387 −0.139519 −0.0697595 0.997564i \(-0.522223\pi\)
−0.0697595 + 0.997564i \(0.522223\pi\)
\(402\) −21.6683 −1.08072
\(403\) 48.2275 2.40238
\(404\) 4.74790 0.236217
\(405\) −12.8875 −0.640383
\(406\) 2.93264 0.145544
\(407\) −0.972090 −0.0481847
\(408\) 17.6563 0.874118
\(409\) −21.1902 −1.04779 −0.523894 0.851783i \(-0.675521\pi\)
−0.523894 + 0.851783i \(0.675521\pi\)
\(410\) −18.6005 −0.918613
\(411\) 40.7255 2.00884
\(412\) −6.47415 −0.318959
\(413\) 15.6169 0.768455
\(414\) 16.8512 0.828193
\(415\) 18.5919 0.912638
\(416\) 5.95617 0.292025
\(417\) 55.2989 2.70800
\(418\) 2.50599 0.122572
\(419\) 36.3463 1.77563 0.887815 0.460200i \(-0.152222\pi\)
0.887815 + 0.460200i \(0.152222\pi\)
\(420\) −17.2380 −0.841127
\(421\) −25.2855 −1.23234 −0.616170 0.787614i \(-0.711316\pi\)
−0.616170 + 0.787614i \(0.711316\pi\)
\(422\) −13.2899 −0.646940
\(423\) 22.6461 1.10109
\(424\) −1.00000 −0.0485643
\(425\) 19.4653 0.944207
\(426\) 11.3474 0.549782
\(427\) 61.1460 2.95906
\(428\) 4.47629 0.216369
\(429\) 14.7599 0.712614
\(430\) −8.67436 −0.418315
\(431\) −22.4446 −1.08112 −0.540558 0.841307i \(-0.681787\pi\)
−0.540558 + 0.841307i \(0.681787\pi\)
\(432\) −0.349170 −0.0167994
\(433\) −9.08688 −0.436688 −0.218344 0.975872i \(-0.570065\pi\)
−0.218344 + 0.975872i \(0.570065\pi\)
\(434\) 37.4003 1.79527
\(435\) −2.36947 −0.113607
\(436\) −4.49007 −0.215036
\(437\) −13.4449 −0.643156
\(438\) −9.21400 −0.440262
\(439\) 25.8491 1.23371 0.616855 0.787077i \(-0.288406\pi\)
0.616855 + 0.787077i \(0.288406\pi\)
\(440\) −1.50599 −0.0717955
\(441\) 45.0250 2.14405
\(442\) −42.4376 −2.01855
\(443\) −10.0115 −0.475663 −0.237831 0.971306i \(-0.576437\pi\)
−0.237831 + 0.971306i \(0.576437\pi\)
\(444\) −2.40892 −0.114322
\(445\) −11.7697 −0.557939
\(446\) −7.07174 −0.334857
\(447\) 34.4462 1.62925
\(448\) 4.61899 0.218227
\(449\) −26.1424 −1.23374 −0.616869 0.787066i \(-0.711599\pi\)
−0.616869 + 0.787066i \(0.711599\pi\)
\(450\) −8.58089 −0.404507
\(451\) 12.3510 0.581584
\(452\) −17.2500 −0.811370
\(453\) 9.73456 0.457369
\(454\) −10.2460 −0.480870
\(455\) 41.4321 1.94237
\(456\) 6.21007 0.290813
\(457\) 18.1203 0.847631 0.423815 0.905749i \(-0.360691\pi\)
0.423815 + 0.905749i \(0.360691\pi\)
\(458\) 9.29515 0.434334
\(459\) 2.48783 0.116122
\(460\) 8.07980 0.376722
\(461\) −41.4818 −1.93200 −0.965999 0.258545i \(-0.916757\pi\)
−0.965999 + 0.258545i \(0.916757\pi\)
\(462\) 11.4462 0.532527
\(463\) −21.1485 −0.982855 −0.491427 0.870919i \(-0.663525\pi\)
−0.491427 + 0.870919i \(0.663525\pi\)
\(464\) 0.634909 0.0294749
\(465\) −30.2181 −1.40133
\(466\) −16.1804 −0.749541
\(467\) −9.20613 −0.426009 −0.213005 0.977051i \(-0.568325\pi\)
−0.213005 + 0.977051i \(0.568325\pi\)
\(468\) 18.7078 0.864766
\(469\) 40.3883 1.86496
\(470\) 10.8583 0.500857
\(471\) −25.8667 −1.19188
\(472\) 3.38101 0.155624
\(473\) 5.75989 0.264840
\(474\) −3.95257 −0.181548
\(475\) 6.84633 0.314131
\(476\) −32.9102 −1.50844
\(477\) −3.14090 −0.143812
\(478\) 8.55924 0.391490
\(479\) 23.0648 1.05386 0.526928 0.849910i \(-0.323344\pi\)
0.526928 + 0.849910i \(0.323344\pi\)
\(480\) −3.73198 −0.170341
\(481\) 5.78993 0.263998
\(482\) 8.07174 0.367658
\(483\) −61.4101 −2.79426
\(484\) 1.00000 0.0454545
\(485\) 8.50420 0.386156
\(486\) 22.2536 1.00944
\(487\) −14.0786 −0.637961 −0.318981 0.947761i \(-0.603340\pi\)
−0.318981 + 0.947761i \(0.603340\pi\)
\(488\) 13.2380 0.599255
\(489\) 22.5486 1.01968
\(490\) 21.5885 0.975269
\(491\) −11.0754 −0.499827 −0.249913 0.968268i \(-0.580402\pi\)
−0.249913 + 0.968268i \(0.580402\pi\)
\(492\) 30.6067 1.37986
\(493\) −4.52371 −0.203738
\(494\) −14.9261 −0.671558
\(495\) −4.73018 −0.212606
\(496\) 8.09707 0.363569
\(497\) −21.1508 −0.948741
\(498\) −30.5925 −1.37088
\(499\) −41.7805 −1.87035 −0.935176 0.354183i \(-0.884759\pi\)
−0.935176 + 0.354183i \(0.884759\pi\)
\(500\) −11.6443 −0.520750
\(501\) −41.3404 −1.84695
\(502\) 1.71819 0.0766867
\(503\) −8.86851 −0.395427 −0.197714 0.980260i \(-0.563352\pi\)
−0.197714 + 0.980260i \(0.563352\pi\)
\(504\) 14.5078 0.646228
\(505\) 7.15031 0.318185
\(506\) −5.36509 −0.238507
\(507\) −55.6973 −2.47360
\(508\) 1.11119 0.0493013
\(509\) 24.5211 1.08688 0.543440 0.839448i \(-0.317121\pi\)
0.543440 + 0.839448i \(0.317121\pi\)
\(510\) 26.5903 1.17744
\(511\) 17.1743 0.759746
\(512\) 1.00000 0.0441942
\(513\) 0.875018 0.0386330
\(514\) −8.97029 −0.395663
\(515\) −9.75004 −0.429638
\(516\) 14.2735 0.628356
\(517\) −7.21007 −0.317098
\(518\) 4.49007 0.197282
\(519\) −43.8877 −1.92646
\(520\) 8.96996 0.393359
\(521\) 31.0051 1.35836 0.679180 0.733972i \(-0.262336\pi\)
0.679180 + 0.733972i \(0.262336\pi\)
\(522\) 1.99419 0.0872832
\(523\) 16.6116 0.726373 0.363187 0.931716i \(-0.381689\pi\)
0.363187 + 0.931716i \(0.381689\pi\)
\(524\) −7.70014 −0.336382
\(525\) 31.2709 1.36477
\(526\) −8.01379 −0.349418
\(527\) −57.6915 −2.51308
\(528\) 2.47808 0.107845
\(529\) 5.78420 0.251487
\(530\) −1.50599 −0.0654162
\(531\) 10.6194 0.460844
\(532\) −11.5752 −0.501847
\(533\) −73.5645 −3.18643
\(534\) 19.3669 0.838087
\(535\) 6.74126 0.291450
\(536\) 8.74397 0.377682
\(537\) −56.6306 −2.44379
\(538\) 24.3630 1.05036
\(539\) −14.3350 −0.617454
\(540\) −0.525848 −0.0226289
\(541\) −0.830853 −0.0357211 −0.0178606 0.999840i \(-0.505685\pi\)
−0.0178606 + 0.999840i \(0.505685\pi\)
\(542\) 0.281806 0.0121046
\(543\) 38.3793 1.64701
\(544\) −7.12498 −0.305481
\(545\) −6.76202 −0.289653
\(546\) −68.1758 −2.91765
\(547\) −32.1203 −1.37336 −0.686682 0.726958i \(-0.740933\pi\)
−0.686682 + 0.726958i \(0.740933\pi\)
\(548\) −16.4343 −0.702037
\(549\) 41.5792 1.77456
\(550\) 2.73198 0.116492
\(551\) −1.59108 −0.0677822
\(552\) −13.2951 −0.565879
\(553\) 7.36733 0.313291
\(554\) 11.1644 0.474331
\(555\) −3.62782 −0.153992
\(556\) −22.3152 −0.946375
\(557\) 27.8247 1.17897 0.589485 0.807780i \(-0.299331\pi\)
0.589485 + 0.807780i \(0.299331\pi\)
\(558\) 25.4321 1.07663
\(559\) −34.3069 −1.45103
\(560\) 6.95617 0.293952
\(561\) −17.6563 −0.745450
\(562\) 11.2873 0.476125
\(563\) 16.2278 0.683920 0.341960 0.939715i \(-0.388909\pi\)
0.341960 + 0.939715i \(0.388909\pi\)
\(564\) −17.8672 −0.752343
\(565\) −25.9783 −1.09292
\(566\) −1.50342 −0.0631933
\(567\) −39.5267 −1.65997
\(568\) −4.57909 −0.192134
\(569\) 23.4141 0.981569 0.490784 0.871281i \(-0.336710\pi\)
0.490784 + 0.871281i \(0.336710\pi\)
\(570\) 9.35232 0.391726
\(571\) 29.1330 1.21918 0.609590 0.792717i \(-0.291334\pi\)
0.609590 + 0.792717i \(0.291334\pi\)
\(572\) −5.95617 −0.249040
\(573\) −15.4835 −0.646832
\(574\) −57.0490 −2.38118
\(575\) −14.6573 −0.611253
\(576\) 3.14090 0.130871
\(577\) −45.9355 −1.91232 −0.956161 0.292842i \(-0.905399\pi\)
−0.956161 + 0.292842i \(0.905399\pi\)
\(578\) 33.7654 1.40445
\(579\) 48.9569 2.03458
\(580\) 0.956169 0.0397028
\(581\) 57.0225 2.36569
\(582\) −13.9935 −0.580049
\(583\) 1.00000 0.0414158
\(584\) 3.71819 0.153860
\(585\) 28.1738 1.16484
\(586\) −19.2654 −0.795848
\(587\) −20.6697 −0.853128 −0.426564 0.904457i \(-0.640276\pi\)
−0.426564 + 0.904457i \(0.640276\pi\)
\(588\) −35.5235 −1.46496
\(589\) −20.2912 −0.836085
\(590\) 5.09179 0.209625
\(591\) −13.7465 −0.565457
\(592\) 0.972090 0.0399527
\(593\) −17.5530 −0.720814 −0.360407 0.932795i \(-0.617362\pi\)
−0.360407 + 0.932795i \(0.617362\pi\)
\(594\) 0.349170 0.0143266
\(595\) −49.5626 −2.03187
\(596\) −13.9003 −0.569381
\(597\) 51.8075 2.12034
\(598\) 31.9554 1.30675
\(599\) 11.5697 0.472724 0.236362 0.971665i \(-0.424045\pi\)
0.236362 + 0.971665i \(0.424045\pi\)
\(600\) 6.77008 0.276387
\(601\) 40.9759 1.67144 0.835720 0.549155i \(-0.185050\pi\)
0.835720 + 0.549155i \(0.185050\pi\)
\(602\) −26.6049 −1.08433
\(603\) 27.4640 1.11842
\(604\) −3.92826 −0.159839
\(605\) 1.50599 0.0612274
\(606\) −11.7657 −0.477949
\(607\) 33.9630 1.37852 0.689258 0.724516i \(-0.257937\pi\)
0.689258 + 0.724516i \(0.257937\pi\)
\(608\) −2.50599 −0.101631
\(609\) −7.26732 −0.294487
\(610\) 19.9363 0.807198
\(611\) 42.9444 1.73734
\(612\) −22.3789 −0.904613
\(613\) −14.3748 −0.580594 −0.290297 0.956937i \(-0.593754\pi\)
−0.290297 + 0.956937i \(0.593754\pi\)
\(614\) −18.4861 −0.746040
\(615\) 46.0936 1.85867
\(616\) −4.61899 −0.186104
\(617\) 10.0789 0.405762 0.202881 0.979203i \(-0.434970\pi\)
0.202881 + 0.979203i \(0.434970\pi\)
\(618\) 16.0435 0.645364
\(619\) −6.83711 −0.274807 −0.137403 0.990515i \(-0.543876\pi\)
−0.137403 + 0.990515i \(0.543876\pi\)
\(620\) 12.1941 0.489729
\(621\) −1.87333 −0.0751741
\(622\) −5.28001 −0.211709
\(623\) −36.0986 −1.44626
\(624\) −14.7599 −0.590869
\(625\) −3.87637 −0.155055
\(626\) −15.1963 −0.607365
\(627\) −6.21007 −0.248006
\(628\) 10.4382 0.416529
\(629\) −6.92613 −0.276163
\(630\) 21.8487 0.870471
\(631\) −12.1720 −0.484558 −0.242279 0.970207i \(-0.577895\pi\)
−0.242279 + 0.970207i \(0.577895\pi\)
\(632\) 1.59501 0.0634461
\(633\) 32.9334 1.30899
\(634\) −21.8964 −0.869618
\(635\) 1.67345 0.0664089
\(636\) 2.47808 0.0982624
\(637\) 85.3820 3.38296
\(638\) −0.634909 −0.0251363
\(639\) −14.3825 −0.568962
\(640\) 1.50599 0.0595297
\(641\) −36.7916 −1.45318 −0.726590 0.687071i \(-0.758896\pi\)
−0.726590 + 0.687071i \(0.758896\pi\)
\(642\) −11.0926 −0.437791
\(643\) 0.536038 0.0211393 0.0105696 0.999944i \(-0.496636\pi\)
0.0105696 + 0.999944i \(0.496636\pi\)
\(644\) 24.7813 0.976520
\(645\) 21.4958 0.846396
\(646\) 17.8552 0.702502
\(647\) −46.1383 −1.81388 −0.906942 0.421255i \(-0.861590\pi\)
−0.906942 + 0.421255i \(0.861590\pi\)
\(648\) −8.55744 −0.336168
\(649\) −3.38101 −0.132716
\(650\) −16.2721 −0.638246
\(651\) −92.6811 −3.63246
\(652\) −9.09921 −0.356352
\(653\) −25.1503 −0.984208 −0.492104 0.870536i \(-0.663772\pi\)
−0.492104 + 0.870536i \(0.663772\pi\)
\(654\) 11.1268 0.435092
\(655\) −11.5964 −0.453107
\(656\) −12.3510 −0.482224
\(657\) 11.6785 0.455621
\(658\) 33.3032 1.29829
\(659\) −48.0610 −1.87219 −0.936095 0.351748i \(-0.885587\pi\)
−0.936095 + 0.351748i \(0.885587\pi\)
\(660\) 3.73198 0.145267
\(661\) 21.4763 0.835331 0.417665 0.908601i \(-0.362848\pi\)
0.417665 + 0.908601i \(0.362848\pi\)
\(662\) 26.5318 1.03119
\(663\) 105.164 4.08423
\(664\) 12.3452 0.479088
\(665\) −17.4321 −0.675989
\(666\) 3.05324 0.118311
\(667\) 3.40634 0.131894
\(668\) 16.6824 0.645462
\(669\) 17.5244 0.677531
\(670\) 13.1684 0.508738
\(671\) −13.2380 −0.511046
\(672\) −11.4462 −0.441548
\(673\) −49.6321 −1.91318 −0.956588 0.291444i \(-0.905864\pi\)
−0.956588 + 0.291444i \(0.905864\pi\)
\(674\) −19.8113 −0.763104
\(675\) 0.953926 0.0367166
\(676\) 22.4760 0.864460
\(677\) 29.2620 1.12463 0.562314 0.826924i \(-0.309911\pi\)
0.562314 + 0.826924i \(0.309911\pi\)
\(678\) 42.7469 1.64168
\(679\) 26.0830 1.00097
\(680\) −10.7302 −0.411484
\(681\) 25.3905 0.972967
\(682\) −8.09707 −0.310053
\(683\) −8.42484 −0.322368 −0.161184 0.986924i \(-0.551531\pi\)
−0.161184 + 0.986924i \(0.551531\pi\)
\(684\) −7.87109 −0.300958
\(685\) −24.7499 −0.945645
\(686\) 33.8805 1.29356
\(687\) −23.0342 −0.878808
\(688\) −5.75989 −0.219594
\(689\) −5.95617 −0.226912
\(690\) −20.0224 −0.762240
\(691\) 37.6009 1.43041 0.715203 0.698916i \(-0.246334\pi\)
0.715203 + 0.698916i \(0.246334\pi\)
\(692\) 17.7103 0.673246
\(693\) −14.5078 −0.551105
\(694\) −16.9841 −0.644707
\(695\) −33.6066 −1.27477
\(696\) −1.57336 −0.0596380
\(697\) 88.0004 3.33325
\(698\) 4.92859 0.186550
\(699\) 40.0963 1.51658
\(700\) −12.6190 −0.476953
\(701\) 19.9540 0.753654 0.376827 0.926284i \(-0.377015\pi\)
0.376827 + 0.926284i \(0.377015\pi\)
\(702\) −2.07972 −0.0784938
\(703\) −2.43605 −0.0918775
\(704\) −1.00000 −0.0376889
\(705\) −26.9078 −1.01341
\(706\) 2.00787 0.0755670
\(707\) 21.9305 0.824781
\(708\) −8.37843 −0.314881
\(709\) 48.5447 1.82313 0.911567 0.411152i \(-0.134874\pi\)
0.911567 + 0.411152i \(0.134874\pi\)
\(710\) −6.89608 −0.258805
\(711\) 5.00977 0.187881
\(712\) −7.81527 −0.292889
\(713\) 43.4415 1.62690
\(714\) 81.5543 3.05209
\(715\) −8.96996 −0.335457
\(716\) 22.8526 0.854041
\(717\) −21.2105 −0.792121
\(718\) −19.7494 −0.737043
\(719\) −23.4561 −0.874765 −0.437382 0.899276i \(-0.644094\pi\)
−0.437382 + 0.899276i \(0.644094\pi\)
\(720\) 4.73018 0.176283
\(721\) −29.9040 −1.11368
\(722\) −12.7200 −0.473389
\(723\) −20.0025 −0.743899
\(724\) −15.4875 −0.575588
\(725\) −1.73456 −0.0644199
\(726\) −2.47808 −0.0919703
\(727\) 7.85381 0.291282 0.145641 0.989338i \(-0.453476\pi\)
0.145641 + 0.989338i \(0.453476\pi\)
\(728\) 27.5115 1.01964
\(729\) −29.4739 −1.09163
\(730\) 5.59958 0.207250
\(731\) 41.0391 1.51789
\(732\) −32.8048 −1.21250
\(733\) −22.9665 −0.848286 −0.424143 0.905595i \(-0.639425\pi\)
−0.424143 + 0.905595i \(0.639425\pi\)
\(734\) 18.6882 0.689792
\(735\) −53.4981 −1.97331
\(736\) 5.36509 0.197760
\(737\) −8.74397 −0.322088
\(738\) −38.7932 −1.42800
\(739\) 9.97937 0.367097 0.183548 0.983011i \(-0.441242\pi\)
0.183548 + 0.983011i \(0.441242\pi\)
\(740\) 1.46396 0.0538163
\(741\) 36.9882 1.35880
\(742\) −4.61899 −0.169568
\(743\) −26.0157 −0.954422 −0.477211 0.878789i \(-0.658352\pi\)
−0.477211 + 0.878789i \(0.658352\pi\)
\(744\) −20.0652 −0.735627
\(745\) −20.9338 −0.766957
\(746\) −24.4441 −0.894962
\(747\) 38.7752 1.41871
\(748\) 7.12498 0.260515
\(749\) 20.6759 0.755481
\(750\) 28.8556 1.05366
\(751\) −17.5806 −0.641526 −0.320763 0.947159i \(-0.603939\pi\)
−0.320763 + 0.947159i \(0.603939\pi\)
\(752\) 7.21007 0.262924
\(753\) −4.25783 −0.155164
\(754\) 3.78162 0.137719
\(755\) −5.91594 −0.215303
\(756\) −1.61281 −0.0586574
\(757\) 21.8029 0.792441 0.396221 0.918155i \(-0.370322\pi\)
0.396221 + 0.918155i \(0.370322\pi\)
\(758\) 30.3759 1.10330
\(759\) 13.2951 0.482583
\(760\) −3.77401 −0.136898
\(761\) 20.5054 0.743320 0.371660 0.928369i \(-0.378789\pi\)
0.371660 + 0.928369i \(0.378789\pi\)
\(762\) −2.75363 −0.0997536
\(763\) −20.7396 −0.750824
\(764\) 6.24817 0.226051
\(765\) −33.7025 −1.21852
\(766\) −17.2155 −0.622023
\(767\) 20.1379 0.727137
\(768\) −2.47808 −0.0894202
\(769\) 16.5069 0.595254 0.297627 0.954682i \(-0.403805\pi\)
0.297627 + 0.954682i \(0.403805\pi\)
\(770\) −6.95617 −0.250683
\(771\) 22.2291 0.800563
\(772\) −19.7560 −0.711032
\(773\) −21.7273 −0.781476 −0.390738 0.920502i \(-0.627780\pi\)
−0.390738 + 0.920502i \(0.627780\pi\)
\(774\) −18.0913 −0.650277
\(775\) −22.1210 −0.794612
\(776\) 5.64690 0.202712
\(777\) −11.1268 −0.399171
\(778\) 9.56181 0.342808
\(779\) 30.9515 1.10895
\(780\) −22.2283 −0.795901
\(781\) 4.57909 0.163853
\(782\) −38.2262 −1.36697
\(783\) −0.221691 −0.00792259
\(784\) 14.3350 0.511966
\(785\) 15.7198 0.561065
\(786\) 19.0816 0.680618
\(787\) 4.20085 0.149744 0.0748720 0.997193i \(-0.476145\pi\)
0.0748720 + 0.997193i \(0.476145\pi\)
\(788\) 5.54725 0.197612
\(789\) 19.8588 0.706994
\(790\) 2.40208 0.0854621
\(791\) −79.6774 −2.83300
\(792\) −3.14090 −0.111607
\(793\) 78.8476 2.79996
\(794\) 12.0055 0.426058
\(795\) 3.73198 0.132360
\(796\) −20.9063 −0.741003
\(797\) 31.5614 1.11796 0.558981 0.829181i \(-0.311193\pi\)
0.558981 + 0.829181i \(0.311193\pi\)
\(798\) 28.6842 1.01541
\(799\) −51.3716 −1.81740
\(800\) −2.73198 −0.0965901
\(801\) −24.5470 −0.867325
\(802\) −2.79387 −0.0986549
\(803\) −3.71819 −0.131212
\(804\) −21.6683 −0.764182
\(805\) 37.3205 1.31537
\(806\) 48.2275 1.69874
\(807\) −60.3735 −2.12525
\(808\) 4.74790 0.167031
\(809\) −5.16604 −0.181628 −0.0908142 0.995868i \(-0.528947\pi\)
−0.0908142 + 0.995868i \(0.528947\pi\)
\(810\) −12.8875 −0.452819
\(811\) −23.8436 −0.837263 −0.418631 0.908156i \(-0.637490\pi\)
−0.418631 + 0.908156i \(0.637490\pi\)
\(812\) 2.93264 0.102915
\(813\) −0.698340 −0.0244919
\(814\) −0.972090 −0.0340717
\(815\) −13.7034 −0.480007
\(816\) 17.6563 0.618094
\(817\) 14.4343 0.504991
\(818\) −21.1902 −0.740898
\(819\) 86.4109 3.01944
\(820\) −18.6005 −0.649557
\(821\) 1.12363 0.0392149 0.0196074 0.999808i \(-0.493758\pi\)
0.0196074 + 0.999808i \(0.493758\pi\)
\(822\) 40.7255 1.42046
\(823\) 34.1301 1.18970 0.594851 0.803836i \(-0.297211\pi\)
0.594851 + 0.803836i \(0.297211\pi\)
\(824\) −6.47415 −0.225538
\(825\) −6.77008 −0.235704
\(826\) 15.6169 0.543380
\(827\) 57.2747 1.99164 0.995818 0.0913553i \(-0.0291199\pi\)
0.995818 + 0.0913553i \(0.0291199\pi\)
\(828\) 16.8512 0.585621
\(829\) −0.817175 −0.0283817 −0.0141908 0.999899i \(-0.504517\pi\)
−0.0141908 + 0.999899i \(0.504517\pi\)
\(830\) 18.5919 0.645333
\(831\) −27.6664 −0.959737
\(832\) 5.95617 0.206493
\(833\) −102.137 −3.53884
\(834\) 55.2989 1.91485
\(835\) 25.1236 0.869439
\(836\) 2.50599 0.0866716
\(837\) −2.82725 −0.0977242
\(838\) 36.3463 1.25556
\(839\) 52.6583 1.81797 0.908983 0.416833i \(-0.136860\pi\)
0.908983 + 0.416833i \(0.136860\pi\)
\(840\) −17.2380 −0.594767
\(841\) −28.5969 −0.986100
\(842\) −25.2855 −0.871395
\(843\) −27.9708 −0.963367
\(844\) −13.2899 −0.457456
\(845\) 33.8487 1.16443
\(846\) 22.6461 0.778590
\(847\) 4.61899 0.158710
\(848\) −1.00000 −0.0343401
\(849\) 3.72559 0.127862
\(850\) 19.4653 0.667655
\(851\) 5.21535 0.178780
\(852\) 11.3474 0.388755
\(853\) −9.20254 −0.315089 −0.157544 0.987512i \(-0.550358\pi\)
−0.157544 + 0.987512i \(0.550358\pi\)
\(854\) 61.1460 2.09237
\(855\) −11.8538 −0.405392
\(856\) 4.47629 0.152996
\(857\) −18.7853 −0.641695 −0.320847 0.947131i \(-0.603968\pi\)
−0.320847 + 0.947131i \(0.603968\pi\)
\(858\) 14.7599 0.503894
\(859\) 29.0913 0.992584 0.496292 0.868156i \(-0.334695\pi\)
0.496292 + 0.868156i \(0.334695\pi\)
\(860\) −8.67436 −0.295793
\(861\) 141.372 4.81795
\(862\) −22.4446 −0.764465
\(863\) 3.58579 0.122062 0.0610309 0.998136i \(-0.480561\pi\)
0.0610309 + 0.998136i \(0.480561\pi\)
\(864\) −0.349170 −0.0118790
\(865\) 26.6717 0.906863
\(866\) −9.08688 −0.308785
\(867\) −83.6734 −2.84170
\(868\) 37.4003 1.26945
\(869\) −1.59501 −0.0541070
\(870\) −2.36947 −0.0803325
\(871\) 52.0806 1.76468
\(872\) −4.49007 −0.152053
\(873\) 17.7364 0.600285
\(874\) −13.4449 −0.454780
\(875\) −53.7850 −1.81826
\(876\) −9.21400 −0.311312
\(877\) 39.9449 1.34885 0.674423 0.738346i \(-0.264393\pi\)
0.674423 + 0.738346i \(0.264393\pi\)
\(878\) 25.8491 0.872365
\(879\) 47.7414 1.61028
\(880\) −1.50599 −0.0507671
\(881\) −7.72445 −0.260243 −0.130122 0.991498i \(-0.541537\pi\)
−0.130122 + 0.991498i \(0.541537\pi\)
\(882\) 45.0250 1.51607
\(883\) −8.37450 −0.281824 −0.140912 0.990022i \(-0.545004\pi\)
−0.140912 + 0.990022i \(0.545004\pi\)
\(884\) −42.4376 −1.42733
\(885\) −12.6179 −0.424145
\(886\) −10.0115 −0.336344
\(887\) 0.0673636 0.00226185 0.00113092 0.999999i \(-0.499640\pi\)
0.00113092 + 0.999999i \(0.499640\pi\)
\(888\) −2.40892 −0.0808381
\(889\) 5.13259 0.172142
\(890\) −11.7697 −0.394523
\(891\) 8.55744 0.286685
\(892\) −7.07174 −0.236779
\(893\) −18.0684 −0.604635
\(894\) 34.4462 1.15205
\(895\) 34.4159 1.15040
\(896\) 4.61899 0.154310
\(897\) −79.1882 −2.64402
\(898\) −26.1424 −0.872385
\(899\) 5.14090 0.171459
\(900\) −8.58089 −0.286030
\(901\) 7.12498 0.237368
\(902\) 12.3510 0.411242
\(903\) 65.9291 2.19398
\(904\) −17.2500 −0.573725
\(905\) −23.3241 −0.775319
\(906\) 9.73456 0.323409
\(907\) 33.9356 1.12681 0.563407 0.826179i \(-0.309490\pi\)
0.563407 + 0.826179i \(0.309490\pi\)
\(908\) −10.2460 −0.340026
\(909\) 14.9127 0.494623
\(910\) 41.4321 1.37346
\(911\) 29.0764 0.963345 0.481673 0.876351i \(-0.340029\pi\)
0.481673 + 0.876351i \(0.340029\pi\)
\(912\) 6.21007 0.205636
\(913\) −12.3452 −0.408568
\(914\) 18.1203 0.599365
\(915\) −49.4039 −1.63324
\(916\) 9.29515 0.307120
\(917\) −35.5668 −1.17452
\(918\) 2.48783 0.0821106
\(919\) −50.5913 −1.66885 −0.834426 0.551120i \(-0.814201\pi\)
−0.834426 + 0.551120i \(0.814201\pi\)
\(920\) 8.07980 0.266383
\(921\) 45.8102 1.50950
\(922\) −41.4818 −1.36613
\(923\) −27.2738 −0.897729
\(924\) 11.4462 0.376554
\(925\) −2.65573 −0.0873199
\(926\) −21.1485 −0.694983
\(927\) −20.3347 −0.667879
\(928\) 0.634909 0.0208419
\(929\) −17.4365 −0.572073 −0.286036 0.958219i \(-0.592338\pi\)
−0.286036 + 0.958219i \(0.592338\pi\)
\(930\) −30.2181 −0.990891
\(931\) −35.9235 −1.17735
\(932\) −16.1804 −0.530005
\(933\) 13.0843 0.428361
\(934\) −9.20613 −0.301234
\(935\) 10.7302 0.350914
\(936\) 18.7078 0.611482
\(937\) −36.6042 −1.19581 −0.597903 0.801568i \(-0.703999\pi\)
−0.597903 + 0.801568i \(0.703999\pi\)
\(938\) 40.3883 1.31872
\(939\) 37.6577 1.22891
\(940\) 10.8583 0.354159
\(941\) 17.0033 0.554293 0.277147 0.960828i \(-0.410611\pi\)
0.277147 + 0.960828i \(0.410611\pi\)
\(942\) −25.8667 −0.842783
\(943\) −66.2641 −2.15786
\(944\) 3.38101 0.110043
\(945\) −2.42889 −0.0790116
\(946\) 5.75989 0.187270
\(947\) −1.51934 −0.0493718 −0.0246859 0.999695i \(-0.507859\pi\)
−0.0246859 + 0.999695i \(0.507859\pi\)
\(948\) −3.95257 −0.128374
\(949\) 22.1462 0.718896
\(950\) 6.84633 0.222124
\(951\) 54.2612 1.75954
\(952\) −32.9102 −1.06663
\(953\) 10.6194 0.343997 0.171999 0.985097i \(-0.444978\pi\)
0.171999 + 0.985097i \(0.444978\pi\)
\(954\) −3.14090 −0.101690
\(955\) 9.40970 0.304491
\(956\) 8.55924 0.276825
\(957\) 1.57336 0.0508594
\(958\) 23.0648 0.745189
\(959\) −75.9096 −2.45125
\(960\) −3.73198 −0.120449
\(961\) 34.5626 1.11492
\(962\) 5.78993 0.186675
\(963\) 14.0596 0.453064
\(964\) 8.07174 0.259973
\(965\) −29.7524 −0.957762
\(966\) −61.4101 −1.97584
\(967\) 8.90079 0.286230 0.143115 0.989706i \(-0.454288\pi\)
0.143115 + 0.989706i \(0.454288\pi\)
\(968\) 1.00000 0.0321412
\(969\) −44.2466 −1.42141
\(970\) 8.50420 0.273053
\(971\) 7.99169 0.256466 0.128233 0.991744i \(-0.459070\pi\)
0.128233 + 0.991744i \(0.459070\pi\)
\(972\) 22.2536 0.713783
\(973\) −103.074 −3.30439
\(974\) −14.0786 −0.451107
\(975\) 40.3237 1.29139
\(976\) 13.2380 0.423737
\(977\) 39.3402 1.25860 0.629302 0.777161i \(-0.283341\pi\)
0.629302 + 0.777161i \(0.283341\pi\)
\(978\) 22.5486 0.721025
\(979\) 7.81527 0.249777
\(980\) 21.5885 0.689619
\(981\) −14.1029 −0.450270
\(982\) −11.0754 −0.353431
\(983\) 23.6506 0.754336 0.377168 0.926145i \(-0.376898\pi\)
0.377168 + 0.926145i \(0.376898\pi\)
\(984\) 30.6067 0.975707
\(985\) 8.35412 0.266184
\(986\) −4.52371 −0.144064
\(987\) −82.5282 −2.62690
\(988\) −14.9261 −0.474863
\(989\) −30.9023 −0.982637
\(990\) −4.73018 −0.150335
\(991\) 53.1586 1.68864 0.844319 0.535841i \(-0.180006\pi\)
0.844319 + 0.535841i \(0.180006\pi\)
\(992\) 8.09707 0.257082
\(993\) −65.7480 −2.08645
\(994\) −21.1508 −0.670861
\(995\) −31.4847 −0.998133
\(996\) −30.5925 −0.969362
\(997\) −23.6527 −0.749089 −0.374544 0.927209i \(-0.622201\pi\)
−0.374544 + 0.927209i \(0.622201\pi\)
\(998\) −41.7805 −1.32254
\(999\) −0.339425 −0.0107389
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1166.2.a.j.1.1 4
4.3 odd 2 9328.2.a.y.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1166.2.a.j.1.1 4 1.1 even 1 trivial
9328.2.a.y.1.4 4 4.3 odd 2