Properties

Label 1166.2.a.i
Level $1166$
Weight $2$
Character orbit 1166.a
Self dual yes
Analytic conductor $9.311$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1166,2,Mod(1,1166)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1166, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1166.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-4,4,-4,-4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.31055687568\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.4352.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\beta_{3} - \beta_1 - 1) q^{3} + q^{4} + ( - \beta_{3} + \beta_{2} + \beta_1 - 1) q^{5} + (\beta_{3} - \beta_1 - 1) q^{6} + ( - \beta_{3} - \beta_{2} - 1) q^{7} + q^{8} + ( - \beta_{2} + \beta_1 + 1) q^{9}+ \cdots + (\beta_{2} - \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{3} + 4 q^{4} - 4 q^{5} - 4 q^{6} - 4 q^{7} + 4 q^{8} + 4 q^{9} - 4 q^{10} - 4 q^{11} - 4 q^{12} - 8 q^{13} - 4 q^{14} - 4 q^{15} + 4 q^{16} + 4 q^{18} - 8 q^{19} - 4 q^{20} - 4 q^{21}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.334904
2.68554
−1.74912
−1.27133
1.00000 −2.74912 1.00000 −2.47363 −2.74912 3.63696 1.00000 4.55765 −2.47363
1.2 1.00000 −2.27133 1.00000 1.79793 −2.27133 −3.94082 1.00000 2.15894 1.79793
1.3 1.00000 −0.665096 1.00000 0.473626 −0.665096 −1.39432 1.00000 −2.55765 0.473626
1.4 1.00000 1.68554 1.00000 −3.79793 1.68554 −2.30182 1.00000 −0.158942 −3.79793
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( +1 \)
\(53\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1166.2.a.i 4
4.b odd 2 1 9328.2.a.ba 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1166.2.a.i 4 1.a even 1 1 trivial
9328.2.a.ba 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1166))\):

\( T_{3}^{4} + 4T_{3}^{3} - 12T_{3} - 7 \) Copy content Toggle raw display
\( T_{7}^{4} + 4T_{7}^{3} - 10T_{7}^{2} - 52T_{7} - 46 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 4 T^{3} + \cdots - 7 \) Copy content Toggle raw display
$5$ \( T^{4} + 4 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$7$ \( T^{4} + 4 T^{3} + \cdots - 46 \) Copy content Toggle raw display
$11$ \( (T + 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 8 T^{3} + \cdots - 151 \) Copy content Toggle raw display
$17$ \( T^{4} - 8 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} + 8 T^{3} + \cdots - 127 \) Copy content Toggle raw display
$23$ \( T^{4} + 8 T^{3} + \cdots - 263 \) Copy content Toggle raw display
$29$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{4} + 12 T^{3} + \cdots + 292 \) Copy content Toggle raw display
$37$ \( T^{4} + 12 T^{3} + \cdots - 1559 \) Copy content Toggle raw display
$41$ \( T^{4} - 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$43$ \( T^{4} + 12 T^{3} + \cdots - 398 \) Copy content Toggle raw display
$47$ \( T^{4} + 16 T^{3} + \cdots - 2414 \) Copy content Toggle raw display
$53$ \( (T - 1)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + 24 T^{3} + \cdots - 3758 \) Copy content Toggle raw display
$61$ \( T^{4} + 16 T^{3} + \cdots - 3584 \) Copy content Toggle raw display
$67$ \( T^{4} - 8 T^{3} + \cdots - 896 \) Copy content Toggle raw display
$71$ \( T^{4} + 8 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$73$ \( T^{4} - 12 T^{3} + \cdots - 1016 \) Copy content Toggle raw display
$79$ \( T^{4} + 24 T^{3} + \cdots - 751 \) Copy content Toggle raw display
$83$ \( T^{4} - 4 T^{3} + \cdots - 391 \) Copy content Toggle raw display
$89$ \( T^{4} + 12 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$97$ \( T^{4} - 24 T^{3} + \cdots + 889 \) Copy content Toggle raw display
show more
show less