Properties

Label 1166.2.a.h.1.3
Level $1166$
Weight $2$
Character 1166.1
Self dual yes
Analytic conductor $9.311$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1166,2,Mod(1,1166)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1166, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1166.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,4,2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.31055687568\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.6224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 2x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.796815\) of defining polynomial
Character \(\chi\) \(=\) 1166.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.796815 q^{3} +1.00000 q^{4} +1.51945 q^{5} -0.796815 q^{6} -4.16190 q^{7} -1.00000 q^{8} -2.36509 q^{9} -1.51945 q^{10} +1.00000 q^{11} +0.796815 q^{12} +2.21072 q^{13} +4.16190 q^{14} +1.21072 q^{15} +1.00000 q^{16} -5.06426 q^{17} +2.36509 q^{18} +2.21072 q^{19} +1.51945 q^{20} -3.31627 q^{21} -1.00000 q^{22} +4.95872 q^{23} -0.796815 q^{24} -2.69127 q^{25} -2.21072 q^{26} -4.27498 q^{27} -4.16190 q^{28} -5.29091 q^{29} -1.21072 q^{30} -7.95872 q^{31} -1.00000 q^{32} +0.796815 q^{33} +5.06426 q^{34} -6.32380 q^{35} -2.36509 q^{36} +5.42935 q^{37} -2.21072 q^{38} +1.76154 q^{39} -1.51945 q^{40} -7.10316 q^{41} +3.31627 q^{42} -3.96864 q^{43} +1.00000 q^{44} -3.59363 q^{45} -4.95872 q^{46} -11.4833 q^{47} +0.796815 q^{48} +10.3214 q^{49} +2.69127 q^{50} -4.03528 q^{51} +2.21072 q^{52} +1.00000 q^{53} +4.27498 q^{54} +1.51945 q^{55} +4.16190 q^{56} +1.76154 q^{57} +5.29091 q^{58} -3.99008 q^{59} +1.21072 q^{60} -14.9563 q^{61} +7.95872 q^{62} +9.84325 q^{63} +1.00000 q^{64} +3.35908 q^{65} -0.796815 q^{66} +11.6865 q^{67} -5.06426 q^{68} +3.95118 q^{69} +6.32380 q^{70} +5.89998 q^{71} +2.36509 q^{72} -8.75363 q^{73} -5.42935 q^{74} -2.14445 q^{75} +2.21072 q^{76} -4.16190 q^{77} -1.76154 q^{78} +8.62224 q^{79} +1.51945 q^{80} +3.68889 q^{81} +7.10316 q^{82} +8.68926 q^{83} -3.31627 q^{84} -7.69489 q^{85} +3.96864 q^{86} -4.21587 q^{87} -1.00000 q^{88} +6.91505 q^{89} +3.59363 q^{90} -9.20080 q^{91} +4.95872 q^{92} -6.34163 q^{93} +11.4833 q^{94} +3.35908 q^{95} -0.796815 q^{96} -7.15400 q^{97} -10.3214 q^{98} -2.36509 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} + 2 q^{5} - 4 q^{7} - 4 q^{8} - 2 q^{10} + 4 q^{11} - 6 q^{13} + 4 q^{14} - 10 q^{15} + 4 q^{16} - 12 q^{17} - 6 q^{19} + 2 q^{20} - 6 q^{21} - 4 q^{22} + 4 q^{23} + 6 q^{26} + 6 q^{27}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.796815 0.460041 0.230021 0.973186i \(-0.426121\pi\)
0.230021 + 0.973186i \(0.426121\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.51945 0.679519 0.339759 0.940512i \(-0.389654\pi\)
0.339759 + 0.940512i \(0.389654\pi\)
\(6\) −0.796815 −0.325298
\(7\) −4.16190 −1.57305 −0.786525 0.617558i \(-0.788122\pi\)
−0.786525 + 0.617558i \(0.788122\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.36509 −0.788362
\(10\) −1.51945 −0.480492
\(11\) 1.00000 0.301511
\(12\) 0.796815 0.230021
\(13\) 2.21072 0.613144 0.306572 0.951848i \(-0.400818\pi\)
0.306572 + 0.951848i \(0.400818\pi\)
\(14\) 4.16190 1.11231
\(15\) 1.21072 0.312607
\(16\) 1.00000 0.250000
\(17\) −5.06426 −1.22826 −0.614132 0.789203i \(-0.710494\pi\)
−0.614132 + 0.789203i \(0.710494\pi\)
\(18\) 2.36509 0.557456
\(19\) 2.21072 0.507174 0.253587 0.967313i \(-0.418390\pi\)
0.253587 + 0.967313i \(0.418390\pi\)
\(20\) 1.51945 0.339759
\(21\) −3.31627 −0.723668
\(22\) −1.00000 −0.213201
\(23\) 4.95872 1.03396 0.516982 0.855996i \(-0.327055\pi\)
0.516982 + 0.855996i \(0.327055\pi\)
\(24\) −0.796815 −0.162649
\(25\) −2.69127 −0.538254
\(26\) −2.21072 −0.433558
\(27\) −4.27498 −0.822721
\(28\) −4.16190 −0.786525
\(29\) −5.29091 −0.982497 −0.491248 0.871020i \(-0.663459\pi\)
−0.491248 + 0.871020i \(0.663459\pi\)
\(30\) −1.21072 −0.221046
\(31\) −7.95872 −1.42943 −0.714714 0.699417i \(-0.753443\pi\)
−0.714714 + 0.699417i \(0.753443\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.796815 0.138708
\(34\) 5.06426 0.868513
\(35\) −6.32380 −1.06892
\(36\) −2.36509 −0.394181
\(37\) 5.42935 0.892579 0.446289 0.894889i \(-0.352745\pi\)
0.446289 + 0.894889i \(0.352745\pi\)
\(38\) −2.21072 −0.358626
\(39\) 1.76154 0.282071
\(40\) −1.51945 −0.240246
\(41\) −7.10316 −1.10933 −0.554664 0.832075i \(-0.687153\pi\)
−0.554664 + 0.832075i \(0.687153\pi\)
\(42\) 3.31627 0.511711
\(43\) −3.96864 −0.605211 −0.302606 0.953116i \(-0.597856\pi\)
−0.302606 + 0.953116i \(0.597856\pi\)
\(44\) 1.00000 0.150756
\(45\) −3.59363 −0.535707
\(46\) −4.95872 −0.731123
\(47\) −11.4833 −1.67501 −0.837507 0.546426i \(-0.815988\pi\)
−0.837507 + 0.546426i \(0.815988\pi\)
\(48\) 0.796815 0.115010
\(49\) 10.3214 1.47449
\(50\) 2.69127 0.380603
\(51\) −4.03528 −0.565052
\(52\) 2.21072 0.306572
\(53\) 1.00000 0.137361
\(54\) 4.27498 0.581751
\(55\) 1.51945 0.204883
\(56\) 4.16190 0.556157
\(57\) 1.76154 0.233321
\(58\) 5.29091 0.694730
\(59\) −3.99008 −0.519464 −0.259732 0.965681i \(-0.583634\pi\)
−0.259732 + 0.965681i \(0.583634\pi\)
\(60\) 1.21072 0.156303
\(61\) −14.9563 −1.91496 −0.957481 0.288496i \(-0.906845\pi\)
−0.957481 + 0.288496i \(0.906845\pi\)
\(62\) 7.95872 1.01076
\(63\) 9.84325 1.24013
\(64\) 1.00000 0.125000
\(65\) 3.35908 0.416643
\(66\) −0.796815 −0.0980812
\(67\) 11.6865 1.42773 0.713867 0.700281i \(-0.246942\pi\)
0.713867 + 0.700281i \(0.246942\pi\)
\(68\) −5.06426 −0.614132
\(69\) 3.95118 0.475666
\(70\) 6.32380 0.755839
\(71\) 5.89998 0.700198 0.350099 0.936713i \(-0.386148\pi\)
0.350099 + 0.936713i \(0.386148\pi\)
\(72\) 2.36509 0.278728
\(73\) −8.75363 −1.02454 −0.512268 0.858826i \(-0.671194\pi\)
−0.512268 + 0.858826i \(0.671194\pi\)
\(74\) −5.42935 −0.631149
\(75\) −2.14445 −0.247619
\(76\) 2.21072 0.253587
\(77\) −4.16190 −0.474293
\(78\) −1.76154 −0.199455
\(79\) 8.62224 0.970078 0.485039 0.874492i \(-0.338805\pi\)
0.485039 + 0.874492i \(0.338805\pi\)
\(80\) 1.51945 0.169880
\(81\) 3.68889 0.409876
\(82\) 7.10316 0.784413
\(83\) 8.68926 0.953770 0.476885 0.878966i \(-0.341766\pi\)
0.476885 + 0.878966i \(0.341766\pi\)
\(84\) −3.31627 −0.361834
\(85\) −7.69489 −0.834628
\(86\) 3.96864 0.427949
\(87\) −4.21587 −0.451989
\(88\) −1.00000 −0.106600
\(89\) 6.91505 0.732994 0.366497 0.930419i \(-0.380557\pi\)
0.366497 + 0.930419i \(0.380557\pi\)
\(90\) 3.59363 0.378802
\(91\) −9.20080 −0.964506
\(92\) 4.95872 0.516982
\(93\) −6.34163 −0.657596
\(94\) 11.4833 1.18441
\(95\) 3.35908 0.344634
\(96\) −0.796815 −0.0813246
\(97\) −7.15400 −0.726378 −0.363189 0.931715i \(-0.618312\pi\)
−0.363189 + 0.931715i \(0.618312\pi\)
\(98\) −10.3214 −1.04262
\(99\) −2.36509 −0.237700
\(100\) −2.69127 −0.269127
\(101\) −17.5032 −1.74163 −0.870815 0.491611i \(-0.836408\pi\)
−0.870815 + 0.491611i \(0.836408\pi\)
\(102\) 4.03528 0.399552
\(103\) −12.3429 −1.21618 −0.608089 0.793869i \(-0.708064\pi\)
−0.608089 + 0.793869i \(0.708064\pi\)
\(104\) −2.21072 −0.216779
\(105\) −5.03890 −0.491746
\(106\) −1.00000 −0.0971286
\(107\) 12.1984 1.17927 0.589633 0.807671i \(-0.299272\pi\)
0.589633 + 0.807671i \(0.299272\pi\)
\(108\) −4.27498 −0.411360
\(109\) −15.8155 −1.51485 −0.757426 0.652922i \(-0.773543\pi\)
−0.757426 + 0.652922i \(0.773543\pi\)
\(110\) −1.51945 −0.144874
\(111\) 4.32618 0.410623
\(112\) −4.16190 −0.393263
\(113\) 13.6278 1.28199 0.640996 0.767544i \(-0.278521\pi\)
0.640996 + 0.767544i \(0.278521\pi\)
\(114\) −1.76154 −0.164983
\(115\) 7.53452 0.702598
\(116\) −5.29091 −0.491248
\(117\) −5.22854 −0.483379
\(118\) 3.99008 0.367317
\(119\) 21.0769 1.93212
\(120\) −1.21072 −0.110523
\(121\) 1.00000 0.0909091
\(122\) 14.9563 1.35408
\(123\) −5.65991 −0.510337
\(124\) −7.95872 −0.714714
\(125\) −11.6865 −1.04527
\(126\) −9.84325 −0.876907
\(127\) 11.8095 1.04792 0.523962 0.851742i \(-0.324453\pi\)
0.523962 + 0.851742i \(0.324453\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −3.16227 −0.278422
\(130\) −3.35908 −0.294611
\(131\) 3.94089 0.344317 0.172159 0.985069i \(-0.444926\pi\)
0.172159 + 0.985069i \(0.444926\pi\)
\(132\) 0.796815 0.0693539
\(133\) −9.20080 −0.797811
\(134\) −11.6865 −1.00956
\(135\) −6.49562 −0.559054
\(136\) 5.06426 0.434257
\(137\) −10.3504 −0.884294 −0.442147 0.896943i \(-0.645783\pi\)
−0.442147 + 0.896943i \(0.645783\pi\)
\(138\) −3.95118 −0.336347
\(139\) −22.3651 −1.89698 −0.948491 0.316804i \(-0.897390\pi\)
−0.948491 + 0.316804i \(0.897390\pi\)
\(140\) −6.32380 −0.534459
\(141\) −9.15008 −0.770576
\(142\) −5.89998 −0.495115
\(143\) 2.21072 0.184870
\(144\) −2.36509 −0.197090
\(145\) −8.03927 −0.667625
\(146\) 8.75363 0.724456
\(147\) 8.22426 0.678326
\(148\) 5.42935 0.446289
\(149\) −1.72655 −0.141444 −0.0707222 0.997496i \(-0.522530\pi\)
−0.0707222 + 0.997496i \(0.522530\pi\)
\(150\) 2.14445 0.175093
\(151\) −10.3512 −0.842367 −0.421183 0.906975i \(-0.638385\pi\)
−0.421183 + 0.906975i \(0.638385\pi\)
\(152\) −2.21072 −0.179313
\(153\) 11.9774 0.968316
\(154\) 4.16190 0.335376
\(155\) −12.0929 −0.971323
\(156\) 1.76154 0.141036
\(157\) 22.7687 1.81714 0.908570 0.417732i \(-0.137175\pi\)
0.908570 + 0.417732i \(0.137175\pi\)
\(158\) −8.62224 −0.685949
\(159\) 0.796815 0.0631915
\(160\) −1.51945 −0.120123
\(161\) −20.6377 −1.62648
\(162\) −3.68889 −0.289826
\(163\) −13.9853 −1.09541 −0.547707 0.836670i \(-0.684499\pi\)
−0.547707 + 0.836670i \(0.684499\pi\)
\(164\) −7.10316 −0.554664
\(165\) 1.21072 0.0942545
\(166\) −8.68926 −0.674417
\(167\) 10.4139 0.805852 0.402926 0.915233i \(-0.367993\pi\)
0.402926 + 0.915233i \(0.367993\pi\)
\(168\) 3.31627 0.255855
\(169\) −8.11271 −0.624055
\(170\) 7.69489 0.590171
\(171\) −5.22854 −0.399837
\(172\) −3.96864 −0.302606
\(173\) 5.13292 0.390249 0.195124 0.980779i \(-0.437489\pi\)
0.195124 + 0.980779i \(0.437489\pi\)
\(174\) 4.21587 0.319605
\(175\) 11.2008 0.846701
\(176\) 1.00000 0.0753778
\(177\) −3.17936 −0.238975
\(178\) −6.91505 −0.518305
\(179\) 15.3008 1.14364 0.571819 0.820380i \(-0.306238\pi\)
0.571819 + 0.820380i \(0.306238\pi\)
\(180\) −3.59363 −0.267853
\(181\) −1.76030 −0.130842 −0.0654210 0.997858i \(-0.520839\pi\)
−0.0654210 + 0.997858i \(0.520839\pi\)
\(182\) 9.20080 0.682009
\(183\) −11.9174 −0.880962
\(184\) −4.95872 −0.365561
\(185\) 8.24962 0.606524
\(186\) 6.34163 0.464991
\(187\) −5.06426 −0.370335
\(188\) −11.4833 −0.837507
\(189\) 17.7920 1.29418
\(190\) −3.35908 −0.243693
\(191\) 18.9754 1.37301 0.686506 0.727124i \(-0.259144\pi\)
0.686506 + 0.727124i \(0.259144\pi\)
\(192\) 0.796815 0.0575052
\(193\) 9.11670 0.656235 0.328117 0.944637i \(-0.393586\pi\)
0.328117 + 0.944637i \(0.393586\pi\)
\(194\) 7.15400 0.513627
\(195\) 2.67657 0.191673
\(196\) 10.3214 0.737244
\(197\) 16.9658 1.20876 0.604380 0.796696i \(-0.293421\pi\)
0.604380 + 0.796696i \(0.293421\pi\)
\(198\) 2.36509 0.168079
\(199\) 18.9479 1.34318 0.671592 0.740921i \(-0.265611\pi\)
0.671592 + 0.740921i \(0.265611\pi\)
\(200\) 2.69127 0.190302
\(201\) 9.31198 0.656817
\(202\) 17.5032 1.23152
\(203\) 22.0202 1.54552
\(204\) −4.03528 −0.282526
\(205\) −10.7929 −0.753809
\(206\) 12.3429 0.859968
\(207\) −11.7278 −0.815138
\(208\) 2.21072 0.153286
\(209\) 2.21072 0.152919
\(210\) 5.03890 0.347717
\(211\) −6.70243 −0.461414 −0.230707 0.973023i \(-0.574104\pi\)
−0.230707 + 0.973023i \(0.574104\pi\)
\(212\) 1.00000 0.0686803
\(213\) 4.70119 0.322120
\(214\) −12.1984 −0.833867
\(215\) −6.03014 −0.411252
\(216\) 4.27498 0.290876
\(217\) 33.1234 2.24856
\(218\) 15.8155 1.07116
\(219\) −6.97503 −0.471329
\(220\) 1.51945 0.102441
\(221\) −11.1957 −0.753102
\(222\) −4.32618 −0.290355
\(223\) −8.97931 −0.601299 −0.300649 0.953735i \(-0.597203\pi\)
−0.300649 + 0.953735i \(0.597203\pi\)
\(224\) 4.16190 0.278079
\(225\) 6.36509 0.424339
\(226\) −13.6278 −0.906505
\(227\) 2.32429 0.154268 0.0771341 0.997021i \(-0.475423\pi\)
0.0771341 + 0.997021i \(0.475423\pi\)
\(228\) 1.76154 0.116661
\(229\) 17.2820 1.14203 0.571014 0.820940i \(-0.306550\pi\)
0.571014 + 0.820940i \(0.306550\pi\)
\(230\) −7.53452 −0.496812
\(231\) −3.31627 −0.218194
\(232\) 5.29091 0.347365
\(233\) 13.2651 0.869023 0.434512 0.900666i \(-0.356921\pi\)
0.434512 + 0.900666i \(0.356921\pi\)
\(234\) 5.22854 0.341801
\(235\) −17.4483 −1.13820
\(236\) −3.99008 −0.259732
\(237\) 6.87033 0.446276
\(238\) −21.0769 −1.36622
\(239\) −4.22415 −0.273237 −0.136619 0.990624i \(-0.543623\pi\)
−0.136619 + 0.990624i \(0.543623\pi\)
\(240\) 1.21072 0.0781517
\(241\) 1.92497 0.123998 0.0619990 0.998076i \(-0.480252\pi\)
0.0619990 + 0.998076i \(0.480252\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 15.7643 1.01128
\(244\) −14.9563 −0.957481
\(245\) 15.6829 1.00194
\(246\) 5.65991 0.360862
\(247\) 4.88729 0.310971
\(248\) 7.95872 0.505379
\(249\) 6.92373 0.438774
\(250\) 11.6865 0.739119
\(251\) −23.1198 −1.45931 −0.729653 0.683817i \(-0.760319\pi\)
−0.729653 + 0.683817i \(0.760319\pi\)
\(252\) 9.84325 0.620067
\(253\) 4.95872 0.311752
\(254\) −11.8095 −0.740994
\(255\) −6.13141 −0.383964
\(256\) 1.00000 0.0625000
\(257\) −22.0924 −1.37809 −0.689043 0.724721i \(-0.741969\pi\)
−0.689043 + 0.724721i \(0.741969\pi\)
\(258\) 3.16227 0.196874
\(259\) −22.5964 −1.40407
\(260\) 3.35908 0.208321
\(261\) 12.5134 0.774563
\(262\) −3.94089 −0.243469
\(263\) 23.2023 1.43072 0.715359 0.698758i \(-0.246263\pi\)
0.715359 + 0.698758i \(0.246263\pi\)
\(264\) −0.796815 −0.0490406
\(265\) 1.51945 0.0933391
\(266\) 9.20080 0.564137
\(267\) 5.51002 0.337207
\(268\) 11.6865 0.713867
\(269\) −4.56790 −0.278510 −0.139255 0.990257i \(-0.544471\pi\)
−0.139255 + 0.990257i \(0.544471\pi\)
\(270\) 6.49562 0.395311
\(271\) 14.5452 0.883558 0.441779 0.897124i \(-0.354348\pi\)
0.441779 + 0.897124i \(0.354348\pi\)
\(272\) −5.06426 −0.307066
\(273\) −7.33134 −0.443713
\(274\) 10.3504 0.625290
\(275\) −2.69127 −0.162290
\(276\) 3.95118 0.237833
\(277\) −16.4873 −0.990626 −0.495313 0.868714i \(-0.664947\pi\)
−0.495313 + 0.868714i \(0.664947\pi\)
\(278\) 22.3651 1.34137
\(279\) 18.8230 1.12691
\(280\) 6.32380 0.377919
\(281\) −10.4270 −0.622020 −0.311010 0.950407i \(-0.600667\pi\)
−0.311010 + 0.950407i \(0.600667\pi\)
\(282\) 9.15008 0.544879
\(283\) −13.0751 −0.777231 −0.388616 0.921400i \(-0.627047\pi\)
−0.388616 + 0.921400i \(0.627047\pi\)
\(284\) 5.89998 0.350099
\(285\) 2.67657 0.158546
\(286\) −2.21072 −0.130723
\(287\) 29.5627 1.74503
\(288\) 2.36509 0.139364
\(289\) 8.64673 0.508631
\(290\) 8.03927 0.472082
\(291\) −5.70041 −0.334164
\(292\) −8.75363 −0.512268
\(293\) −0.713493 −0.0416827 −0.0208414 0.999783i \(-0.506634\pi\)
−0.0208414 + 0.999783i \(0.506634\pi\)
\(294\) −8.22426 −0.479649
\(295\) −6.06273 −0.352986
\(296\) −5.42935 −0.315574
\(297\) −4.27498 −0.248060
\(298\) 1.72655 0.100016
\(299\) 10.9623 0.633968
\(300\) −2.14445 −0.123810
\(301\) 16.5171 0.952028
\(302\) 10.3512 0.595643
\(303\) −13.9468 −0.801222
\(304\) 2.21072 0.126794
\(305\) −22.7254 −1.30125
\(306\) −11.9774 −0.684703
\(307\) 11.2885 0.644270 0.322135 0.946694i \(-0.395600\pi\)
0.322135 + 0.946694i \(0.395600\pi\)
\(308\) −4.16190 −0.237146
\(309\) −9.83498 −0.559492
\(310\) 12.0929 0.686829
\(311\) 33.0841 1.87603 0.938014 0.346597i \(-0.112663\pi\)
0.938014 + 0.346597i \(0.112663\pi\)
\(312\) −1.76154 −0.0997273
\(313\) −34.1816 −1.93206 −0.966030 0.258429i \(-0.916795\pi\)
−0.966030 + 0.258429i \(0.916795\pi\)
\(314\) −22.7687 −1.28491
\(315\) 14.9563 0.842694
\(316\) 8.62224 0.485039
\(317\) −2.22701 −0.125082 −0.0625408 0.998042i \(-0.519920\pi\)
−0.0625408 + 0.998042i \(0.519920\pi\)
\(318\) −0.796815 −0.0446832
\(319\) −5.29091 −0.296234
\(320\) 1.51945 0.0849399
\(321\) 9.71988 0.542511
\(322\) 20.6377 1.15009
\(323\) −11.1957 −0.622944
\(324\) 3.68889 0.204938
\(325\) −5.94965 −0.330027
\(326\) 13.9853 0.774575
\(327\) −12.6020 −0.696894
\(328\) 7.10316 0.392206
\(329\) 47.7924 2.63488
\(330\) −1.21072 −0.0666480
\(331\) −13.9483 −0.766669 −0.383334 0.923610i \(-0.625224\pi\)
−0.383334 + 0.923610i \(0.625224\pi\)
\(332\) 8.68926 0.476885
\(333\) −12.8409 −0.703675
\(334\) −10.4139 −0.569824
\(335\) 17.7571 0.970172
\(336\) −3.31627 −0.180917
\(337\) 3.87260 0.210954 0.105477 0.994422i \(-0.466363\pi\)
0.105477 + 0.994422i \(0.466363\pi\)
\(338\) 8.11271 0.441273
\(339\) 10.8588 0.589770
\(340\) −7.69489 −0.417314
\(341\) −7.95872 −0.430989
\(342\) 5.22854 0.282727
\(343\) −13.8234 −0.746394
\(344\) 3.96864 0.213974
\(345\) 6.00362 0.323224
\(346\) −5.13292 −0.275947
\(347\) −3.40246 −0.182653 −0.0913267 0.995821i \(-0.529111\pi\)
−0.0913267 + 0.995821i \(0.529111\pi\)
\(348\) −4.21587 −0.225995
\(349\) −26.4401 −1.41531 −0.707654 0.706559i \(-0.750246\pi\)
−0.707654 + 0.706559i \(0.750246\pi\)
\(350\) −11.2008 −0.598708
\(351\) −9.45079 −0.504446
\(352\) −1.00000 −0.0533002
\(353\) 29.8253 1.58744 0.793721 0.608282i \(-0.208141\pi\)
0.793721 + 0.608282i \(0.208141\pi\)
\(354\) 3.17936 0.168981
\(355\) 8.96472 0.475798
\(356\) 6.91505 0.366497
\(357\) 16.7944 0.888856
\(358\) −15.3008 −0.808674
\(359\) 31.9651 1.68705 0.843527 0.537087i \(-0.180475\pi\)
0.843527 + 0.537087i \(0.180475\pi\)
\(360\) 3.59363 0.189401
\(361\) −14.1127 −0.742774
\(362\) 1.76030 0.0925192
\(363\) 0.796815 0.0418219
\(364\) −9.20080 −0.482253
\(365\) −13.3007 −0.696191
\(366\) 11.9174 0.622934
\(367\) −34.8492 −1.81911 −0.909556 0.415582i \(-0.863578\pi\)
−0.909556 + 0.415582i \(0.863578\pi\)
\(368\) 4.95872 0.258491
\(369\) 16.7996 0.874551
\(370\) −8.24962 −0.428877
\(371\) −4.16190 −0.216075
\(372\) −6.34163 −0.328798
\(373\) 33.0418 1.71084 0.855419 0.517936i \(-0.173299\pi\)
0.855419 + 0.517936i \(0.173299\pi\)
\(374\) 5.06426 0.261867
\(375\) −9.31198 −0.480869
\(376\) 11.4833 0.592207
\(377\) −11.6967 −0.602412
\(378\) −17.7920 −0.915124
\(379\) 22.5011 1.15581 0.577903 0.816105i \(-0.303871\pi\)
0.577903 + 0.816105i \(0.303871\pi\)
\(380\) 3.35908 0.172317
\(381\) 9.40999 0.482088
\(382\) −18.9754 −0.970866
\(383\) 18.6420 0.952560 0.476280 0.879294i \(-0.341985\pi\)
0.476280 + 0.879294i \(0.341985\pi\)
\(384\) −0.796815 −0.0406623
\(385\) −6.32380 −0.322291
\(386\) −9.11670 −0.464028
\(387\) 9.38616 0.477125
\(388\) −7.15400 −0.363189
\(389\) −1.92582 −0.0976430 −0.0488215 0.998808i \(-0.515547\pi\)
−0.0488215 + 0.998808i \(0.515547\pi\)
\(390\) −2.67657 −0.135533
\(391\) −25.1122 −1.26998
\(392\) −10.3214 −0.521310
\(393\) 3.14016 0.158400
\(394\) −16.9658 −0.854723
\(395\) 13.1011 0.659186
\(396\) −2.36509 −0.118850
\(397\) −11.4186 −0.573082 −0.286541 0.958068i \(-0.592505\pi\)
−0.286541 + 0.958068i \(0.592505\pi\)
\(398\) −18.9479 −0.949775
\(399\) −7.33134 −0.367026
\(400\) −2.69127 −0.134564
\(401\) −9.62740 −0.480769 −0.240385 0.970678i \(-0.577274\pi\)
−0.240385 + 0.970678i \(0.577274\pi\)
\(402\) −9.31198 −0.464439
\(403\) −17.5945 −0.876444
\(404\) −17.5032 −0.870815
\(405\) 5.60508 0.278519
\(406\) −22.0202 −1.09285
\(407\) 5.42935 0.269123
\(408\) 4.03528 0.199776
\(409\) 10.0186 0.495387 0.247693 0.968838i \(-0.420327\pi\)
0.247693 + 0.968838i \(0.420327\pi\)
\(410\) 10.7929 0.533023
\(411\) −8.24735 −0.406812
\(412\) −12.3429 −0.608089
\(413\) 16.6063 0.817144
\(414\) 11.7278 0.576389
\(415\) 13.2029 0.648104
\(416\) −2.21072 −0.108390
\(417\) −17.8208 −0.872690
\(418\) −2.21072 −0.108130
\(419\) −31.6348 −1.54546 −0.772731 0.634734i \(-0.781110\pi\)
−0.772731 + 0.634734i \(0.781110\pi\)
\(420\) −5.03890 −0.245873
\(421\) −13.9853 −0.681602 −0.340801 0.940135i \(-0.610698\pi\)
−0.340801 + 0.940135i \(0.610698\pi\)
\(422\) 6.70243 0.326269
\(423\) 27.1590 1.32052
\(424\) −1.00000 −0.0485643
\(425\) 13.6293 0.661118
\(426\) −4.70119 −0.227773
\(427\) 62.2468 3.01233
\(428\) 12.1984 0.589633
\(429\) 1.76154 0.0850478
\(430\) 6.03014 0.290799
\(431\) 36.7765 1.77146 0.885731 0.464199i \(-0.153658\pi\)
0.885731 + 0.464199i \(0.153658\pi\)
\(432\) −4.27498 −0.205680
\(433\) 32.7532 1.57402 0.787008 0.616942i \(-0.211629\pi\)
0.787008 + 0.616942i \(0.211629\pi\)
\(434\) −33.1234 −1.58997
\(435\) −6.40581 −0.307135
\(436\) −15.8155 −0.757426
\(437\) 10.9623 0.524400
\(438\) 6.97503 0.333280
\(439\) −27.5631 −1.31552 −0.657758 0.753229i \(-0.728495\pi\)
−0.657758 + 0.753229i \(0.728495\pi\)
\(440\) −1.51945 −0.0724370
\(441\) −24.4110 −1.16243
\(442\) 11.1957 0.532524
\(443\) −1.09803 −0.0521688 −0.0260844 0.999660i \(-0.508304\pi\)
−0.0260844 + 0.999660i \(0.508304\pi\)
\(444\) 4.32618 0.205312
\(445\) 10.5071 0.498083
\(446\) 8.97931 0.425183
\(447\) −1.37574 −0.0650703
\(448\) −4.16190 −0.196631
\(449\) −30.4087 −1.43507 −0.717537 0.696521i \(-0.754730\pi\)
−0.717537 + 0.696521i \(0.754730\pi\)
\(450\) −6.36509 −0.300053
\(451\) −7.10316 −0.334475
\(452\) 13.6278 0.640996
\(453\) −8.24797 −0.387524
\(454\) −2.32429 −0.109084
\(455\) −13.9802 −0.655400
\(456\) −1.76154 −0.0824915
\(457\) −34.7797 −1.62693 −0.813464 0.581615i \(-0.802421\pi\)
−0.813464 + 0.581615i \(0.802421\pi\)
\(458\) −17.2820 −0.807536
\(459\) 21.6496 1.01052
\(460\) 7.53452 0.351299
\(461\) 28.3250 1.31923 0.659614 0.751604i \(-0.270720\pi\)
0.659614 + 0.751604i \(0.270720\pi\)
\(462\) 3.31627 0.154287
\(463\) −17.0976 −0.794595 −0.397297 0.917690i \(-0.630052\pi\)
−0.397297 + 0.917690i \(0.630052\pi\)
\(464\) −5.29091 −0.245624
\(465\) −9.63578 −0.446849
\(466\) −13.2651 −0.614492
\(467\) −1.43688 −0.0664910 −0.0332455 0.999447i \(-0.510584\pi\)
−0.0332455 + 0.999447i \(0.510584\pi\)
\(468\) −5.22854 −0.241690
\(469\) −48.6381 −2.24590
\(470\) 17.4483 0.804832
\(471\) 18.1424 0.835960
\(472\) 3.99008 0.183658
\(473\) −3.96864 −0.182478
\(474\) −6.87033 −0.315565
\(475\) −5.94965 −0.272989
\(476\) 21.0769 0.966060
\(477\) −2.36509 −0.108290
\(478\) 4.22415 0.193208
\(479\) 12.3868 0.565968 0.282984 0.959125i \(-0.408676\pi\)
0.282984 + 0.959125i \(0.408676\pi\)
\(480\) −1.21072 −0.0552616
\(481\) 12.0028 0.547279
\(482\) −1.92497 −0.0876799
\(483\) −16.4444 −0.748247
\(484\) 1.00000 0.0454545
\(485\) −10.8701 −0.493588
\(486\) −15.7643 −0.715083
\(487\) 19.5142 0.884273 0.442136 0.896948i \(-0.354221\pi\)
0.442136 + 0.896948i \(0.354221\pi\)
\(488\) 14.9563 0.677041
\(489\) −11.1437 −0.503936
\(490\) −15.6829 −0.708480
\(491\) −24.4885 −1.10515 −0.552575 0.833463i \(-0.686355\pi\)
−0.552575 + 0.833463i \(0.686355\pi\)
\(492\) −5.65991 −0.255168
\(493\) 26.7945 1.20676
\(494\) −4.88729 −0.219889
\(495\) −3.59363 −0.161522
\(496\) −7.95872 −0.357357
\(497\) −24.5551 −1.10145
\(498\) −6.92373 −0.310260
\(499\) 4.40246 0.197081 0.0985405 0.995133i \(-0.468583\pi\)
0.0985405 + 0.995133i \(0.468583\pi\)
\(500\) −11.6865 −0.522636
\(501\) 8.29796 0.370725
\(502\) 23.1198 1.03189
\(503\) 2.88577 0.128670 0.0643352 0.997928i \(-0.479507\pi\)
0.0643352 + 0.997928i \(0.479507\pi\)
\(504\) −9.84325 −0.438453
\(505\) −26.5952 −1.18347
\(506\) −4.95872 −0.220442
\(507\) −6.46433 −0.287091
\(508\) 11.8095 0.523962
\(509\) 21.3877 0.947993 0.473996 0.880527i \(-0.342811\pi\)
0.473996 + 0.880527i \(0.342811\pi\)
\(510\) 6.13141 0.271503
\(511\) 36.4317 1.61165
\(512\) −1.00000 −0.0441942
\(513\) −9.45079 −0.417263
\(514\) 22.0924 0.974454
\(515\) −18.7544 −0.826416
\(516\) −3.16227 −0.139211
\(517\) −11.4833 −0.505036
\(518\) 22.5964 0.992829
\(519\) 4.08999 0.179531
\(520\) −3.35908 −0.147305
\(521\) −13.5443 −0.593388 −0.296694 0.954973i \(-0.595884\pi\)
−0.296694 + 0.954973i \(0.595884\pi\)
\(522\) −12.5134 −0.547699
\(523\) −0.957478 −0.0418676 −0.0209338 0.999781i \(-0.506664\pi\)
−0.0209338 + 0.999781i \(0.506664\pi\)
\(524\) 3.94089 0.172159
\(525\) 8.92497 0.389518
\(526\) −23.2023 −1.01167
\(527\) 40.3050 1.75571
\(528\) 0.796815 0.0346769
\(529\) 1.58886 0.0690810
\(530\) −1.51945 −0.0660007
\(531\) 9.43688 0.409526
\(532\) −9.20080 −0.398905
\(533\) −15.7031 −0.680177
\(534\) −5.51002 −0.238442
\(535\) 18.5349 0.801333
\(536\) −11.6865 −0.504780
\(537\) 12.1919 0.526121
\(538\) 4.56790 0.196936
\(539\) 10.3214 0.444575
\(540\) −6.49562 −0.279527
\(541\) 1.84220 0.0792026 0.0396013 0.999216i \(-0.487391\pi\)
0.0396013 + 0.999216i \(0.487391\pi\)
\(542\) −14.5452 −0.624770
\(543\) −1.40263 −0.0601927
\(544\) 5.06426 0.217128
\(545\) −24.0309 −1.02937
\(546\) 7.33134 0.313752
\(547\) 19.4134 0.830058 0.415029 0.909808i \(-0.363771\pi\)
0.415029 + 0.909808i \(0.363771\pi\)
\(548\) −10.3504 −0.442147
\(549\) 35.3730 1.50968
\(550\) 2.69127 0.114756
\(551\) −11.6967 −0.498297
\(552\) −3.95118 −0.168173
\(553\) −35.8849 −1.52598
\(554\) 16.4873 0.700479
\(555\) 6.57342 0.279026
\(556\) −22.3651 −0.948491
\(557\) 5.26868 0.223241 0.111621 0.993751i \(-0.464396\pi\)
0.111621 + 0.993751i \(0.464396\pi\)
\(558\) −18.8230 −0.796843
\(559\) −8.77355 −0.371081
\(560\) −6.32380 −0.267229
\(561\) −4.03528 −0.170370
\(562\) 10.4270 0.439835
\(563\) −25.3972 −1.07037 −0.535183 0.844736i \(-0.679757\pi\)
−0.535183 + 0.844736i \(0.679757\pi\)
\(564\) −9.15008 −0.385288
\(565\) 20.7067 0.871138
\(566\) 13.0751 0.549585
\(567\) −15.3528 −0.644756
\(568\) −5.89998 −0.247558
\(569\) −2.28165 −0.0956516 −0.0478258 0.998856i \(-0.515229\pi\)
−0.0478258 + 0.998856i \(0.515229\pi\)
\(570\) −2.67657 −0.112109
\(571\) 14.8222 0.620289 0.310144 0.950689i \(-0.399623\pi\)
0.310144 + 0.950689i \(0.399623\pi\)
\(572\) 2.21072 0.0924349
\(573\) 15.1199 0.631642
\(574\) −29.5627 −1.23392
\(575\) −13.3452 −0.556535
\(576\) −2.36509 −0.0985452
\(577\) 13.9936 0.582562 0.291281 0.956637i \(-0.405918\pi\)
0.291281 + 0.956637i \(0.405918\pi\)
\(578\) −8.64673 −0.359657
\(579\) 7.26433 0.301895
\(580\) −8.03927 −0.333812
\(581\) −36.1638 −1.50033
\(582\) 5.70041 0.236290
\(583\) 1.00000 0.0414158
\(584\) 8.75363 0.362228
\(585\) −7.94451 −0.328465
\(586\) 0.713493 0.0294741
\(587\) −24.7750 −1.02257 −0.511287 0.859410i \(-0.670831\pi\)
−0.511287 + 0.859410i \(0.670831\pi\)
\(588\) 8.22426 0.339163
\(589\) −17.5945 −0.724969
\(590\) 6.06273 0.249599
\(591\) 13.5186 0.556080
\(592\) 5.42935 0.223145
\(593\) −4.22541 −0.173517 −0.0867583 0.996229i \(-0.527651\pi\)
−0.0867583 + 0.996229i \(0.527651\pi\)
\(594\) 4.27498 0.175405
\(595\) 32.0254 1.31291
\(596\) −1.72655 −0.0707222
\(597\) 15.0980 0.617920
\(598\) −10.9623 −0.448283
\(599\) −4.34726 −0.177624 −0.0888122 0.996048i \(-0.528307\pi\)
−0.0888122 + 0.996048i \(0.528307\pi\)
\(600\) 2.14445 0.0875466
\(601\) −34.3436 −1.40091 −0.700453 0.713698i \(-0.747019\pi\)
−0.700453 + 0.713698i \(0.747019\pi\)
\(602\) −16.5171 −0.673185
\(603\) −27.6396 −1.12557
\(604\) −10.3512 −0.421183
\(605\) 1.51945 0.0617744
\(606\) 13.9468 0.566549
\(607\) 3.95670 0.160598 0.0802988 0.996771i \(-0.474413\pi\)
0.0802988 + 0.996771i \(0.474413\pi\)
\(608\) −2.21072 −0.0896566
\(609\) 17.5460 0.711002
\(610\) 22.7254 0.920125
\(611\) −25.3864 −1.02702
\(612\) 11.9774 0.484158
\(613\) −7.33207 −0.296140 −0.148070 0.988977i \(-0.547306\pi\)
−0.148070 + 0.988977i \(0.547306\pi\)
\(614\) −11.2885 −0.455568
\(615\) −8.59995 −0.346783
\(616\) 4.16190 0.167688
\(617\) −1.94163 −0.0781670 −0.0390835 0.999236i \(-0.512444\pi\)
−0.0390835 + 0.999236i \(0.512444\pi\)
\(618\) 9.83498 0.395621
\(619\) 24.0276 0.965753 0.482876 0.875689i \(-0.339592\pi\)
0.482876 + 0.875689i \(0.339592\pi\)
\(620\) −12.0929 −0.485661
\(621\) −21.1984 −0.850663
\(622\) −33.0841 −1.32655
\(623\) −28.7797 −1.15304
\(624\) 1.76154 0.0705179
\(625\) −4.30071 −0.172028
\(626\) 34.1816 1.36617
\(627\) 1.76154 0.0703490
\(628\) 22.7687 0.908570
\(629\) −27.4956 −1.09632
\(630\) −14.9563 −0.595875
\(631\) −1.53966 −0.0612928 −0.0306464 0.999530i \(-0.509757\pi\)
−0.0306464 + 0.999530i \(0.509757\pi\)
\(632\) −8.62224 −0.342974
\(633\) −5.34060 −0.212270
\(634\) 2.22701 0.0884460
\(635\) 17.9440 0.712084
\(636\) 0.796815 0.0315958
\(637\) 22.8178 0.904073
\(638\) 5.29091 0.209469
\(639\) −13.9539 −0.552010
\(640\) −1.51945 −0.0600615
\(641\) −1.02738 −0.0405789 −0.0202894 0.999794i \(-0.506459\pi\)
−0.0202894 + 0.999794i \(0.506459\pi\)
\(642\) −9.71988 −0.383613
\(643\) −47.9737 −1.89190 −0.945949 0.324316i \(-0.894866\pi\)
−0.945949 + 0.324316i \(0.894866\pi\)
\(644\) −20.6377 −0.813239
\(645\) −4.80491 −0.189193
\(646\) 11.1957 0.440488
\(647\) −32.9626 −1.29589 −0.647947 0.761686i \(-0.724372\pi\)
−0.647947 + 0.761686i \(0.724372\pi\)
\(648\) −3.68889 −0.144913
\(649\) −3.99008 −0.156624
\(650\) 5.94965 0.233364
\(651\) 26.3932 1.03443
\(652\) −13.9853 −0.547707
\(653\) −31.5364 −1.23412 −0.617058 0.786918i \(-0.711676\pi\)
−0.617058 + 0.786918i \(0.711676\pi\)
\(654\) 12.6020 0.492779
\(655\) 5.98799 0.233970
\(656\) −7.10316 −0.277332
\(657\) 20.7031 0.807704
\(658\) −47.7924 −1.86314
\(659\) −16.1691 −0.629858 −0.314929 0.949115i \(-0.601981\pi\)
−0.314929 + 0.949115i \(0.601981\pi\)
\(660\) 1.21072 0.0471273
\(661\) −30.7602 −1.19643 −0.598217 0.801334i \(-0.704124\pi\)
−0.598217 + 0.801334i \(0.704124\pi\)
\(662\) 13.9483 0.542117
\(663\) −8.92088 −0.346458
\(664\) −8.68926 −0.337208
\(665\) −13.9802 −0.542127
\(666\) 12.8409 0.497574
\(667\) −26.2361 −1.01587
\(668\) 10.4139 0.402926
\(669\) −7.15485 −0.276622
\(670\) −17.7571 −0.686015
\(671\) −14.9563 −0.577383
\(672\) 3.31627 0.127928
\(673\) 28.0272 1.08037 0.540184 0.841547i \(-0.318355\pi\)
0.540184 + 0.841547i \(0.318355\pi\)
\(674\) −3.87260 −0.149167
\(675\) 11.5051 0.442833
\(676\) −8.11271 −0.312027
\(677\) −3.56943 −0.137184 −0.0685922 0.997645i \(-0.521851\pi\)
−0.0685922 + 0.997645i \(0.521851\pi\)
\(678\) −10.8588 −0.417030
\(679\) 29.7742 1.14263
\(680\) 7.69489 0.295086
\(681\) 1.85203 0.0709698
\(682\) 7.95872 0.304755
\(683\) −40.0662 −1.53309 −0.766545 0.642191i \(-0.778026\pi\)
−0.766545 + 0.642191i \(0.778026\pi\)
\(684\) −5.22854 −0.199918
\(685\) −15.7269 −0.600895
\(686\) 13.8234 0.527780
\(687\) 13.7706 0.525381
\(688\) −3.96864 −0.151303
\(689\) 2.21072 0.0842218
\(690\) −6.00362 −0.228554
\(691\) 9.66477 0.367665 0.183833 0.982958i \(-0.441150\pi\)
0.183833 + 0.982958i \(0.441150\pi\)
\(692\) 5.13292 0.195124
\(693\) 9.84325 0.373914
\(694\) 3.40246 0.129155
\(695\) −33.9826 −1.28903
\(696\) 4.21587 0.159802
\(697\) 35.9723 1.36255
\(698\) 26.4401 1.00077
\(699\) 10.5698 0.399787
\(700\) 11.2008 0.423351
\(701\) 27.5407 1.04020 0.520099 0.854106i \(-0.325895\pi\)
0.520099 + 0.854106i \(0.325895\pi\)
\(702\) 9.45079 0.356697
\(703\) 12.0028 0.452693
\(704\) 1.00000 0.0376889
\(705\) −13.9031 −0.523621
\(706\) −29.8253 −1.12249
\(707\) 72.8464 2.73967
\(708\) −3.17936 −0.119488
\(709\) −11.4950 −0.431705 −0.215852 0.976426i \(-0.569253\pi\)
−0.215852 + 0.976426i \(0.569253\pi\)
\(710\) −8.96472 −0.336440
\(711\) −20.3923 −0.764773
\(712\) −6.91505 −0.259152
\(713\) −39.4650 −1.47798
\(714\) −16.7944 −0.628516
\(715\) 3.35908 0.125622
\(716\) 15.3008 0.571819
\(717\) −3.36586 −0.125700
\(718\) −31.9651 −1.19293
\(719\) −17.1674 −0.640237 −0.320118 0.947378i \(-0.603723\pi\)
−0.320118 + 0.947378i \(0.603723\pi\)
\(720\) −3.59363 −0.133927
\(721\) 51.3698 1.91311
\(722\) 14.1127 0.525221
\(723\) 1.53384 0.0570443
\(724\) −1.76030 −0.0654210
\(725\) 14.2393 0.528833
\(726\) −0.796815 −0.0295726
\(727\) −30.5576 −1.13332 −0.566660 0.823952i \(-0.691765\pi\)
−0.566660 + 0.823952i \(0.691765\pi\)
\(728\) 9.20080 0.341004
\(729\) 1.49457 0.0553546
\(730\) 13.3007 0.492281
\(731\) 20.0982 0.743359
\(732\) −11.9174 −0.440481
\(733\) 31.0072 1.14528 0.572638 0.819808i \(-0.305920\pi\)
0.572638 + 0.819808i \(0.305920\pi\)
\(734\) 34.8492 1.28631
\(735\) 12.4964 0.460935
\(736\) −4.95872 −0.182781
\(737\) 11.6865 0.430478
\(738\) −16.7996 −0.618401
\(739\) 18.1115 0.666241 0.333121 0.942884i \(-0.391898\pi\)
0.333121 + 0.942884i \(0.391898\pi\)
\(740\) 8.24962 0.303262
\(741\) 3.89426 0.143059
\(742\) 4.16190 0.152788
\(743\) 34.2258 1.25562 0.627812 0.778365i \(-0.283951\pi\)
0.627812 + 0.778365i \(0.283951\pi\)
\(744\) 6.34163 0.232495
\(745\) −2.62341 −0.0961142
\(746\) −33.0418 −1.20975
\(747\) −20.5508 −0.751916
\(748\) −5.06426 −0.185168
\(749\) −50.7686 −1.85504
\(750\) 9.31198 0.340026
\(751\) −32.8106 −1.19728 −0.598638 0.801019i \(-0.704291\pi\)
−0.598638 + 0.801019i \(0.704291\pi\)
\(752\) −11.4833 −0.418754
\(753\) −18.4222 −0.671341
\(754\) 11.6967 0.425969
\(755\) −15.7281 −0.572404
\(756\) 17.7920 0.647091
\(757\) −31.0551 −1.12872 −0.564359 0.825529i \(-0.690877\pi\)
−0.564359 + 0.825529i \(0.690877\pi\)
\(758\) −22.5011 −0.817278
\(759\) 3.95118 0.143419
\(760\) −3.35908 −0.121847
\(761\) −23.2666 −0.843413 −0.421707 0.906732i \(-0.638569\pi\)
−0.421707 + 0.906732i \(0.638569\pi\)
\(762\) −9.40999 −0.340888
\(763\) 65.8226 2.38294
\(764\) 18.9754 0.686506
\(765\) 18.1991 0.657989
\(766\) −18.6420 −0.673562
\(767\) −8.82095 −0.318506
\(768\) 0.796815 0.0287526
\(769\) −19.1045 −0.688926 −0.344463 0.938800i \(-0.611939\pi\)
−0.344463 + 0.938800i \(0.611939\pi\)
\(770\) 6.32380 0.227894
\(771\) −17.6035 −0.633976
\(772\) 9.11670 0.328117
\(773\) 43.3669 1.55980 0.779899 0.625905i \(-0.215270\pi\)
0.779899 + 0.625905i \(0.215270\pi\)
\(774\) −9.38616 −0.337379
\(775\) 21.4191 0.769395
\(776\) 7.15400 0.256814
\(777\) −18.0052 −0.645931
\(778\) 1.92582 0.0690440
\(779\) −15.7031 −0.562622
\(780\) 2.67657 0.0958364
\(781\) 5.89998 0.211118
\(782\) 25.1122 0.898011
\(783\) 22.6185 0.808320
\(784\) 10.3214 0.368622
\(785\) 34.5959 1.23478
\(786\) −3.14016 −0.112006
\(787\) 17.2238 0.613961 0.306981 0.951716i \(-0.400681\pi\)
0.306981 + 0.951716i \(0.400681\pi\)
\(788\) 16.9658 0.604380
\(789\) 18.4880 0.658189
\(790\) −13.1011 −0.466115
\(791\) −56.7174 −2.01664
\(792\) 2.36509 0.0840397
\(793\) −33.0643 −1.17415
\(794\) 11.4186 0.405230
\(795\) 1.21072 0.0429398
\(796\) 18.9479 0.671592
\(797\) 54.7342 1.93878 0.969392 0.245518i \(-0.0789580\pi\)
0.969392 + 0.245518i \(0.0789580\pi\)
\(798\) 7.33134 0.259527
\(799\) 58.1545 2.05736
\(800\) 2.69127 0.0951508
\(801\) −16.3547 −0.577864
\(802\) 9.62740 0.339955
\(803\) −8.75363 −0.308909
\(804\) 9.31198 0.328408
\(805\) −31.3579 −1.10522
\(806\) 17.5945 0.619740
\(807\) −3.63977 −0.128126
\(808\) 17.5032 0.615759
\(809\) −23.6013 −0.829777 −0.414888 0.909872i \(-0.636179\pi\)
−0.414888 + 0.909872i \(0.636179\pi\)
\(810\) −5.60508 −0.196942
\(811\) −14.1245 −0.495978 −0.247989 0.968763i \(-0.579770\pi\)
−0.247989 + 0.968763i \(0.579770\pi\)
\(812\) 22.0202 0.772758
\(813\) 11.5898 0.406473
\(814\) −5.42935 −0.190298
\(815\) −21.2500 −0.744355
\(816\) −4.03528 −0.141263
\(817\) −8.77355 −0.306948
\(818\) −10.0186 −0.350291
\(819\) 21.7607 0.760380
\(820\) −10.7929 −0.376904
\(821\) −22.0807 −0.770621 −0.385311 0.922787i \(-0.625906\pi\)
−0.385311 + 0.922787i \(0.625906\pi\)
\(822\) 8.24735 0.287660
\(823\) 15.0373 0.524166 0.262083 0.965045i \(-0.415591\pi\)
0.262083 + 0.965045i \(0.415591\pi\)
\(824\) 12.3429 0.429984
\(825\) −2.14445 −0.0746600
\(826\) −16.6063 −0.577808
\(827\) 6.76068 0.235092 0.117546 0.993067i \(-0.462497\pi\)
0.117546 + 0.993067i \(0.462497\pi\)
\(828\) −11.7278 −0.407569
\(829\) 8.53512 0.296437 0.148219 0.988955i \(-0.452646\pi\)
0.148219 + 0.988955i \(0.452646\pi\)
\(830\) −13.2029 −0.458279
\(831\) −13.1373 −0.455729
\(832\) 2.21072 0.0766430
\(833\) −52.2703 −1.81106
\(834\) 17.8208 0.617085
\(835\) 15.8234 0.547592
\(836\) 2.21072 0.0764594
\(837\) 34.0234 1.17602
\(838\) 31.6348 1.09281
\(839\) 54.9973 1.89872 0.949358 0.314196i \(-0.101735\pi\)
0.949358 + 0.314196i \(0.101735\pi\)
\(840\) 5.03890 0.173859
\(841\) −1.00632 −0.0347006
\(842\) 13.9853 0.481966
\(843\) −8.30836 −0.286155
\(844\) −6.70243 −0.230707
\(845\) −12.3269 −0.424057
\(846\) −27.1590 −0.933747
\(847\) −4.16190 −0.143005
\(848\) 1.00000 0.0343401
\(849\) −10.4184 −0.357558
\(850\) −13.6293 −0.467481
\(851\) 26.9226 0.922894
\(852\) 4.70119 0.161060
\(853\) 7.05874 0.241687 0.120843 0.992672i \(-0.461440\pi\)
0.120843 + 0.992672i \(0.461440\pi\)
\(854\) −62.2468 −2.13004
\(855\) −7.94451 −0.271697
\(856\) −12.1984 −0.416933
\(857\) −42.6888 −1.45822 −0.729111 0.684396i \(-0.760066\pi\)
−0.729111 + 0.684396i \(0.760066\pi\)
\(858\) −1.76154 −0.0601378
\(859\) 45.2727 1.54468 0.772342 0.635207i \(-0.219085\pi\)
0.772342 + 0.635207i \(0.219085\pi\)
\(860\) −6.03014 −0.205626
\(861\) 23.5560 0.802785
\(862\) −36.7765 −1.25261
\(863\) 22.6287 0.770291 0.385146 0.922856i \(-0.374151\pi\)
0.385146 + 0.922856i \(0.374151\pi\)
\(864\) 4.27498 0.145438
\(865\) 7.79922 0.265181
\(866\) −32.7532 −1.11300
\(867\) 6.88985 0.233991
\(868\) 33.1234 1.12428
\(869\) 8.62224 0.292490
\(870\) 6.40581 0.217177
\(871\) 25.8356 0.875406
\(872\) 15.8155 0.535581
\(873\) 16.9198 0.572649
\(874\) −10.9623 −0.370807
\(875\) 48.6381 1.64427
\(876\) −6.97503 −0.235664
\(877\) 25.9119 0.874984 0.437492 0.899222i \(-0.355867\pi\)
0.437492 + 0.899222i \(0.355867\pi\)
\(878\) 27.5631 0.930211
\(879\) −0.568522 −0.0191758
\(880\) 1.51945 0.0512207
\(881\) −18.3170 −0.617117 −0.308558 0.951205i \(-0.599847\pi\)
−0.308558 + 0.951205i \(0.599847\pi\)
\(882\) 24.4110 0.821962
\(883\) −42.7723 −1.43940 −0.719702 0.694283i \(-0.755721\pi\)
−0.719702 + 0.694283i \(0.755721\pi\)
\(884\) −11.1957 −0.376551
\(885\) −4.83087 −0.162388
\(886\) 1.09803 0.0368889
\(887\) −3.72790 −0.125171 −0.0625854 0.998040i \(-0.519935\pi\)
−0.0625854 + 0.998040i \(0.519935\pi\)
\(888\) −4.32618 −0.145177
\(889\) −49.1500 −1.64844
\(890\) −10.5071 −0.352198
\(891\) 3.68889 0.123582
\(892\) −8.97931 −0.300649
\(893\) −25.3864 −0.849524
\(894\) 1.37574 0.0460117
\(895\) 23.2488 0.777123
\(896\) 4.16190 0.139039
\(897\) 8.73496 0.291652
\(898\) 30.4087 1.01475
\(899\) 42.1088 1.40441
\(900\) 6.36509 0.212170
\(901\) −5.06426 −0.168715
\(902\) 7.10316 0.236509
\(903\) 13.1610 0.437972
\(904\) −13.6278 −0.453253
\(905\) −2.67469 −0.0889095
\(906\) 8.24797 0.274021
\(907\) 3.11267 0.103355 0.0516773 0.998664i \(-0.483543\pi\)
0.0516773 + 0.998664i \(0.483543\pi\)
\(908\) 2.32429 0.0771341
\(909\) 41.3965 1.37303
\(910\) 13.9802 0.463438
\(911\) 9.60870 0.318351 0.159175 0.987250i \(-0.449117\pi\)
0.159175 + 0.987250i \(0.449117\pi\)
\(912\) 1.76154 0.0583303
\(913\) 8.68926 0.287572
\(914\) 34.7797 1.15041
\(915\) −18.1079 −0.598630
\(916\) 17.2820 0.571014
\(917\) −16.4016 −0.541629
\(918\) −21.6496 −0.714544
\(919\) −28.7041 −0.946860 −0.473430 0.880831i \(-0.656984\pi\)
−0.473430 + 0.880831i \(0.656984\pi\)
\(920\) −7.53452 −0.248406
\(921\) 8.99487 0.296391
\(922\) −28.3250 −0.932836
\(923\) 13.0432 0.429322
\(924\) −3.31627 −0.109097
\(925\) −14.6118 −0.480434
\(926\) 17.0976 0.561863
\(927\) 29.1919 0.958789
\(928\) 5.29091 0.173682
\(929\) −14.0516 −0.461018 −0.230509 0.973070i \(-0.574039\pi\)
−0.230509 + 0.973070i \(0.574039\pi\)
\(930\) 9.63578 0.315970
\(931\) 22.8178 0.747822
\(932\) 13.2651 0.434512
\(933\) 26.3619 0.863051
\(934\) 1.43688 0.0470162
\(935\) −7.69489 −0.251650
\(936\) 5.22854 0.170900
\(937\) −37.9689 −1.24039 −0.620195 0.784448i \(-0.712947\pi\)
−0.620195 + 0.784448i \(0.712947\pi\)
\(938\) 48.6381 1.58809
\(939\) −27.2364 −0.888828
\(940\) −17.4483 −0.569102
\(941\) −3.56742 −0.116295 −0.0581473 0.998308i \(-0.518519\pi\)
−0.0581473 + 0.998308i \(0.518519\pi\)
\(942\) −18.1424 −0.591113
\(943\) −35.2226 −1.14700
\(944\) −3.99008 −0.129866
\(945\) 27.0341 0.879420
\(946\) 3.96864 0.129031
\(947\) 15.0107 0.487782 0.243891 0.969803i \(-0.421576\pi\)
0.243891 + 0.969803i \(0.421576\pi\)
\(948\) 6.87033 0.223138
\(949\) −19.3518 −0.628187
\(950\) 5.94965 0.193032
\(951\) −1.77452 −0.0575427
\(952\) −21.0769 −0.683108
\(953\) −44.3152 −1.43551 −0.717756 0.696295i \(-0.754831\pi\)
−0.717756 + 0.696295i \(0.754831\pi\)
\(954\) 2.36509 0.0765725
\(955\) 28.8322 0.932987
\(956\) −4.22415 −0.136619
\(957\) −4.21587 −0.136280
\(958\) −12.3868 −0.400200
\(959\) 43.0773 1.39104
\(960\) 1.21072 0.0390759
\(961\) 32.3412 1.04326
\(962\) −12.0028 −0.386985
\(963\) −28.8503 −0.929688
\(964\) 1.92497 0.0619990
\(965\) 13.8524 0.445924
\(966\) 16.4444 0.529090
\(967\) 4.14971 0.133446 0.0667229 0.997772i \(-0.478746\pi\)
0.0667229 + 0.997772i \(0.478746\pi\)
\(968\) −1.00000 −0.0321412
\(969\) −8.92088 −0.286580
\(970\) 10.8701 0.349019
\(971\) −9.55910 −0.306766 −0.153383 0.988167i \(-0.549017\pi\)
−0.153383 + 0.988167i \(0.549017\pi\)
\(972\) 15.7643 0.505640
\(973\) 93.0813 2.98405
\(974\) −19.5142 −0.625275
\(975\) −4.74077 −0.151826
\(976\) −14.9563 −0.478741
\(977\) 14.1791 0.453628 0.226814 0.973938i \(-0.427169\pi\)
0.226814 + 0.973938i \(0.427169\pi\)
\(978\) 11.1437 0.356337
\(979\) 6.91505 0.221006
\(980\) 15.6829 0.500971
\(981\) 37.4050 1.19425
\(982\) 24.4885 0.781459
\(983\) 22.7709 0.726278 0.363139 0.931735i \(-0.381705\pi\)
0.363139 + 0.931735i \(0.381705\pi\)
\(984\) 5.65991 0.180431
\(985\) 25.7786 0.821376
\(986\) −26.7945 −0.853311
\(987\) 38.0817 1.21215
\(988\) 4.88729 0.155485
\(989\) −19.6793 −0.625766
\(990\) 3.59363 0.114213
\(991\) −12.4559 −0.395676 −0.197838 0.980235i \(-0.563392\pi\)
−0.197838 + 0.980235i \(0.563392\pi\)
\(992\) 7.95872 0.252689
\(993\) −11.1142 −0.352699
\(994\) 24.5551 0.778841
\(995\) 28.7905 0.912719
\(996\) 6.92373 0.219387
\(997\) 6.38845 0.202324 0.101162 0.994870i \(-0.467744\pi\)
0.101162 + 0.994870i \(0.467744\pi\)
\(998\) −4.40246 −0.139357
\(999\) −23.2104 −0.734343
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1166.2.a.h.1.3 4
4.3 odd 2 9328.2.a.z.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1166.2.a.h.1.3 4 1.1 even 1 trivial
9328.2.a.z.1.2 4 4.3 odd 2