Properties

Label 1152.4.a.r
Level $1152$
Weight $4$
Character orbit 1152.a
Self dual yes
Analytic conductor $67.970$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Defining polynomial: \(x^{2} - 3\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 128)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -2 + 8 \beta ) q^{5} + ( 4 - 8 \beta ) q^{7} +O(q^{10})\) \( q + ( -2 + 8 \beta ) q^{5} + ( 4 - 8 \beta ) q^{7} + ( 46 - 4 \beta ) q^{11} + ( 50 + 24 \beta ) q^{13} + ( -46 + 48 \beta ) q^{17} + ( -2 + 28 \beta ) q^{19} + ( 4 - 72 \beta ) q^{23} + ( 71 - 32 \beta ) q^{25} + ( -42 + 40 \beta ) q^{29} + ( 192 - 64 \beta ) q^{31} + ( -200 + 48 \beta ) q^{35} + ( -86 + 56 \beta ) q^{37} + ( 150 + 32 \beta ) q^{41} + ( -150 + 20 \beta ) q^{43} + ( -8 - 176 \beta ) q^{47} + ( -135 - 64 \beta ) q^{49} + ( 6 - 56 \beta ) q^{53} + ( -188 + 376 \beta ) q^{55} + ( -322 - 132 \beta ) q^{59} + ( 146 + 280 \beta ) q^{61} + ( 476 + 352 \beta ) q^{65} + ( 86 + 332 \beta ) q^{67} + ( 204 + 168 \beta ) q^{71} + ( 206 + 208 \beta ) q^{73} + ( 280 - 384 \beta ) q^{77} + ( 200 - 144 \beta ) q^{79} + ( 474 + 52 \beta ) q^{83} + ( 1244 - 464 \beta ) q^{85} + ( -286 - 464 \beta ) q^{89} + ( -376 - 304 \beta ) q^{91} + ( 676 - 72 \beta ) q^{95} + ( 1102 - 368 \beta ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{5} + 8q^{7} + O(q^{10}) \) \( 2q - 4q^{5} + 8q^{7} + 92q^{11} + 100q^{13} - 92q^{17} - 4q^{19} + 8q^{23} + 142q^{25} - 84q^{29} + 384q^{31} - 400q^{35} - 172q^{37} + 300q^{41} - 300q^{43} - 16q^{47} - 270q^{49} + 12q^{53} - 376q^{55} - 644q^{59} + 292q^{61} + 952q^{65} + 172q^{67} + 408q^{71} + 412q^{73} + 560q^{77} + 400q^{79} + 948q^{83} + 2488q^{85} - 572q^{89} - 752q^{91} + 1352q^{95} + 2204q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0 0 −15.8564 0 17.8564 0 0 0
1.2 0 0 0 11.8564 0 −9.85641 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.4.a.r 2
3.b odd 2 1 128.4.a.f yes 2
4.b odd 2 1 1152.4.a.q 2
8.b even 2 1 1152.4.a.t 2
8.d odd 2 1 1152.4.a.s 2
12.b even 2 1 128.4.a.h yes 2
24.f even 2 1 128.4.a.e 2
24.h odd 2 1 128.4.a.g yes 2
48.i odd 4 2 256.4.b.h 4
48.k even 4 2 256.4.b.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.4.a.e 2 24.f even 2 1
128.4.a.f yes 2 3.b odd 2 1
128.4.a.g yes 2 24.h odd 2 1
128.4.a.h yes 2 12.b even 2 1
256.4.b.h 4 48.i odd 4 2
256.4.b.i 4 48.k even 4 2
1152.4.a.q 2 4.b odd 2 1
1152.4.a.r 2 1.a even 1 1 trivial
1152.4.a.s 2 8.d odd 2 1
1152.4.a.t 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1152))\):

\( T_{5}^{2} + 4 T_{5} - 188 \)
\( T_{7}^{2} - 8 T_{7} - 176 \)
\( T_{13}^{2} - 100 T_{13} + 772 \)