Properties

Label 2-1152-1.1-c3-0-23
Degree $2$
Conductor $1152$
Sign $1$
Analytic cond. $67.9702$
Root an. cond. $8.24440$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11.8·5-s − 9.85·7-s + 39.0·11-s + 91.5·13-s + 37.1·17-s + 46.4·19-s − 120.·23-s + 15.5·25-s + 27.2·29-s + 81.1·31-s − 116.·35-s + 10.9·37-s + 205.·41-s − 115.·43-s − 312.·47-s − 245.·49-s − 90.9·53-s + 463.·55-s − 550.·59-s + 630.·61-s + 1.08e3·65-s + 661.·67-s + 494.·71-s + 566.·73-s − 385.·77-s − 49.4·79-s + 564.·83-s + ⋯
L(s)  = 1  + 1.06·5-s − 0.532·7-s + 1.07·11-s + 1.95·13-s + 0.529·17-s + 0.561·19-s − 1.09·23-s + 0.124·25-s + 0.174·29-s + 0.470·31-s − 0.564·35-s + 0.0488·37-s + 0.782·41-s − 0.409·43-s − 0.970·47-s − 0.716·49-s − 0.235·53-s + 1.13·55-s − 1.21·59-s + 1.32·61-s + 2.07·65-s + 1.20·67-s + 0.827·71-s + 0.907·73-s − 0.569·77-s − 0.0703·79-s + 0.745·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(67.9702\)
Root analytic conductor: \(8.24440\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1152,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.082115655\)
\(L(\frac12)\) \(\approx\) \(3.082115655\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 11.8T + 125T^{2} \)
7 \( 1 + 9.85T + 343T^{2} \)
11 \( 1 - 39.0T + 1.33e3T^{2} \)
13 \( 1 - 91.5T + 2.19e3T^{2} \)
17 \( 1 - 37.1T + 4.91e3T^{2} \)
19 \( 1 - 46.4T + 6.85e3T^{2} \)
23 \( 1 + 120.T + 1.21e4T^{2} \)
29 \( 1 - 27.2T + 2.43e4T^{2} \)
31 \( 1 - 81.1T + 2.97e4T^{2} \)
37 \( 1 - 10.9T + 5.06e4T^{2} \)
41 \( 1 - 205.T + 6.89e4T^{2} \)
43 \( 1 + 115.T + 7.95e4T^{2} \)
47 \( 1 + 312.T + 1.03e5T^{2} \)
53 \( 1 + 90.9T + 1.48e5T^{2} \)
59 \( 1 + 550.T + 2.05e5T^{2} \)
61 \( 1 - 630.T + 2.26e5T^{2} \)
67 \( 1 - 661.T + 3.00e5T^{2} \)
71 \( 1 - 494.T + 3.57e5T^{2} \)
73 \( 1 - 566.T + 3.89e5T^{2} \)
79 \( 1 + 49.4T + 4.93e5T^{2} \)
83 \( 1 - 564.T + 5.71e5T^{2} \)
89 \( 1 + 1.08e3T + 7.04e5T^{2} \)
97 \( 1 - 464.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.573246124929127709405737165841, −8.711883612088204410309204229018, −7.900795239583206496533982475286, −6.45662512772631035007470417003, −6.29489710607757447726469706472, −5.37733307028289133126446210314, −4.00351961040418126977313039840, −3.27090056278619453963928088953, −1.86172203544796204926168754380, −0.983132755291107895015842329883, 0.983132755291107895015842329883, 1.86172203544796204926168754380, 3.27090056278619453963928088953, 4.00351961040418126977313039840, 5.37733307028289133126446210314, 6.29489710607757447726469706472, 6.45662512772631035007470417003, 7.900795239583206496533982475286, 8.711883612088204410309204229018, 9.573246124929127709405737165841

Graph of the $Z$-function along the critical line