Properties

Label 1152.4.a
Level $1152$
Weight $4$
Character orbit 1152.a
Rep. character $\chi_{1152}(1,\cdot)$
Character field $\Q$
Dimension $60$
Newform subspaces $32$
Sturm bound $768$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 32 \)
Sturm bound: \(768\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(7\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1152))\).

Total New Old
Modular forms 608 60 548
Cusp forms 544 60 484
Eisenstein series 64 0 64

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(12\)
\(+\)\(-\)\(-\)\(17\)
\(-\)\(+\)\(-\)\(12\)
\(-\)\(-\)\(+\)\(19\)
Plus space\(+\)\(31\)
Minus space\(-\)\(29\)

Trace form

\( 60 q + 104 q^{17} + 1412 q^{25} - 552 q^{41} + 4380 q^{49} - 2512 q^{65} - 1752 q^{73} - 1432 q^{89} - 7960 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1152))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
1152.4.a.a 1152.a 1.a $1$ $67.970$ \(\Q\) None 384.4.a.a \(0\) \(0\) \(-8\) \(-10\) $-$ $-$ $\mathrm{SU}(2)$ \(q-8q^{5}-10q^{7}+68q^{11}-46q^{13}+\cdots\)
1152.4.a.b 1152.a 1.a $1$ $67.970$ \(\Q\) None 384.4.a.a \(0\) \(0\) \(-8\) \(10\) $-$ $-$ $\mathrm{SU}(2)$ \(q-8q^{5}+10q^{7}-68q^{11}-46q^{13}+\cdots\)
1152.4.a.c 1152.a 1.a $1$ $67.970$ \(\Q\) None 128.4.a.a \(0\) \(0\) \(-6\) \(-20\) $+$ $-$ $\mathrm{SU}(2)$ \(q-6q^{5}-20q^{7}+14q^{11}+54q^{13}+\cdots\)
1152.4.a.d 1152.a 1.a $1$ $67.970$ \(\Q\) None 128.4.a.a \(0\) \(0\) \(-6\) \(20\) $-$ $-$ $\mathrm{SU}(2)$ \(q-6q^{5}+20q^{7}-14q^{11}+54q^{13}+\cdots\)
1152.4.a.e 1152.a 1.a $1$ $67.970$ \(\Q\) None 384.4.a.b \(0\) \(0\) \(-4\) \(-10\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{5}-10q^{7}+4q^{11}+26q^{13}+\cdots\)
1152.4.a.f 1152.a 1.a $1$ $67.970$ \(\Q\) None 384.4.a.b \(0\) \(0\) \(-4\) \(10\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{5}+10q^{7}-4q^{11}+26q^{13}+\cdots\)
1152.4.a.g 1152.a 1.a $1$ $67.970$ \(\Q\) None 384.4.a.b \(0\) \(0\) \(4\) \(-10\) $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{5}-10q^{7}-4q^{11}-26q^{13}+\cdots\)
1152.4.a.h 1152.a 1.a $1$ $67.970$ \(\Q\) None 384.4.a.b \(0\) \(0\) \(4\) \(10\) $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{5}+10q^{7}+4q^{11}-26q^{13}+\cdots\)
1152.4.a.i 1152.a 1.a $1$ $67.970$ \(\Q\) None 128.4.a.a \(0\) \(0\) \(6\) \(-20\) $+$ $-$ $\mathrm{SU}(2)$ \(q+6q^{5}-20q^{7}-14q^{11}-54q^{13}+\cdots\)
1152.4.a.j 1152.a 1.a $1$ $67.970$ \(\Q\) None 128.4.a.a \(0\) \(0\) \(6\) \(20\) $+$ $-$ $\mathrm{SU}(2)$ \(q+6q^{5}+20q^{7}+14q^{11}-54q^{13}+\cdots\)
1152.4.a.k 1152.a 1.a $1$ $67.970$ \(\Q\) None 384.4.a.a \(0\) \(0\) \(8\) \(-10\) $+$ $-$ $\mathrm{SU}(2)$ \(q+8q^{5}-10q^{7}-68q^{11}+46q^{13}+\cdots\)
1152.4.a.l 1152.a 1.a $1$ $67.970$ \(\Q\) None 384.4.a.a \(0\) \(0\) \(8\) \(10\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{5}+10q^{7}+68q^{11}+46q^{13}+\cdots\)
1152.4.a.m 1152.a 1.a $2$ $67.970$ \(\Q(\sqrt{7}) \) None 384.4.a.i \(0\) \(0\) \(-16\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-8+\beta )q^{5}+(-2-3\beta )q^{7}+(12+\cdots)q^{11}+\cdots\)
1152.4.a.n 1152.a 1.a $2$ $67.970$ \(\Q(\sqrt{7}) \) None 384.4.a.i \(0\) \(0\) \(-16\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-8+\beta )q^{5}+(2+3\beta )q^{7}+(-12+\cdots)q^{11}+\cdots\)
1152.4.a.o 1152.a 1.a $2$ $67.970$ \(\Q(\sqrt{15}) \) None 384.4.a.j \(0\) \(0\) \(-8\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-4+\beta )q^{5}+(-2+\beta )q^{7}+(20-2\beta )q^{11}+\cdots\)
1152.4.a.p 1152.a 1.a $2$ $67.970$ \(\Q(\sqrt{15}) \) None 384.4.a.j \(0\) \(0\) \(-8\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-4+\beta )q^{5}+(2-\beta )q^{7}+(-20+2\beta )q^{11}+\cdots\)
1152.4.a.q 1152.a 1.a $2$ $67.970$ \(\Q(\sqrt{3}) \) None 128.4.a.e \(0\) \(0\) \(-4\) \(-8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2+2\beta )q^{5}+(-4+2\beta )q^{7}+(-46+\cdots)q^{11}+\cdots\)
1152.4.a.r 1152.a 1.a $2$ $67.970$ \(\Q(\sqrt{3}) \) None 128.4.a.e \(0\) \(0\) \(-4\) \(8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2+2\beta )q^{5}+(4-2\beta )q^{7}+(46-\beta )q^{11}+\cdots\)
1152.4.a.s 1152.a 1.a $2$ $67.970$ \(\Q(\sqrt{3}) \) None 128.4.a.e \(0\) \(0\) \(4\) \(-8\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(2+2\beta )q^{5}+(-4-2\beta )q^{7}+(46+\beta )q^{11}+\cdots\)
1152.4.a.t 1152.a 1.a $2$ $67.970$ \(\Q(\sqrt{3}) \) None 128.4.a.e \(0\) \(0\) \(4\) \(8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(2+2\beta )q^{5}+(4+2\beta )q^{7}+(-46-\beta )q^{11}+\cdots\)
1152.4.a.u 1152.a 1.a $2$ $67.970$ \(\Q(\sqrt{15}) \) None 384.4.a.j \(0\) \(0\) \(8\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{5}+(-2-\beta )q^{7}+(-20-2\beta )q^{11}+\cdots\)
1152.4.a.v 1152.a 1.a $2$ $67.970$ \(\Q(\sqrt{15}) \) None 384.4.a.j \(0\) \(0\) \(8\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{5}+(2+\beta )q^{7}+(20+2\beta )q^{11}+\cdots\)
1152.4.a.w 1152.a 1.a $2$ $67.970$ \(\Q(\sqrt{7}) \) None 384.4.a.i \(0\) \(0\) \(16\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(8+\beta )q^{5}+(-2+3\beta )q^{7}+(-12+\cdots)q^{11}+\cdots\)
1152.4.a.x 1152.a 1.a $2$ $67.970$ \(\Q(\sqrt{7}) \) None 384.4.a.i \(0\) \(0\) \(16\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(8+\beta )q^{5}+(2-3\beta )q^{7}+(12-2\beta )q^{11}+\cdots\)
1152.4.a.y 1152.a 1.a $3$ $67.970$ 3.3.4764.1 None 1152.4.a.y \(0\) \(0\) \(-10\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{5}+(-2+\beta _{1}+\beta _{2})q^{7}+\cdots\)
1152.4.a.z 1152.a 1.a $3$ $67.970$ 3.3.4764.1 None 1152.4.a.y \(0\) \(0\) \(-10\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{5}+(-2+\beta _{1}+\beta _{2})q^{7}+\cdots\)
1152.4.a.ba 1152.a 1.a $3$ $67.970$ 3.3.4764.1 None 1152.4.a.y \(0\) \(0\) \(-10\) \(6\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{5}+(2-\beta _{1}-\beta _{2})q^{7}+\cdots\)
1152.4.a.bb 1152.a 1.a $3$ $67.970$ 3.3.4764.1 None 1152.4.a.y \(0\) \(0\) \(-10\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta _{1})q^{5}+(2-\beta _{1}-\beta _{2})q^{7}+\cdots\)
1152.4.a.bc 1152.a 1.a $3$ $67.970$ 3.3.4764.1 None 1152.4.a.y \(0\) \(0\) \(10\) \(-6\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(3+\beta _{1})q^{5}+(-2+\beta _{1}+\beta _{2})q^{7}+\cdots\)
1152.4.a.bd 1152.a 1.a $3$ $67.970$ 3.3.4764.1 None 1152.4.a.y \(0\) \(0\) \(10\) \(-6\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(3+\beta _{1})q^{5}+(-2+\beta _{1}+\beta _{2})q^{7}+\cdots\)
1152.4.a.be 1152.a 1.a $3$ $67.970$ 3.3.4764.1 None 1152.4.a.y \(0\) \(0\) \(10\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(3+\beta _{1})q^{5}+(2-\beta _{1}-\beta _{2})q^{7}+(6+\cdots)q^{11}+\cdots\)
1152.4.a.bf 1152.a 1.a $3$ $67.970$ 3.3.4764.1 None 1152.4.a.y \(0\) \(0\) \(10\) \(6\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(3+\beta _{1})q^{5}+(2-\beta _{1}-\beta _{2})q^{7}+(6+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1152))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1152)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 14}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(288))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(384))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(576))\)\(^{\oplus 2}\)