Properties

Label 1150.4.b.s.599.12
Level $1150$
Weight $4$
Character 1150.599
Analytic conductor $67.852$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1150,4,Mod(599,1150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1150.599"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-48,0,-20,0,0,-122,0,-98] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 219x^{10} + 17685x^{8} + 640366x^{6} + 10000368x^{4} + 54897345x^{2} + 95531076 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.12
Root \(8.71212i\) of defining polynomial
Character \(\chi\) \(=\) 1150.599
Dual form 1150.4.b.s.599.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +9.71212i q^{3} -4.00000 q^{4} -19.4242 q^{6} -33.1288i q^{7} -8.00000i q^{8} -67.3252 q^{9} +1.59705 q^{11} -38.8485i q^{12} -15.1238i q^{13} +66.2575 q^{14} +16.0000 q^{16} +63.9661i q^{17} -134.650i q^{18} +110.153 q^{19} +321.750 q^{21} +3.19409i q^{22} +23.0000i q^{23} +77.6969 q^{24} +30.2477 q^{26} -391.643i q^{27} +132.515i q^{28} -191.979 q^{29} +292.477 q^{31} +32.0000i q^{32} +15.5107i q^{33} -127.932 q^{34} +269.301 q^{36} +62.7459i q^{37} +220.306i q^{38} +146.885 q^{39} +296.314 q^{41} +643.501i q^{42} -90.3963i q^{43} -6.38819 q^{44} -46.0000 q^{46} -142.749i q^{47} +155.394i q^{48} -754.515 q^{49} -621.246 q^{51} +60.4954i q^{52} +589.530i q^{53} +783.286 q^{54} -265.030 q^{56} +1069.82i q^{57} -383.959i q^{58} +175.690 q^{59} -809.615 q^{61} +584.955i q^{62} +2230.40i q^{63} -64.0000 q^{64} -31.0214 q^{66} +431.173i q^{67} -255.864i q^{68} -223.379 q^{69} +453.657 q^{71} +538.602i q^{72} +111.788i q^{73} -125.492 q^{74} -440.612 q^{76} -52.9082i q^{77} +293.769i q^{78} +1175.57 q^{79} +1985.90 q^{81} +592.628i q^{82} -95.0748i q^{83} -1287.00 q^{84} +180.793 q^{86} -1864.52i q^{87} -12.7764i q^{88} -836.699 q^{89} -501.034 q^{91} -92.0000i q^{92} +2840.57i q^{93} +285.499 q^{94} -310.788 q^{96} -599.979i q^{97} -1509.03i q^{98} -107.522 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 48 q^{4} - 20 q^{6} - 122 q^{9} - 98 q^{11} + 168 q^{14} + 192 q^{16} + 458 q^{19} + 184 q^{21} + 80 q^{24} - 64 q^{26} + 364 q^{29} + 228 q^{31} + 700 q^{34} + 488 q^{36} + 286 q^{39} + 486 q^{41}+ \cdots + 284 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 9.71212i 1.86910i 0.355835 + 0.934549i \(0.384197\pi\)
−0.355835 + 0.934549i \(0.615803\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −19.4242 −1.32165
\(7\) − 33.1288i − 1.78878i −0.447283 0.894392i \(-0.647608\pi\)
0.447283 0.894392i \(-0.352392\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) −67.3252 −2.49353
\(10\) 0 0
\(11\) 1.59705 0.0437753 0.0218876 0.999760i \(-0.493032\pi\)
0.0218876 + 0.999760i \(0.493032\pi\)
\(12\) − 38.8485i − 0.934549i
\(13\) − 15.1238i − 0.322661i −0.986900 0.161331i \(-0.948421\pi\)
0.986900 0.161331i \(-0.0515786\pi\)
\(14\) 66.2575 1.26486
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 63.9661i 0.912591i 0.889828 + 0.456296i \(0.150824\pi\)
−0.889828 + 0.456296i \(0.849176\pi\)
\(18\) − 134.650i − 1.76319i
\(19\) 110.153 1.33004 0.665022 0.746824i \(-0.268422\pi\)
0.665022 + 0.746824i \(0.268422\pi\)
\(20\) 0 0
\(21\) 321.750 3.34341
\(22\) 3.19409i 0.0309538i
\(23\) 23.0000i 0.208514i
\(24\) 77.6969 0.660826
\(25\) 0 0
\(26\) 30.2477 0.228156
\(27\) − 391.643i − 2.79155i
\(28\) 132.515i 0.894392i
\(29\) −191.979 −1.22930 −0.614649 0.788801i \(-0.710702\pi\)
−0.614649 + 0.788801i \(0.710702\pi\)
\(30\) 0 0
\(31\) 292.477 1.69453 0.847266 0.531169i \(-0.178247\pi\)
0.847266 + 0.531169i \(0.178247\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 15.5107i 0.0818202i
\(34\) −127.932 −0.645299
\(35\) 0 0
\(36\) 269.301 1.24676
\(37\) 62.7459i 0.278794i 0.990237 + 0.139397i \(0.0445163\pi\)
−0.990237 + 0.139397i \(0.955484\pi\)
\(38\) 220.306i 0.940483i
\(39\) 146.885 0.603086
\(40\) 0 0
\(41\) 296.314 1.12869 0.564347 0.825538i \(-0.309128\pi\)
0.564347 + 0.825538i \(0.309128\pi\)
\(42\) 643.501i 2.36415i
\(43\) − 90.3963i − 0.320589i −0.987069 0.160294i \(-0.948756\pi\)
0.987069 0.160294i \(-0.0512443\pi\)
\(44\) −6.38819 −0.0218876
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) − 142.749i − 0.443024i −0.975158 0.221512i \(-0.928901\pi\)
0.975158 0.221512i \(-0.0710992\pi\)
\(48\) 155.394i 0.467274i
\(49\) −754.515 −2.19975
\(50\) 0 0
\(51\) −621.246 −1.70572
\(52\) 60.4954i 0.161331i
\(53\) 589.530i 1.52789i 0.645281 + 0.763945i \(0.276740\pi\)
−0.645281 + 0.763945i \(0.723260\pi\)
\(54\) 783.286 1.97392
\(55\) 0 0
\(56\) −265.030 −0.632431
\(57\) 1069.82i 2.48598i
\(58\) − 383.959i − 0.869245i
\(59\) 175.690 0.387675 0.193838 0.981034i \(-0.437907\pi\)
0.193838 + 0.981034i \(0.437907\pi\)
\(60\) 0 0
\(61\) −809.615 −1.69935 −0.849677 0.527303i \(-0.823203\pi\)
−0.849677 + 0.527303i \(0.823203\pi\)
\(62\) 584.955i 1.19821i
\(63\) 2230.40i 4.46038i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −31.0214 −0.0578556
\(67\) 431.173i 0.786212i 0.919493 + 0.393106i \(0.128599\pi\)
−0.919493 + 0.393106i \(0.871401\pi\)
\(68\) − 255.864i − 0.456296i
\(69\) −223.379 −0.389734
\(70\) 0 0
\(71\) 453.657 0.758298 0.379149 0.925336i \(-0.376217\pi\)
0.379149 + 0.925336i \(0.376217\pi\)
\(72\) 538.602i 0.881595i
\(73\) 111.788i 0.179230i 0.995976 + 0.0896149i \(0.0285636\pi\)
−0.995976 + 0.0896149i \(0.971436\pi\)
\(74\) −125.492 −0.197137
\(75\) 0 0
\(76\) −440.612 −0.665022
\(77\) − 52.9082i − 0.0783045i
\(78\) 293.769i 0.426446i
\(79\) 1175.57 1.67420 0.837102 0.547047i \(-0.184248\pi\)
0.837102 + 0.547047i \(0.184248\pi\)
\(80\) 0 0
\(81\) 1985.90 2.72415
\(82\) 592.628i 0.798107i
\(83\) − 95.0748i − 0.125733i −0.998022 0.0628663i \(-0.979976\pi\)
0.998022 0.0628663i \(-0.0200242\pi\)
\(84\) −1287.00 −1.67171
\(85\) 0 0
\(86\) 180.793 0.226690
\(87\) − 1864.52i − 2.29768i
\(88\) − 12.7764i − 0.0154769i
\(89\) −836.699 −0.996516 −0.498258 0.867029i \(-0.666027\pi\)
−0.498258 + 0.867029i \(0.666027\pi\)
\(90\) 0 0
\(91\) −501.034 −0.577172
\(92\) − 92.0000i − 0.104257i
\(93\) 2840.57i 3.16724i
\(94\) 285.499 0.313265
\(95\) 0 0
\(96\) −310.788 −0.330413
\(97\) − 599.979i − 0.628027i −0.949419 0.314013i \(-0.898326\pi\)
0.949419 0.314013i \(-0.101674\pi\)
\(98\) − 1509.03i − 1.55546i
\(99\) −107.522 −0.109155
\(100\) 0 0
\(101\) 845.212 0.832691 0.416345 0.909207i \(-0.363311\pi\)
0.416345 + 0.909207i \(0.363311\pi\)
\(102\) − 1242.49i − 1.20613i
\(103\) 1103.23i 1.05538i 0.849437 + 0.527690i \(0.176942\pi\)
−0.849437 + 0.527690i \(0.823058\pi\)
\(104\) −120.991 −0.114078
\(105\) 0 0
\(106\) −1179.06 −1.08038
\(107\) 1102.86i 0.996426i 0.867055 + 0.498213i \(0.166010\pi\)
−0.867055 + 0.498213i \(0.833990\pi\)
\(108\) 1566.57i 1.39577i
\(109\) 1377.62 1.21057 0.605284 0.796010i \(-0.293060\pi\)
0.605284 + 0.796010i \(0.293060\pi\)
\(110\) 0 0
\(111\) −609.395 −0.521092
\(112\) − 530.060i − 0.447196i
\(113\) 989.295i 0.823584i 0.911278 + 0.411792i \(0.135097\pi\)
−0.911278 + 0.411792i \(0.864903\pi\)
\(114\) −2139.64 −1.75785
\(115\) 0 0
\(116\) 767.917 0.614649
\(117\) 1018.22i 0.804565i
\(118\) 351.379i 0.274128i
\(119\) 2119.12 1.63243
\(120\) 0 0
\(121\) −1328.45 −0.998084
\(122\) − 1619.23i − 1.20163i
\(123\) 2877.83i 2.10964i
\(124\) −1169.91 −0.847266
\(125\) 0 0
\(126\) −4460.80 −3.15397
\(127\) − 2088.22i − 1.45905i −0.683954 0.729525i \(-0.739741\pi\)
0.683954 0.729525i \(-0.260259\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) 877.940 0.599211
\(130\) 0 0
\(131\) −2153.34 −1.43617 −0.718085 0.695955i \(-0.754981\pi\)
−0.718085 + 0.695955i \(0.754981\pi\)
\(132\) − 62.0428i − 0.0409101i
\(133\) − 3649.23i − 2.37916i
\(134\) −862.346 −0.555936
\(135\) 0 0
\(136\) 511.729 0.322650
\(137\) 1308.13i 0.815771i 0.913033 + 0.407886i \(0.133734\pi\)
−0.913033 + 0.407886i \(0.866266\pi\)
\(138\) − 446.757i − 0.275583i
\(139\) 2122.45 1.29513 0.647567 0.762008i \(-0.275786\pi\)
0.647567 + 0.762008i \(0.275786\pi\)
\(140\) 0 0
\(141\) 1386.40 0.828055
\(142\) 907.314i 0.536198i
\(143\) − 24.1535i − 0.0141246i
\(144\) −1077.20 −0.623381
\(145\) 0 0
\(146\) −223.576 −0.126735
\(147\) − 7327.93i − 4.11155i
\(148\) − 250.984i − 0.139397i
\(149\) 1631.01 0.896765 0.448382 0.893842i \(-0.352000\pi\)
0.448382 + 0.893842i \(0.352000\pi\)
\(150\) 0 0
\(151\) 1130.37 0.609192 0.304596 0.952482i \(-0.401479\pi\)
0.304596 + 0.952482i \(0.401479\pi\)
\(152\) − 881.224i − 0.470241i
\(153\) − 4306.53i − 2.27557i
\(154\) 105.816 0.0553697
\(155\) 0 0
\(156\) −587.538 −0.301543
\(157\) − 411.116i − 0.208985i −0.994526 0.104493i \(-0.966678\pi\)
0.994526 0.104493i \(-0.0333218\pi\)
\(158\) 2351.14i 1.18384i
\(159\) −5725.58 −2.85578
\(160\) 0 0
\(161\) 761.961 0.372987
\(162\) 3971.80i 1.92626i
\(163\) − 3150.89i − 1.51409i −0.653362 0.757046i \(-0.726642\pi\)
0.653362 0.757046i \(-0.273358\pi\)
\(164\) −1185.26 −0.564347
\(165\) 0 0
\(166\) 190.150 0.0889064
\(167\) 3685.50i 1.70774i 0.520485 + 0.853871i \(0.325751\pi\)
−0.520485 + 0.853871i \(0.674249\pi\)
\(168\) − 2574.00i − 1.18208i
\(169\) 1968.27 0.895890
\(170\) 0 0
\(171\) −7416.07 −3.31650
\(172\) 361.585i 0.160294i
\(173\) 4516.07i 1.98468i 0.123522 + 0.992342i \(0.460581\pi\)
−0.123522 + 0.992342i \(0.539419\pi\)
\(174\) 3729.05 1.62470
\(175\) 0 0
\(176\) 25.5528 0.0109438
\(177\) 1706.32i 0.724603i
\(178\) − 1673.40i − 0.704643i
\(179\) −3047.24 −1.27241 −0.636206 0.771519i \(-0.719497\pi\)
−0.636206 + 0.771519i \(0.719497\pi\)
\(180\) 0 0
\(181\) −185.447 −0.0761558 −0.0380779 0.999275i \(-0.512124\pi\)
−0.0380779 + 0.999275i \(0.512124\pi\)
\(182\) − 1002.07i − 0.408122i
\(183\) − 7863.08i − 3.17626i
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) −5681.15 −2.23958
\(187\) 102.157i 0.0399489i
\(188\) 570.998i 0.221512i
\(189\) −12974.6 −4.99347
\(190\) 0 0
\(191\) 3449.76 1.30689 0.653445 0.756974i \(-0.273323\pi\)
0.653445 + 0.756974i \(0.273323\pi\)
\(192\) − 621.575i − 0.233637i
\(193\) 1593.41i 0.594279i 0.954834 + 0.297140i \(0.0960326\pi\)
−0.954834 + 0.297140i \(0.903967\pi\)
\(194\) 1199.96 0.444082
\(195\) 0 0
\(196\) 3018.06 1.09988
\(197\) 91.9830i 0.0332666i 0.999862 + 0.0166333i \(0.00529479\pi\)
−0.999862 + 0.0166333i \(0.994705\pi\)
\(198\) − 215.043i − 0.0771841i
\(199\) 3252.36 1.15856 0.579281 0.815128i \(-0.303333\pi\)
0.579281 + 0.815128i \(0.303333\pi\)
\(200\) 0 0
\(201\) −4187.60 −1.46951
\(202\) 1690.42i 0.588801i
\(203\) 6360.03i 2.19895i
\(204\) 2484.98 0.852861
\(205\) 0 0
\(206\) −2206.45 −0.746267
\(207\) − 1548.48i − 0.519936i
\(208\) − 241.981i − 0.0806654i
\(209\) 175.919 0.0582230
\(210\) 0 0
\(211\) 1591.56 0.519278 0.259639 0.965706i \(-0.416396\pi\)
0.259639 + 0.965706i \(0.416396\pi\)
\(212\) − 2358.12i − 0.763945i
\(213\) 4405.97i 1.41733i
\(214\) −2205.72 −0.704580
\(215\) 0 0
\(216\) −3133.14 −0.986960
\(217\) − 9689.41i − 3.03115i
\(218\) 2755.24i 0.856000i
\(219\) −1085.70 −0.334998
\(220\) 0 0
\(221\) 967.413 0.294458
\(222\) − 1218.79i − 0.368468i
\(223\) 2299.64i 0.690561i 0.938500 + 0.345280i \(0.112216\pi\)
−0.938500 + 0.345280i \(0.887784\pi\)
\(224\) 1060.12 0.316215
\(225\) 0 0
\(226\) −1978.59 −0.582362
\(227\) − 3254.18i − 0.951488i −0.879584 0.475744i \(-0.842179\pi\)
0.879584 0.475744i \(-0.157821\pi\)
\(228\) − 4279.27i − 1.24299i
\(229\) 4934.80 1.42402 0.712010 0.702169i \(-0.247785\pi\)
0.712010 + 0.702169i \(0.247785\pi\)
\(230\) 0 0
\(231\) 513.850 0.146359
\(232\) 1535.83i 0.434623i
\(233\) − 1194.48i − 0.335849i −0.985800 0.167925i \(-0.946294\pi\)
0.985800 0.167925i \(-0.0537065\pi\)
\(234\) −2036.43 −0.568913
\(235\) 0 0
\(236\) −702.758 −0.193838
\(237\) 11417.3i 3.12925i
\(238\) 4238.23i 1.15430i
\(239\) −1552.61 −0.420208 −0.210104 0.977679i \(-0.567380\pi\)
−0.210104 + 0.977679i \(0.567380\pi\)
\(240\) 0 0
\(241\) −4178.20 −1.11677 −0.558384 0.829582i \(-0.688579\pi\)
−0.558384 + 0.829582i \(0.688579\pi\)
\(242\) − 2656.90i − 0.705752i
\(243\) 8712.95i 2.30015i
\(244\) 3238.46 0.849677
\(245\) 0 0
\(246\) −5755.67 −1.49174
\(247\) − 1665.94i − 0.429154i
\(248\) − 2339.82i − 0.599107i
\(249\) 923.377 0.235007
\(250\) 0 0
\(251\) 672.494 0.169113 0.0845567 0.996419i \(-0.473053\pi\)
0.0845567 + 0.996419i \(0.473053\pi\)
\(252\) − 8921.60i − 2.23019i
\(253\) 36.7321i 0.00912777i
\(254\) 4176.43 1.03170
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1986.84i 0.482239i 0.970495 + 0.241119i \(0.0775146\pi\)
−0.970495 + 0.241119i \(0.922485\pi\)
\(258\) 1755.88i 0.423707i
\(259\) 2078.69 0.498702
\(260\) 0 0
\(261\) 12925.0 3.06529
\(262\) − 4306.68i − 1.01553i
\(263\) − 1583.85i − 0.371347i −0.982612 0.185673i \(-0.940553\pi\)
0.982612 0.185673i \(-0.0594466\pi\)
\(264\) 124.086 0.0289278
\(265\) 0 0
\(266\) 7298.46 1.68232
\(267\) − 8126.12i − 1.86259i
\(268\) − 1724.69i − 0.393106i
\(269\) 5309.66 1.20348 0.601739 0.798693i \(-0.294475\pi\)
0.601739 + 0.798693i \(0.294475\pi\)
\(270\) 0 0
\(271\) −1083.04 −0.242767 −0.121383 0.992606i \(-0.538733\pi\)
−0.121383 + 0.992606i \(0.538733\pi\)
\(272\) 1023.46i 0.228148i
\(273\) − 4866.10i − 1.07879i
\(274\) −2616.25 −0.576837
\(275\) 0 0
\(276\) 893.515 0.194867
\(277\) 8793.99i 1.90751i 0.300590 + 0.953753i \(0.402816\pi\)
−0.300590 + 0.953753i \(0.597184\pi\)
\(278\) 4244.90i 0.915799i
\(279\) −19691.1 −4.22536
\(280\) 0 0
\(281\) 6603.86 1.40197 0.700984 0.713177i \(-0.252744\pi\)
0.700984 + 0.713177i \(0.252744\pi\)
\(282\) 2772.80i 0.585524i
\(283\) 7387.79i 1.55180i 0.630858 + 0.775898i \(0.282703\pi\)
−0.630858 + 0.775898i \(0.717297\pi\)
\(284\) −1814.63 −0.379149
\(285\) 0 0
\(286\) 48.3070 0.00998759
\(287\) − 9816.51i − 2.01899i
\(288\) − 2154.41i − 0.440797i
\(289\) 821.341 0.167177
\(290\) 0 0
\(291\) 5827.06 1.17384
\(292\) − 447.151i − 0.0896149i
\(293\) 4539.89i 0.905198i 0.891714 + 0.452599i \(0.149503\pi\)
−0.891714 + 0.452599i \(0.850497\pi\)
\(294\) 14655.9 2.90730
\(295\) 0 0
\(296\) 501.967 0.0985684
\(297\) − 625.472i − 0.122201i
\(298\) 3262.03i 0.634108i
\(299\) 347.848 0.0672796
\(300\) 0 0
\(301\) −2994.72 −0.573464
\(302\) 2260.73i 0.430764i
\(303\) 8208.80i 1.55638i
\(304\) 1762.45 0.332511
\(305\) 0 0
\(306\) 8613.06 1.60907
\(307\) 2906.64i 0.540360i 0.962810 + 0.270180i \(0.0870832\pi\)
−0.962810 + 0.270180i \(0.912917\pi\)
\(308\) 211.633i 0.0391523i
\(309\) −10714.7 −1.97261
\(310\) 0 0
\(311\) −8212.89 −1.49746 −0.748730 0.662875i \(-0.769336\pi\)
−0.748730 + 0.662875i \(0.769336\pi\)
\(312\) − 1175.08i − 0.213223i
\(313\) − 201.103i − 0.0363163i −0.999835 0.0181582i \(-0.994220\pi\)
0.999835 0.0181582i \(-0.00578024\pi\)
\(314\) 822.233 0.147775
\(315\) 0 0
\(316\) −4702.29 −0.837102
\(317\) 2545.20i 0.450954i 0.974248 + 0.225477i \(0.0723940\pi\)
−0.974248 + 0.225477i \(0.927606\pi\)
\(318\) − 11451.2i − 2.01934i
\(319\) −306.600 −0.0538129
\(320\) 0 0
\(321\) −10711.1 −1.86242
\(322\) 1523.92i 0.263742i
\(323\) 7046.05i 1.21379i
\(324\) −7943.61 −1.36207
\(325\) 0 0
\(326\) 6301.79 1.07062
\(327\) 13379.6i 2.26267i
\(328\) − 2370.51i − 0.399053i
\(329\) −4729.11 −0.792475
\(330\) 0 0
\(331\) 7330.61 1.21730 0.608651 0.793438i \(-0.291711\pi\)
0.608651 + 0.793438i \(0.291711\pi\)
\(332\) 380.299i 0.0628663i
\(333\) − 4224.38i − 0.695179i
\(334\) −7371.01 −1.20756
\(335\) 0 0
\(336\) 5148.01 0.835853
\(337\) − 7988.83i − 1.29133i −0.763620 0.645666i \(-0.776580\pi\)
0.763620 0.645666i \(-0.223420\pi\)
\(338\) 3936.54i 0.633490i
\(339\) −9608.15 −1.53936
\(340\) 0 0
\(341\) 467.100 0.0741786
\(342\) − 14832.1i − 2.34512i
\(343\) 13633.0i 2.14610i
\(344\) −723.171 −0.113345
\(345\) 0 0
\(346\) −9032.14 −1.40338
\(347\) 9300.59i 1.43885i 0.694569 + 0.719427i \(0.255595\pi\)
−0.694569 + 0.719427i \(0.744405\pi\)
\(348\) 7458.10i 1.14884i
\(349\) 627.258 0.0962073 0.0481037 0.998842i \(-0.484682\pi\)
0.0481037 + 0.998842i \(0.484682\pi\)
\(350\) 0 0
\(351\) −5923.15 −0.900724
\(352\) 51.1055i 0.00773845i
\(353\) − 10275.9i − 1.54938i −0.632339 0.774691i \(-0.717905\pi\)
0.632339 0.774691i \(-0.282095\pi\)
\(354\) −3412.63 −0.512371
\(355\) 0 0
\(356\) 3346.80 0.498258
\(357\) 20581.1i 3.05117i
\(358\) − 6094.49i − 0.899731i
\(359\) −9083.80 −1.33544 −0.667722 0.744411i \(-0.732730\pi\)
−0.667722 + 0.744411i \(0.732730\pi\)
\(360\) 0 0
\(361\) 5274.67 0.769015
\(362\) − 370.895i − 0.0538503i
\(363\) − 12902.1i − 1.86552i
\(364\) 2004.14 0.288586
\(365\) 0 0
\(366\) 15726.2 2.24595
\(367\) 8578.97i 1.22021i 0.792319 + 0.610107i \(0.208873\pi\)
−0.792319 + 0.610107i \(0.791127\pi\)
\(368\) 368.000i 0.0521286i
\(369\) −19949.4 −2.81443
\(370\) 0 0
\(371\) 19530.4 2.73307
\(372\) − 11362.3i − 1.58362i
\(373\) − 10462.6i − 1.45236i −0.687503 0.726181i \(-0.741293\pi\)
0.687503 0.726181i \(-0.258707\pi\)
\(374\) −204.314 −0.0282482
\(375\) 0 0
\(376\) −1142.00 −0.156633
\(377\) 2903.46i 0.396647i
\(378\) − 25949.3i − 3.53092i
\(379\) 7320.67 0.992184 0.496092 0.868270i \(-0.334768\pi\)
0.496092 + 0.868270i \(0.334768\pi\)
\(380\) 0 0
\(381\) 20281.0 2.72711
\(382\) 6899.52i 0.924111i
\(383\) 2226.12i 0.296995i 0.988913 + 0.148498i \(0.0474437\pi\)
−0.988913 + 0.148498i \(0.952556\pi\)
\(384\) 1243.15 0.165206
\(385\) 0 0
\(386\) −3186.81 −0.420219
\(387\) 6085.95i 0.799396i
\(388\) 2399.92i 0.314013i
\(389\) −1358.18 −0.177024 −0.0885121 0.996075i \(-0.528211\pi\)
−0.0885121 + 0.996075i \(0.528211\pi\)
\(390\) 0 0
\(391\) −1471.22 −0.190288
\(392\) 6036.12i 0.777729i
\(393\) − 20913.5i − 2.68434i
\(394\) −183.966 −0.0235230
\(395\) 0 0
\(396\) 430.086 0.0545774
\(397\) − 9938.92i − 1.25647i −0.778022 0.628237i \(-0.783777\pi\)
0.778022 0.628237i \(-0.216223\pi\)
\(398\) 6504.73i 0.819227i
\(399\) 35441.7 4.44688
\(400\) 0 0
\(401\) −13384.5 −1.66680 −0.833401 0.552669i \(-0.813609\pi\)
−0.833401 + 0.552669i \(0.813609\pi\)
\(402\) − 8375.21i − 1.03910i
\(403\) − 4423.38i − 0.546760i
\(404\) −3380.85 −0.416345
\(405\) 0 0
\(406\) −12720.1 −1.55489
\(407\) 100.208i 0.0122043i
\(408\) 4969.97i 0.603064i
\(409\) −2957.56 −0.357560 −0.178780 0.983889i \(-0.557215\pi\)
−0.178780 + 0.983889i \(0.557215\pi\)
\(410\) 0 0
\(411\) −12704.7 −1.52476
\(412\) − 4412.91i − 0.527690i
\(413\) − 5820.38i − 0.693467i
\(414\) 3096.96 0.367650
\(415\) 0 0
\(416\) 483.963 0.0570390
\(417\) 20613.5i 2.42073i
\(418\) 351.839i 0.0411699i
\(419\) 13178.4 1.53654 0.768268 0.640128i \(-0.221119\pi\)
0.768268 + 0.640128i \(0.221119\pi\)
\(420\) 0 0
\(421\) −1367.55 −0.158314 −0.0791569 0.996862i \(-0.525223\pi\)
−0.0791569 + 0.996862i \(0.525223\pi\)
\(422\) 3183.12i 0.367185i
\(423\) 9610.63i 1.10469i
\(424\) 4716.24 0.540191
\(425\) 0 0
\(426\) −8811.94 −1.00221
\(427\) 26821.6i 3.03978i
\(428\) − 4411.44i − 0.498213i
\(429\) 234.581 0.0264002
\(430\) 0 0
\(431\) 34.6193 0.00386903 0.00193451 0.999998i \(-0.499384\pi\)
0.00193451 + 0.999998i \(0.499384\pi\)
\(432\) − 6266.29i − 0.697886i
\(433\) 3270.08i 0.362933i 0.983397 + 0.181466i \(0.0580843\pi\)
−0.983397 + 0.181466i \(0.941916\pi\)
\(434\) 19378.8 2.14335
\(435\) 0 0
\(436\) −5510.47 −0.605284
\(437\) 2533.52i 0.277333i
\(438\) − 2171.39i − 0.236879i
\(439\) −6565.41 −0.713781 −0.356891 0.934146i \(-0.616163\pi\)
−0.356891 + 0.934146i \(0.616163\pi\)
\(440\) 0 0
\(441\) 50797.8 5.48514
\(442\) 1934.83i 0.208213i
\(443\) 8809.74i 0.944838i 0.881374 + 0.472419i \(0.156619\pi\)
−0.881374 + 0.472419i \(0.843381\pi\)
\(444\) 2437.58 0.260546
\(445\) 0 0
\(446\) −4599.27 −0.488300
\(447\) 15840.6i 1.67614i
\(448\) 2120.24i 0.223598i
\(449\) 8977.39 0.943584 0.471792 0.881710i \(-0.343607\pi\)
0.471792 + 0.881710i \(0.343607\pi\)
\(450\) 0 0
\(451\) 473.227 0.0494089
\(452\) − 3957.18i − 0.411792i
\(453\) 10978.3i 1.13864i
\(454\) 6508.37 0.672803
\(455\) 0 0
\(456\) 8558.55 0.878927
\(457\) 856.195i 0.0876392i 0.999039 + 0.0438196i \(0.0139527\pi\)
−0.999039 + 0.0438196i \(0.986047\pi\)
\(458\) 9869.60i 1.00693i
\(459\) 25051.9 2.54754
\(460\) 0 0
\(461\) 367.756 0.0371543 0.0185771 0.999827i \(-0.494086\pi\)
0.0185771 + 0.999827i \(0.494086\pi\)
\(462\) 1027.70i 0.103491i
\(463\) 7330.47i 0.735801i 0.929865 + 0.367901i \(0.119923\pi\)
−0.929865 + 0.367901i \(0.880077\pi\)
\(464\) −3071.67 −0.307325
\(465\) 0 0
\(466\) 2388.96 0.237481
\(467\) 11503.1i 1.13983i 0.821705 + 0.569914i \(0.193023\pi\)
−0.821705 + 0.569914i \(0.806977\pi\)
\(468\) − 4072.86i − 0.402282i
\(469\) 14284.2 1.40636
\(470\) 0 0
\(471\) 3992.81 0.390614
\(472\) − 1405.52i − 0.137064i
\(473\) − 144.367i − 0.0140339i
\(474\) −22834.6 −2.21271
\(475\) 0 0
\(476\) −8476.47 −0.816215
\(477\) − 39690.2i − 3.80983i
\(478\) − 3105.21i − 0.297132i
\(479\) −8580.47 −0.818479 −0.409240 0.912427i \(-0.634206\pi\)
−0.409240 + 0.912427i \(0.634206\pi\)
\(480\) 0 0
\(481\) 948.959 0.0899559
\(482\) − 8356.39i − 0.789675i
\(483\) 7400.26i 0.697150i
\(484\) 5313.80 0.499042
\(485\) 0 0
\(486\) −17425.9 −1.62645
\(487\) − 15826.8i − 1.47265i −0.676628 0.736325i \(-0.736559\pi\)
0.676628 0.736325i \(-0.263441\pi\)
\(488\) 6476.92i 0.600813i
\(489\) 30601.8 2.82999
\(490\) 0 0
\(491\) −6219.11 −0.571618 −0.285809 0.958287i \(-0.592262\pi\)
−0.285809 + 0.958287i \(0.592262\pi\)
\(492\) − 11511.3i − 1.05482i
\(493\) − 12280.2i − 1.12185i
\(494\) 3331.87 0.303457
\(495\) 0 0
\(496\) 4679.64 0.423633
\(497\) − 15029.1i − 1.35643i
\(498\) 1846.75i 0.166175i
\(499\) −12820.1 −1.15011 −0.575056 0.818114i \(-0.695020\pi\)
−0.575056 + 0.818114i \(0.695020\pi\)
\(500\) 0 0
\(501\) −35794.0 −3.19194
\(502\) 1344.99i 0.119581i
\(503\) − 423.446i − 0.0375358i −0.999824 0.0187679i \(-0.994026\pi\)
0.999824 0.0187679i \(-0.00597437\pi\)
\(504\) 17843.2 1.57698
\(505\) 0 0
\(506\) −73.4642 −0.00645431
\(507\) 19116.1i 1.67451i
\(508\) 8352.87i 0.729525i
\(509\) 13039.2 1.13546 0.567731 0.823214i \(-0.307821\pi\)
0.567731 + 0.823214i \(0.307821\pi\)
\(510\) 0 0
\(511\) 3703.39 0.320603
\(512\) 512.000i 0.0441942i
\(513\) − 43140.6i − 3.71288i
\(514\) −3973.67 −0.340994
\(515\) 0 0
\(516\) −3511.76 −0.299606
\(517\) − 227.978i − 0.0193935i
\(518\) 4157.39i 0.352635i
\(519\) −43860.6 −3.70957
\(520\) 0 0
\(521\) 13783.7 1.15907 0.579535 0.814948i \(-0.303234\pi\)
0.579535 + 0.814948i \(0.303234\pi\)
\(522\) 25850.1i 2.16749i
\(523\) 4223.40i 0.353109i 0.984291 + 0.176555i \(0.0564953\pi\)
−0.984291 + 0.176555i \(0.943505\pi\)
\(524\) 8613.36 0.718085
\(525\) 0 0
\(526\) 3167.69 0.262582
\(527\) 18708.6i 1.54641i
\(528\) 248.171i 0.0204551i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) −11828.3 −0.966678
\(532\) 14596.9i 1.18958i
\(533\) − 4481.40i − 0.364186i
\(534\) 16252.2 1.31705
\(535\) 0 0
\(536\) 3449.39 0.277968
\(537\) − 29595.2i − 2.37826i
\(538\) 10619.3i 0.850987i
\(539\) −1205.00 −0.0962947
\(540\) 0 0
\(541\) −8572.42 −0.681252 −0.340626 0.940199i \(-0.610639\pi\)
−0.340626 + 0.940199i \(0.610639\pi\)
\(542\) − 2166.07i − 0.171662i
\(543\) − 1801.09i − 0.142343i
\(544\) −2046.91 −0.161325
\(545\) 0 0
\(546\) 9732.20 0.762820
\(547\) − 17318.1i − 1.35369i −0.736125 0.676845i \(-0.763347\pi\)
0.736125 0.676845i \(-0.236653\pi\)
\(548\) − 5232.50i − 0.407886i
\(549\) 54507.5 4.23738
\(550\) 0 0
\(551\) −21147.1 −1.63502
\(552\) 1787.03i 0.137792i
\(553\) − 38945.2i − 2.99479i
\(554\) −17588.0 −1.34881
\(555\) 0 0
\(556\) −8489.79 −0.647567
\(557\) 17447.9i 1.32727i 0.748057 + 0.663635i \(0.230987\pi\)
−0.748057 + 0.663635i \(0.769013\pi\)
\(558\) − 39382.2i − 2.98778i
\(559\) −1367.14 −0.103442
\(560\) 0 0
\(561\) −992.159 −0.0746684
\(562\) 13207.7i 0.991341i
\(563\) − 22775.6i − 1.70493i −0.522784 0.852465i \(-0.675107\pi\)
0.522784 0.852465i \(-0.324893\pi\)
\(564\) −5545.59 −0.414028
\(565\) 0 0
\(566\) −14775.6 −1.09729
\(567\) − 65790.5i − 4.87291i
\(568\) − 3629.26i − 0.268099i
\(569\) 14993.4 1.10467 0.552333 0.833624i \(-0.313738\pi\)
0.552333 + 0.833624i \(0.313738\pi\)
\(570\) 0 0
\(571\) 5161.10 0.378258 0.189129 0.981952i \(-0.439434\pi\)
0.189129 + 0.981952i \(0.439434\pi\)
\(572\) 96.6140i 0.00706229i
\(573\) 33504.5i 2.44270i
\(574\) 19633.0 1.42764
\(575\) 0 0
\(576\) 4308.81 0.311691
\(577\) − 7474.63i − 0.539294i −0.962959 0.269647i \(-0.913093\pi\)
0.962959 0.269647i \(-0.0869070\pi\)
\(578\) 1642.68i 0.118212i
\(579\) −15475.3 −1.11077
\(580\) 0 0
\(581\) −3149.71 −0.224909
\(582\) 11654.1i 0.830033i
\(583\) 941.507i 0.0668838i
\(584\) 894.302 0.0633673
\(585\) 0 0
\(586\) −9079.78 −0.640072
\(587\) − 10806.8i − 0.759869i −0.925013 0.379934i \(-0.875947\pi\)
0.925013 0.379934i \(-0.124053\pi\)
\(588\) 29311.7i 2.05577i
\(589\) 32217.2 2.25380
\(590\) 0 0
\(591\) −893.349 −0.0621785
\(592\) 1003.93i 0.0696984i
\(593\) 2031.95i 0.140712i 0.997522 + 0.0703559i \(0.0224135\pi\)
−0.997522 + 0.0703559i \(0.977587\pi\)
\(594\) 1250.94 0.0864089
\(595\) 0 0
\(596\) −6524.06 −0.448382
\(597\) 31587.3i 2.16547i
\(598\) 695.697i 0.0475738i
\(599\) 17544.8 1.19677 0.598383 0.801210i \(-0.295810\pi\)
0.598383 + 0.801210i \(0.295810\pi\)
\(600\) 0 0
\(601\) 38.6142 0.00262081 0.00131041 0.999999i \(-0.499583\pi\)
0.00131041 + 0.999999i \(0.499583\pi\)
\(602\) − 5989.44i − 0.405500i
\(603\) − 29028.8i − 1.96044i
\(604\) −4521.47 −0.304596
\(605\) 0 0
\(606\) −16417.6 −1.10053
\(607\) 10452.9i 0.698961i 0.936944 + 0.349480i \(0.113642\pi\)
−0.936944 + 0.349480i \(0.886358\pi\)
\(608\) 3524.89i 0.235121i
\(609\) −61769.4 −4.11005
\(610\) 0 0
\(611\) −2158.92 −0.142947
\(612\) 17226.1i 1.13778i
\(613\) − 27674.5i − 1.82343i −0.410823 0.911715i \(-0.634759\pi\)
0.410823 0.911715i \(-0.365241\pi\)
\(614\) −5813.27 −0.382092
\(615\) 0 0
\(616\) −423.266 −0.0276848
\(617\) − 24533.5i − 1.60078i −0.599480 0.800390i \(-0.704626\pi\)
0.599480 0.800390i \(-0.295374\pi\)
\(618\) − 21429.3i − 1.39485i
\(619\) 1794.30 0.116509 0.0582545 0.998302i \(-0.481446\pi\)
0.0582545 + 0.998302i \(0.481446\pi\)
\(620\) 0 0
\(621\) 9007.79 0.582077
\(622\) − 16425.8i − 1.05886i
\(623\) 27718.8i 1.78255i
\(624\) 2350.15 0.150771
\(625\) 0 0
\(626\) 402.206 0.0256795
\(627\) 1708.55i 0.108824i
\(628\) 1644.47i 0.104493i
\(629\) −4013.61 −0.254425
\(630\) 0 0
\(631\) −12771.3 −0.805735 −0.402868 0.915258i \(-0.631986\pi\)
−0.402868 + 0.915258i \(0.631986\pi\)
\(632\) − 9404.57i − 0.591921i
\(633\) 15457.4i 0.970581i
\(634\) −5090.39 −0.318873
\(635\) 0 0
\(636\) 22902.3 1.42789
\(637\) 11411.2i 0.709775i
\(638\) − 613.200i − 0.0380514i
\(639\) −30542.5 −1.89084
\(640\) 0 0
\(641\) 15626.1 0.962863 0.481432 0.876484i \(-0.340117\pi\)
0.481432 + 0.876484i \(0.340117\pi\)
\(642\) − 21422.2i − 1.31693i
\(643\) 12756.7i 0.782384i 0.920309 + 0.391192i \(0.127937\pi\)
−0.920309 + 0.391192i \(0.872063\pi\)
\(644\) −3047.85 −0.186494
\(645\) 0 0
\(646\) −14092.1 −0.858276
\(647\) − 22.8807i − 0.00139031i −1.00000 0.000695157i \(-0.999779\pi\)
1.00000 0.000695157i \(-0.000221275\pi\)
\(648\) − 15887.2i − 0.963131i
\(649\) 280.584 0.0169706
\(650\) 0 0
\(651\) 94104.7 5.66552
\(652\) 12603.6i 0.757046i
\(653\) 5985.07i 0.358674i 0.983788 + 0.179337i \(0.0573952\pi\)
−0.983788 + 0.179337i \(0.942605\pi\)
\(654\) −26759.2 −1.59995
\(655\) 0 0
\(656\) 4741.02 0.282173
\(657\) − 7526.13i − 0.446914i
\(658\) − 9458.22i − 0.560364i
\(659\) 12224.7 0.722622 0.361311 0.932445i \(-0.382329\pi\)
0.361311 + 0.932445i \(0.382329\pi\)
\(660\) 0 0
\(661\) −24940.4 −1.46758 −0.733790 0.679376i \(-0.762251\pi\)
−0.733790 + 0.679376i \(0.762251\pi\)
\(662\) 14661.2i 0.860762i
\(663\) 9395.62i 0.550371i
\(664\) −760.598 −0.0444532
\(665\) 0 0
\(666\) 8448.76 0.491566
\(667\) − 4415.52i − 0.256326i
\(668\) − 14742.0i − 0.853871i
\(669\) −22334.3 −1.29073
\(670\) 0 0
\(671\) −1292.99 −0.0743897
\(672\) 10296.0i 0.591038i
\(673\) 15461.4i 0.885576i 0.896626 + 0.442788i \(0.146011\pi\)
−0.896626 + 0.442788i \(0.853989\pi\)
\(674\) 15977.7 0.913110
\(675\) 0 0
\(676\) −7873.08 −0.447945
\(677\) − 6904.24i − 0.391952i −0.980609 0.195976i \(-0.937212\pi\)
0.980609 0.195976i \(-0.0627875\pi\)
\(678\) − 19216.3i − 1.08849i
\(679\) −19876.6 −1.12341
\(680\) 0 0
\(681\) 31605.0 1.77842
\(682\) 934.200i 0.0524522i
\(683\) 9644.73i 0.540330i 0.962814 + 0.270165i \(0.0870782\pi\)
−0.962814 + 0.270165i \(0.912922\pi\)
\(684\) 29664.3 1.65825
\(685\) 0 0
\(686\) −27265.9 −1.51752
\(687\) 47927.4i 2.66163i
\(688\) − 1446.34i − 0.0801472i
\(689\) 8915.96 0.492991
\(690\) 0 0
\(691\) −704.001 −0.0387575 −0.0193788 0.999812i \(-0.506169\pi\)
−0.0193788 + 0.999812i \(0.506169\pi\)
\(692\) − 18064.3i − 0.992342i
\(693\) 3562.05i 0.195254i
\(694\) −18601.2 −1.01742
\(695\) 0 0
\(696\) −14916.2 −0.812352
\(697\) 18954.0i 1.03004i
\(698\) 1254.52i 0.0680289i
\(699\) 11600.9 0.627735
\(700\) 0 0
\(701\) 2557.38 0.137790 0.0688952 0.997624i \(-0.478053\pi\)
0.0688952 + 0.997624i \(0.478053\pi\)
\(702\) − 11846.3i − 0.636908i
\(703\) 6911.64i 0.370807i
\(704\) −102.211 −0.00547191
\(705\) 0 0
\(706\) 20551.8 1.09558
\(707\) − 28000.8i − 1.48950i
\(708\) − 6825.27i − 0.362301i
\(709\) 17999.7 0.953448 0.476724 0.879053i \(-0.341824\pi\)
0.476724 + 0.879053i \(0.341824\pi\)
\(710\) 0 0
\(711\) −79145.6 −4.17467
\(712\) 6693.59i 0.352322i
\(713\) 6726.98i 0.353334i
\(714\) −41162.2 −2.15750
\(715\) 0 0
\(716\) 12189.0 0.636206
\(717\) − 15079.1i − 0.785410i
\(718\) − 18167.6i − 0.944301i
\(719\) 24565.1 1.27416 0.637082 0.770796i \(-0.280141\pi\)
0.637082 + 0.770796i \(0.280141\pi\)
\(720\) 0 0
\(721\) 36548.5 1.88785
\(722\) 10549.3i 0.543775i
\(723\) − 40579.1i − 2.08735i
\(724\) 741.790 0.0380779
\(725\) 0 0
\(726\) 25804.1 1.31912
\(727\) − 16301.8i − 0.831638i −0.909447 0.415819i \(-0.863495\pi\)
0.909447 0.415819i \(-0.136505\pi\)
\(728\) 4008.27i 0.204061i
\(729\) −31001.8 −1.57506
\(730\) 0 0
\(731\) 5782.30 0.292566
\(732\) 31452.3i 1.58813i
\(733\) 6884.70i 0.346920i 0.984841 + 0.173460i \(0.0554947\pi\)
−0.984841 + 0.173460i \(0.944505\pi\)
\(734\) −17157.9 −0.862821
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 688.604i 0.0344166i
\(738\) − 39898.8i − 1.99010i
\(739\) 32833.4 1.63436 0.817182 0.576380i \(-0.195535\pi\)
0.817182 + 0.576380i \(0.195535\pi\)
\(740\) 0 0
\(741\) 16179.8 0.802130
\(742\) 39060.8i 1.93257i
\(743\) 32228.8i 1.59133i 0.605736 + 0.795666i \(0.292879\pi\)
−0.605736 + 0.795666i \(0.707121\pi\)
\(744\) 22724.6 1.11979
\(745\) 0 0
\(746\) 20925.1 1.02698
\(747\) 6400.93i 0.313518i
\(748\) − 408.627i − 0.0199745i
\(749\) 36536.4 1.78239
\(750\) 0 0
\(751\) −10938.3 −0.531481 −0.265741 0.964045i \(-0.585616\pi\)
−0.265741 + 0.964045i \(0.585616\pi\)
\(752\) − 2283.99i − 0.110756i
\(753\) 6531.34i 0.316090i
\(754\) −5806.93 −0.280472
\(755\) 0 0
\(756\) 51898.6 2.49674
\(757\) 13881.7i 0.666496i 0.942839 + 0.333248i \(0.108145\pi\)
−0.942839 + 0.333248i \(0.891855\pi\)
\(758\) 14641.3i 0.701580i
\(759\) −356.746 −0.0170607
\(760\) 0 0
\(761\) −32811.6 −1.56297 −0.781485 0.623924i \(-0.785538\pi\)
−0.781485 + 0.623924i \(0.785538\pi\)
\(762\) 40562.0i 1.92836i
\(763\) − 45638.8i − 2.16544i
\(764\) −13799.0 −0.653445
\(765\) 0 0
\(766\) −4452.23 −0.210007
\(767\) − 2657.10i − 0.125088i
\(768\) 2486.30i 0.116819i
\(769\) −9987.66 −0.468354 −0.234177 0.972194i \(-0.575240\pi\)
−0.234177 + 0.972194i \(0.575240\pi\)
\(770\) 0 0
\(771\) −19296.4 −0.901352
\(772\) − 6373.62i − 0.297140i
\(773\) − 3484.56i − 0.162135i −0.996709 0.0810677i \(-0.974167\pi\)
0.996709 0.0810677i \(-0.0258330\pi\)
\(774\) −12171.9 −0.565258
\(775\) 0 0
\(776\) −4799.83 −0.222041
\(777\) 20188.5i 0.932122i
\(778\) − 2716.36i − 0.125175i
\(779\) 32639.8 1.50121
\(780\) 0 0
\(781\) 724.512 0.0331947
\(782\) − 2942.44i − 0.134554i
\(783\) 75187.3i 3.43164i
\(784\) −12072.2 −0.549938
\(785\) 0 0
\(786\) 41827.0 1.89812
\(787\) − 12421.1i − 0.562597i −0.959620 0.281298i \(-0.909235\pi\)
0.959620 0.281298i \(-0.0907650\pi\)
\(788\) − 367.932i − 0.0166333i
\(789\) 15382.5 0.694083
\(790\) 0 0
\(791\) 32774.1 1.47322
\(792\) 860.172i 0.0385920i
\(793\) 12244.5i 0.548316i
\(794\) 19877.8 0.888461
\(795\) 0 0
\(796\) −13009.5 −0.579281
\(797\) − 24083.7i − 1.07037i −0.844734 0.535187i \(-0.820241\pi\)
0.844734 0.535187i \(-0.179759\pi\)
\(798\) 70883.5i 3.14442i
\(799\) 9131.12 0.404300
\(800\) 0 0
\(801\) 56330.9 2.48484
\(802\) − 26768.9i − 1.17861i
\(803\) 178.530i 0.00784583i
\(804\) 16750.4 0.734753
\(805\) 0 0
\(806\) 8846.76 0.386618
\(807\) 51568.0i 2.24942i
\(808\) − 6761.70i − 0.294401i
\(809\) −3687.22 −0.160242 −0.0801209 0.996785i \(-0.525531\pi\)
−0.0801209 + 0.996785i \(0.525531\pi\)
\(810\) 0 0
\(811\) 19516.5 0.845028 0.422514 0.906356i \(-0.361148\pi\)
0.422514 + 0.906356i \(0.361148\pi\)
\(812\) − 25440.1i − 1.09948i
\(813\) − 10518.6i − 0.453755i
\(814\) −200.416 −0.00862971
\(815\) 0 0
\(816\) −9939.93 −0.426431
\(817\) − 9957.42i − 0.426397i
\(818\) − 5915.12i − 0.252833i
\(819\) 33732.2 1.43919
\(820\) 0 0
\(821\) −25386.0 −1.07914 −0.539571 0.841940i \(-0.681414\pi\)
−0.539571 + 0.841940i \(0.681414\pi\)
\(822\) − 25409.3i − 1.07817i
\(823\) − 34018.2i − 1.44083i −0.693545 0.720413i \(-0.743952\pi\)
0.693545 0.720413i \(-0.256048\pi\)
\(824\) 8825.82 0.373133
\(825\) 0 0
\(826\) 11640.8 0.490355
\(827\) − 23934.0i − 1.00637i −0.864180 0.503183i \(-0.832162\pi\)
0.864180 0.503183i \(-0.167838\pi\)
\(828\) 6193.92i 0.259968i
\(829\) 26149.2 1.09554 0.547768 0.836630i \(-0.315478\pi\)
0.547768 + 0.836630i \(0.315478\pi\)
\(830\) 0 0
\(831\) −85408.2 −3.56532
\(832\) 967.926i 0.0403327i
\(833\) − 48263.3i − 2.00747i
\(834\) −41226.9 −1.71172
\(835\) 0 0
\(836\) −703.678 −0.0291115
\(837\) − 114547.i − 4.73036i
\(838\) 26356.9i 1.08649i
\(839\) −13611.0 −0.560074 −0.280037 0.959989i \(-0.590347\pi\)
−0.280037 + 0.959989i \(0.590347\pi\)
\(840\) 0 0
\(841\) 12467.0 0.511175
\(842\) − 2735.09i − 0.111945i
\(843\) 64137.4i 2.62042i
\(844\) −6366.24 −0.259639
\(845\) 0 0
\(846\) −19221.3 −0.781135
\(847\) 44009.9i 1.78536i
\(848\) 9432.48i 0.381973i
\(849\) −71751.0 −2.90046
\(850\) 0 0
\(851\) −1443.16 −0.0581325
\(852\) − 17623.9i − 0.708667i
\(853\) 27108.9i 1.08815i 0.839038 + 0.544073i \(0.183119\pi\)
−0.839038 + 0.544073i \(0.816881\pi\)
\(854\) −53643.1 −2.14945
\(855\) 0 0
\(856\) 8822.89 0.352290
\(857\) − 11549.4i − 0.460349i −0.973149 0.230175i \(-0.926070\pi\)
0.973149 0.230175i \(-0.0739297\pi\)
\(858\) 469.163i 0.0186678i
\(859\) 15491.8 0.615335 0.307668 0.951494i \(-0.400451\pi\)
0.307668 + 0.951494i \(0.400451\pi\)
\(860\) 0 0
\(861\) 95339.1 3.77369
\(862\) 69.2386i 0.00273582i
\(863\) 4709.17i 0.185750i 0.995678 + 0.0928749i \(0.0296057\pi\)
−0.995678 + 0.0928749i \(0.970394\pi\)
\(864\) 12532.6 0.493480
\(865\) 0 0
\(866\) −6540.15 −0.256632
\(867\) 7976.96i 0.312470i
\(868\) 38757.6i 1.51558i
\(869\) 1877.44 0.0732887
\(870\) 0 0
\(871\) 6520.99 0.253680
\(872\) − 11020.9i − 0.428000i
\(873\) 40393.7i 1.56600i
\(874\) −5067.04 −0.196104
\(875\) 0 0
\(876\) 4342.78 0.167499
\(877\) 22566.1i 0.868875i 0.900702 + 0.434438i \(0.143053\pi\)
−0.900702 + 0.434438i \(0.856947\pi\)
\(878\) − 13130.8i − 0.504720i
\(879\) −44091.9 −1.69190
\(880\) 0 0
\(881\) 15121.2 0.578261 0.289130 0.957290i \(-0.406634\pi\)
0.289130 + 0.957290i \(0.406634\pi\)
\(882\) 101596.i 3.87858i
\(883\) 48306.7i 1.84105i 0.390678 + 0.920527i \(0.372240\pi\)
−0.390678 + 0.920527i \(0.627760\pi\)
\(884\) −3869.65 −0.147229
\(885\) 0 0
\(886\) −17619.5 −0.668101
\(887\) 15632.8i 0.591767i 0.955224 + 0.295883i \(0.0956140\pi\)
−0.955224 + 0.295883i \(0.904386\pi\)
\(888\) 4875.16i 0.184234i
\(889\) −69180.0 −2.60993
\(890\) 0 0
\(891\) 3171.58 0.119250
\(892\) − 9198.55i − 0.345280i
\(893\) − 15724.3i − 0.589241i
\(894\) −31681.2 −1.18521
\(895\) 0 0
\(896\) −4240.48 −0.158108
\(897\) 3378.34i 0.125752i
\(898\) 17954.8i 0.667215i
\(899\) −56149.6 −2.08309
\(900\) 0 0
\(901\) −37709.9 −1.39434
\(902\) 946.454i 0.0349373i
\(903\) − 29085.1i − 1.07186i
\(904\) 7914.36 0.291181
\(905\) 0 0
\(906\) −21956.5 −0.805139
\(907\) − 15321.2i − 0.560897i −0.959869 0.280449i \(-0.909517\pi\)
0.959869 0.280449i \(-0.0904832\pi\)
\(908\) 13016.7i 0.475744i
\(909\) −56904.1 −2.07634
\(910\) 0 0
\(911\) 27566.7 1.00255 0.501275 0.865288i \(-0.332864\pi\)
0.501275 + 0.865288i \(0.332864\pi\)
\(912\) 17117.1i 0.621495i
\(913\) − 151.839i − 0.00550398i
\(914\) −1712.39 −0.0619702
\(915\) 0 0
\(916\) −19739.2 −0.712010
\(917\) 71337.5i 2.56900i
\(918\) 50103.7i 1.80138i
\(919\) −6372.54 −0.228738 −0.114369 0.993438i \(-0.536485\pi\)
−0.114369 + 0.993438i \(0.536485\pi\)
\(920\) 0 0
\(921\) −28229.6 −1.00999
\(922\) 735.512i 0.0262720i
\(923\) − 6861.04i − 0.244674i
\(924\) −2055.40 −0.0731794
\(925\) 0 0
\(926\) −14660.9 −0.520290
\(927\) − 74275.0i − 2.63162i
\(928\) − 6143.34i − 0.217311i
\(929\) −39918.6 −1.40978 −0.704890 0.709316i \(-0.749004\pi\)
−0.704890 + 0.709316i \(0.749004\pi\)
\(930\) 0 0
\(931\) −83112.0 −2.92576
\(932\) 4777.91i 0.167925i
\(933\) − 79764.5i − 2.79890i
\(934\) −23006.2 −0.805980
\(935\) 0 0
\(936\) 8145.72 0.284457
\(937\) 11758.4i 0.409957i 0.978766 + 0.204979i \(0.0657125\pi\)
−0.978766 + 0.204979i \(0.934288\pi\)
\(938\) 28568.5i 0.994449i
\(939\) 1953.14 0.0678788
\(940\) 0 0
\(941\) −26312.9 −0.911559 −0.455779 0.890093i \(-0.650639\pi\)
−0.455779 + 0.890093i \(0.650639\pi\)
\(942\) 7985.62i 0.276206i
\(943\) 6815.22i 0.235349i
\(944\) 2811.03 0.0969188
\(945\) 0 0
\(946\) 288.734 0.00992343
\(947\) 8785.42i 0.301466i 0.988575 + 0.150733i \(0.0481633\pi\)
−0.988575 + 0.150733i \(0.951837\pi\)
\(948\) − 45669.1i − 1.56463i
\(949\) 1690.66 0.0578305
\(950\) 0 0
\(951\) −24719.2 −0.842877
\(952\) − 16952.9i − 0.577151i
\(953\) 11133.8i 0.378447i 0.981934 + 0.189223i \(0.0605970\pi\)
−0.981934 + 0.189223i \(0.939403\pi\)
\(954\) 79380.5 2.69396
\(955\) 0 0
\(956\) 6210.42 0.210104
\(957\) − 2977.73i − 0.100581i
\(958\) − 17160.9i − 0.578752i
\(959\) 43336.6 1.45924
\(960\) 0 0
\(961\) 55752.0 1.87144
\(962\) 1897.92i 0.0636084i
\(963\) − 74250.3i − 2.48461i
\(964\) 16712.8 0.558384
\(965\) 0 0
\(966\) −14800.5 −0.492959
\(967\) 30546.1i 1.01582i 0.861410 + 0.507910i \(0.169582\pi\)
−0.861410 + 0.507910i \(0.830418\pi\)
\(968\) 10627.6i 0.352876i
\(969\) −68432.1 −2.26868
\(970\) 0 0
\(971\) −26757.1 −0.884322 −0.442161 0.896936i \(-0.645788\pi\)
−0.442161 + 0.896936i \(0.645788\pi\)
\(972\) − 34851.8i − 1.15007i
\(973\) − 70314.1i − 2.31672i
\(974\) 31653.6 1.04132
\(975\) 0 0
\(976\) −12953.8 −0.424839
\(977\) 36550.8i 1.19689i 0.801163 + 0.598447i \(0.204215\pi\)
−0.801163 + 0.598447i \(0.795785\pi\)
\(978\) 61203.7i 2.00110i
\(979\) −1336.25 −0.0436228
\(980\) 0 0
\(981\) −92748.4 −3.01858
\(982\) − 12438.2i − 0.404195i
\(983\) 7459.39i 0.242032i 0.992651 + 0.121016i \(0.0386152\pi\)
−0.992651 + 0.121016i \(0.961385\pi\)
\(984\) 23022.7 0.745870
\(985\) 0 0
\(986\) 24560.3 0.793266
\(987\) − 45929.7i − 1.48121i
\(988\) 6663.74i 0.214577i
\(989\) 2079.12 0.0668474
\(990\) 0 0
\(991\) −56932.3 −1.82494 −0.912470 0.409145i \(-0.865827\pi\)
−0.912470 + 0.409145i \(0.865827\pi\)
\(992\) 9359.27i 0.299554i
\(993\) 71195.7i 2.27526i
\(994\) 30058.2 0.959142
\(995\) 0 0
\(996\) −3693.51 −0.117503
\(997\) 34243.6i 1.08777i 0.839160 + 0.543885i \(0.183047\pi\)
−0.839160 + 0.543885i \(0.816953\pi\)
\(998\) − 25640.2i − 0.813252i
\(999\) 24574.0 0.778265
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.b.s.599.12 12
5.2 odd 4 1150.4.a.w.1.6 6
5.3 odd 4 1150.4.a.x.1.1 yes 6
5.4 even 2 inner 1150.4.b.s.599.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.4.a.w.1.6 6 5.2 odd 4
1150.4.a.x.1.1 yes 6 5.3 odd 4
1150.4.b.s.599.1 12 5.4 even 2 inner
1150.4.b.s.599.12 12 1.1 even 1 trivial