Properties

Label 1150.4.a.w.1.6
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1150,4,Mod(1,1150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1150.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-12,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 109x^{4} + 94x^{3} + 2808x^{2} + 81x - 9774 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-8.71212\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +9.71212 q^{3} +4.00000 q^{4} -19.4242 q^{6} +33.1288 q^{7} -8.00000 q^{8} +67.3252 q^{9} +1.59705 q^{11} +38.8485 q^{12} -15.1238 q^{13} -66.2575 q^{14} +16.0000 q^{16} -63.9661 q^{17} -134.650 q^{18} -110.153 q^{19} +321.750 q^{21} -3.19409 q^{22} +23.0000 q^{23} -77.6969 q^{24} +30.2477 q^{26} +391.643 q^{27} +132.515 q^{28} +191.979 q^{29} +292.477 q^{31} -32.0000 q^{32} +15.5107 q^{33} +127.932 q^{34} +269.301 q^{36} -62.7459 q^{37} +220.306 q^{38} -146.885 q^{39} +296.314 q^{41} -643.501 q^{42} -90.3963 q^{43} +6.38819 q^{44} -46.0000 q^{46} +142.749 q^{47} +155.394 q^{48} +754.515 q^{49} -621.246 q^{51} -60.4954 q^{52} +589.530 q^{53} -783.286 q^{54} -265.030 q^{56} -1069.82 q^{57} -383.959 q^{58} -175.690 q^{59} -809.615 q^{61} -584.955 q^{62} +2230.40 q^{63} +64.0000 q^{64} -31.0214 q^{66} -431.173 q^{67} -255.864 q^{68} +223.379 q^{69} +453.657 q^{71} -538.602 q^{72} +111.788 q^{73} +125.492 q^{74} -440.612 q^{76} +52.9082 q^{77} +293.769 q^{78} -1175.57 q^{79} +1985.90 q^{81} -592.628 q^{82} -95.0748 q^{83} +1287.00 q^{84} +180.793 q^{86} +1864.52 q^{87} -12.7764 q^{88} +836.699 q^{89} -501.034 q^{91} +92.0000 q^{92} +2840.57 q^{93} -285.499 q^{94} -310.788 q^{96} +599.979 q^{97} -1509.03 q^{98} +107.522 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} + 5 q^{3} + 24 q^{4} - 10 q^{6} + 42 q^{7} - 48 q^{8} + 61 q^{9} - 49 q^{11} + 20 q^{12} + 16 q^{13} - 84 q^{14} + 96 q^{16} + 175 q^{17} - 122 q^{18} - 229 q^{19} + 92 q^{21} + 98 q^{22}+ \cdots - 142 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 9.71212 1.86910 0.934549 0.355835i \(-0.115803\pi\)
0.934549 + 0.355835i \(0.115803\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −19.4242 −1.32165
\(7\) 33.1288 1.78878 0.894392 0.447283i \(-0.147608\pi\)
0.894392 + 0.447283i \(0.147608\pi\)
\(8\) −8.00000 −0.353553
\(9\) 67.3252 2.49353
\(10\) 0 0
\(11\) 1.59705 0.0437753 0.0218876 0.999760i \(-0.493032\pi\)
0.0218876 + 0.999760i \(0.493032\pi\)
\(12\) 38.8485 0.934549
\(13\) −15.1238 −0.322661 −0.161331 0.986900i \(-0.551579\pi\)
−0.161331 + 0.986900i \(0.551579\pi\)
\(14\) −66.2575 −1.26486
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −63.9661 −0.912591 −0.456296 0.889828i \(-0.650824\pi\)
−0.456296 + 0.889828i \(0.650824\pi\)
\(18\) −134.650 −1.76319
\(19\) −110.153 −1.33004 −0.665022 0.746824i \(-0.731578\pi\)
−0.665022 + 0.746824i \(0.731578\pi\)
\(20\) 0 0
\(21\) 321.750 3.34341
\(22\) −3.19409 −0.0309538
\(23\) 23.0000 0.208514
\(24\) −77.6969 −0.660826
\(25\) 0 0
\(26\) 30.2477 0.228156
\(27\) 391.643 2.79155
\(28\) 132.515 0.894392
\(29\) 191.979 1.22930 0.614649 0.788801i \(-0.289298\pi\)
0.614649 + 0.788801i \(0.289298\pi\)
\(30\) 0 0
\(31\) 292.477 1.69453 0.847266 0.531169i \(-0.178247\pi\)
0.847266 + 0.531169i \(0.178247\pi\)
\(32\) −32.0000 −0.176777
\(33\) 15.5107 0.0818202
\(34\) 127.932 0.645299
\(35\) 0 0
\(36\) 269.301 1.24676
\(37\) −62.7459 −0.278794 −0.139397 0.990237i \(-0.544516\pi\)
−0.139397 + 0.990237i \(0.544516\pi\)
\(38\) 220.306 0.940483
\(39\) −146.885 −0.603086
\(40\) 0 0
\(41\) 296.314 1.12869 0.564347 0.825538i \(-0.309128\pi\)
0.564347 + 0.825538i \(0.309128\pi\)
\(42\) −643.501 −2.36415
\(43\) −90.3963 −0.320589 −0.160294 0.987069i \(-0.551244\pi\)
−0.160294 + 0.987069i \(0.551244\pi\)
\(44\) 6.38819 0.0218876
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) 142.749 0.443024 0.221512 0.975158i \(-0.428901\pi\)
0.221512 + 0.975158i \(0.428901\pi\)
\(48\) 155.394 0.467274
\(49\) 754.515 2.19975
\(50\) 0 0
\(51\) −621.246 −1.70572
\(52\) −60.4954 −0.161331
\(53\) 589.530 1.52789 0.763945 0.645281i \(-0.223260\pi\)
0.763945 + 0.645281i \(0.223260\pi\)
\(54\) −783.286 −1.97392
\(55\) 0 0
\(56\) −265.030 −0.632431
\(57\) −1069.82 −2.48598
\(58\) −383.959 −0.869245
\(59\) −175.690 −0.387675 −0.193838 0.981034i \(-0.562093\pi\)
−0.193838 + 0.981034i \(0.562093\pi\)
\(60\) 0 0
\(61\) −809.615 −1.69935 −0.849677 0.527303i \(-0.823203\pi\)
−0.849677 + 0.527303i \(0.823203\pi\)
\(62\) −584.955 −1.19821
\(63\) 2230.40 4.46038
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −31.0214 −0.0578556
\(67\) −431.173 −0.786212 −0.393106 0.919493i \(-0.628599\pi\)
−0.393106 + 0.919493i \(0.628599\pi\)
\(68\) −255.864 −0.456296
\(69\) 223.379 0.389734
\(70\) 0 0
\(71\) 453.657 0.758298 0.379149 0.925336i \(-0.376217\pi\)
0.379149 + 0.925336i \(0.376217\pi\)
\(72\) −538.602 −0.881595
\(73\) 111.788 0.179230 0.0896149 0.995976i \(-0.471436\pi\)
0.0896149 + 0.995976i \(0.471436\pi\)
\(74\) 125.492 0.197137
\(75\) 0 0
\(76\) −440.612 −0.665022
\(77\) 52.9082 0.0783045
\(78\) 293.769 0.426446
\(79\) −1175.57 −1.67420 −0.837102 0.547047i \(-0.815752\pi\)
−0.837102 + 0.547047i \(0.815752\pi\)
\(80\) 0 0
\(81\) 1985.90 2.72415
\(82\) −592.628 −0.798107
\(83\) −95.0748 −0.125733 −0.0628663 0.998022i \(-0.520024\pi\)
−0.0628663 + 0.998022i \(0.520024\pi\)
\(84\) 1287.00 1.67171
\(85\) 0 0
\(86\) 180.793 0.226690
\(87\) 1864.52 2.29768
\(88\) −12.7764 −0.0154769
\(89\) 836.699 0.996516 0.498258 0.867029i \(-0.333973\pi\)
0.498258 + 0.867029i \(0.333973\pi\)
\(90\) 0 0
\(91\) −501.034 −0.577172
\(92\) 92.0000 0.104257
\(93\) 2840.57 3.16724
\(94\) −285.499 −0.313265
\(95\) 0 0
\(96\) −310.788 −0.330413
\(97\) 599.979 0.628027 0.314013 0.949419i \(-0.398326\pi\)
0.314013 + 0.949419i \(0.398326\pi\)
\(98\) −1509.03 −1.55546
\(99\) 107.522 0.109155
\(100\) 0 0
\(101\) 845.212 0.832691 0.416345 0.909207i \(-0.363311\pi\)
0.416345 + 0.909207i \(0.363311\pi\)
\(102\) 1242.49 1.20613
\(103\) 1103.23 1.05538 0.527690 0.849437i \(-0.323058\pi\)
0.527690 + 0.849437i \(0.323058\pi\)
\(104\) 120.991 0.114078
\(105\) 0 0
\(106\) −1179.06 −1.08038
\(107\) −1102.86 −0.996426 −0.498213 0.867055i \(-0.666010\pi\)
−0.498213 + 0.867055i \(0.666010\pi\)
\(108\) 1566.57 1.39577
\(109\) −1377.62 −1.21057 −0.605284 0.796010i \(-0.706940\pi\)
−0.605284 + 0.796010i \(0.706940\pi\)
\(110\) 0 0
\(111\) −609.395 −0.521092
\(112\) 530.060 0.447196
\(113\) 989.295 0.823584 0.411792 0.911278i \(-0.364903\pi\)
0.411792 + 0.911278i \(0.364903\pi\)
\(114\) 2139.64 1.75785
\(115\) 0 0
\(116\) 767.917 0.614649
\(117\) −1018.22 −0.804565
\(118\) 351.379 0.274128
\(119\) −2119.12 −1.63243
\(120\) 0 0
\(121\) −1328.45 −0.998084
\(122\) 1619.23 1.20163
\(123\) 2877.83 2.10964
\(124\) 1169.91 0.847266
\(125\) 0 0
\(126\) −4460.80 −3.15397
\(127\) 2088.22 1.45905 0.729525 0.683954i \(-0.239741\pi\)
0.729525 + 0.683954i \(0.239741\pi\)
\(128\) −128.000 −0.0883883
\(129\) −877.940 −0.599211
\(130\) 0 0
\(131\) −2153.34 −1.43617 −0.718085 0.695955i \(-0.754981\pi\)
−0.718085 + 0.695955i \(0.754981\pi\)
\(132\) 62.0428 0.0409101
\(133\) −3649.23 −2.37916
\(134\) 862.346 0.555936
\(135\) 0 0
\(136\) 511.729 0.322650
\(137\) −1308.13 −0.815771 −0.407886 0.913033i \(-0.633734\pi\)
−0.407886 + 0.913033i \(0.633734\pi\)
\(138\) −446.757 −0.275583
\(139\) −2122.45 −1.29513 −0.647567 0.762008i \(-0.724214\pi\)
−0.647567 + 0.762008i \(0.724214\pi\)
\(140\) 0 0
\(141\) 1386.40 0.828055
\(142\) −907.314 −0.536198
\(143\) −24.1535 −0.0141246
\(144\) 1077.20 0.623381
\(145\) 0 0
\(146\) −223.576 −0.126735
\(147\) 7327.93 4.11155
\(148\) −250.984 −0.139397
\(149\) −1631.01 −0.896765 −0.448382 0.893842i \(-0.648000\pi\)
−0.448382 + 0.893842i \(0.648000\pi\)
\(150\) 0 0
\(151\) 1130.37 0.609192 0.304596 0.952482i \(-0.401479\pi\)
0.304596 + 0.952482i \(0.401479\pi\)
\(152\) 881.224 0.470241
\(153\) −4306.53 −2.27557
\(154\) −105.816 −0.0553697
\(155\) 0 0
\(156\) −587.538 −0.301543
\(157\) 411.116 0.208985 0.104493 0.994526i \(-0.466678\pi\)
0.104493 + 0.994526i \(0.466678\pi\)
\(158\) 2351.14 1.18384
\(159\) 5725.58 2.85578
\(160\) 0 0
\(161\) 761.961 0.372987
\(162\) −3971.80 −1.92626
\(163\) −3150.89 −1.51409 −0.757046 0.653362i \(-0.773358\pi\)
−0.757046 + 0.653362i \(0.773358\pi\)
\(164\) 1185.26 0.564347
\(165\) 0 0
\(166\) 190.150 0.0889064
\(167\) −3685.50 −1.70774 −0.853871 0.520485i \(-0.825751\pi\)
−0.853871 + 0.520485i \(0.825751\pi\)
\(168\) −2574.00 −1.18208
\(169\) −1968.27 −0.895890
\(170\) 0 0
\(171\) −7416.07 −3.31650
\(172\) −361.585 −0.160294
\(173\) 4516.07 1.98468 0.992342 0.123522i \(-0.0394190\pi\)
0.992342 + 0.123522i \(0.0394190\pi\)
\(174\) −3729.05 −1.62470
\(175\) 0 0
\(176\) 25.5528 0.0109438
\(177\) −1706.32 −0.724603
\(178\) −1673.40 −0.704643
\(179\) 3047.24 1.27241 0.636206 0.771519i \(-0.280503\pi\)
0.636206 + 0.771519i \(0.280503\pi\)
\(180\) 0 0
\(181\) −185.447 −0.0761558 −0.0380779 0.999275i \(-0.512124\pi\)
−0.0380779 + 0.999275i \(0.512124\pi\)
\(182\) 1002.07 0.408122
\(183\) −7863.08 −3.17626
\(184\) −184.000 −0.0737210
\(185\) 0 0
\(186\) −5681.15 −2.23958
\(187\) −102.157 −0.0399489
\(188\) 570.998 0.221512
\(189\) 12974.6 4.99347
\(190\) 0 0
\(191\) 3449.76 1.30689 0.653445 0.756974i \(-0.273323\pi\)
0.653445 + 0.756974i \(0.273323\pi\)
\(192\) 621.575 0.233637
\(193\) 1593.41 0.594279 0.297140 0.954834i \(-0.403967\pi\)
0.297140 + 0.954834i \(0.403967\pi\)
\(194\) −1199.96 −0.444082
\(195\) 0 0
\(196\) 3018.06 1.09988
\(197\) −91.9830 −0.0332666 −0.0166333 0.999862i \(-0.505295\pi\)
−0.0166333 + 0.999862i \(0.505295\pi\)
\(198\) −215.043 −0.0771841
\(199\) −3252.36 −1.15856 −0.579281 0.815128i \(-0.696667\pi\)
−0.579281 + 0.815128i \(0.696667\pi\)
\(200\) 0 0
\(201\) −4187.60 −1.46951
\(202\) −1690.42 −0.588801
\(203\) 6360.03 2.19895
\(204\) −2484.98 −0.852861
\(205\) 0 0
\(206\) −2206.45 −0.746267
\(207\) 1548.48 0.519936
\(208\) −241.981 −0.0806654
\(209\) −175.919 −0.0582230
\(210\) 0 0
\(211\) 1591.56 0.519278 0.259639 0.965706i \(-0.416396\pi\)
0.259639 + 0.965706i \(0.416396\pi\)
\(212\) 2358.12 0.763945
\(213\) 4405.97 1.41733
\(214\) 2205.72 0.704580
\(215\) 0 0
\(216\) −3133.14 −0.986960
\(217\) 9689.41 3.03115
\(218\) 2755.24 0.856000
\(219\) 1085.70 0.334998
\(220\) 0 0
\(221\) 967.413 0.294458
\(222\) 1218.79 0.368468
\(223\) 2299.64 0.690561 0.345280 0.938500i \(-0.387784\pi\)
0.345280 + 0.938500i \(0.387784\pi\)
\(224\) −1060.12 −0.316215
\(225\) 0 0
\(226\) −1978.59 −0.582362
\(227\) 3254.18 0.951488 0.475744 0.879584i \(-0.342179\pi\)
0.475744 + 0.879584i \(0.342179\pi\)
\(228\) −4279.27 −1.24299
\(229\) −4934.80 −1.42402 −0.712010 0.702169i \(-0.752215\pi\)
−0.712010 + 0.702169i \(0.752215\pi\)
\(230\) 0 0
\(231\) 513.850 0.146359
\(232\) −1535.83 −0.434623
\(233\) −1194.48 −0.335849 −0.167925 0.985800i \(-0.553706\pi\)
−0.167925 + 0.985800i \(0.553706\pi\)
\(234\) 2036.43 0.568913
\(235\) 0 0
\(236\) −702.758 −0.193838
\(237\) −11417.3 −3.12925
\(238\) 4238.23 1.15430
\(239\) 1552.61 0.420208 0.210104 0.977679i \(-0.432620\pi\)
0.210104 + 0.977679i \(0.432620\pi\)
\(240\) 0 0
\(241\) −4178.20 −1.11677 −0.558384 0.829582i \(-0.688579\pi\)
−0.558384 + 0.829582i \(0.688579\pi\)
\(242\) 2656.90 0.705752
\(243\) 8712.95 2.30015
\(244\) −3238.46 −0.849677
\(245\) 0 0
\(246\) −5755.67 −1.49174
\(247\) 1665.94 0.429154
\(248\) −2339.82 −0.599107
\(249\) −923.377 −0.235007
\(250\) 0 0
\(251\) 672.494 0.169113 0.0845567 0.996419i \(-0.473053\pi\)
0.0845567 + 0.996419i \(0.473053\pi\)
\(252\) 8921.60 2.23019
\(253\) 36.7321 0.00912777
\(254\) −4176.43 −1.03170
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −1986.84 −0.482239 −0.241119 0.970495i \(-0.577515\pi\)
−0.241119 + 0.970495i \(0.577515\pi\)
\(258\) 1755.88 0.423707
\(259\) −2078.69 −0.498702
\(260\) 0 0
\(261\) 12925.0 3.06529
\(262\) 4306.68 1.01553
\(263\) −1583.85 −0.371347 −0.185673 0.982612i \(-0.559447\pi\)
−0.185673 + 0.982612i \(0.559447\pi\)
\(264\) −124.086 −0.0289278
\(265\) 0 0
\(266\) 7298.46 1.68232
\(267\) 8126.12 1.86259
\(268\) −1724.69 −0.393106
\(269\) −5309.66 −1.20348 −0.601739 0.798693i \(-0.705525\pi\)
−0.601739 + 0.798693i \(0.705525\pi\)
\(270\) 0 0
\(271\) −1083.04 −0.242767 −0.121383 0.992606i \(-0.538733\pi\)
−0.121383 + 0.992606i \(0.538733\pi\)
\(272\) −1023.46 −0.228148
\(273\) −4866.10 −1.07879
\(274\) 2616.25 0.576837
\(275\) 0 0
\(276\) 893.515 0.194867
\(277\) −8793.99 −1.90751 −0.953753 0.300590i \(-0.902816\pi\)
−0.953753 + 0.300590i \(0.902816\pi\)
\(278\) 4244.90 0.915799
\(279\) 19691.1 4.22536
\(280\) 0 0
\(281\) 6603.86 1.40197 0.700984 0.713177i \(-0.252744\pi\)
0.700984 + 0.713177i \(0.252744\pi\)
\(282\) −2772.80 −0.585524
\(283\) 7387.79 1.55180 0.775898 0.630858i \(-0.217297\pi\)
0.775898 + 0.630858i \(0.217297\pi\)
\(284\) 1814.63 0.379149
\(285\) 0 0
\(286\) 48.3070 0.00998759
\(287\) 9816.51 2.01899
\(288\) −2154.41 −0.440797
\(289\) −821.341 −0.167177
\(290\) 0 0
\(291\) 5827.06 1.17384
\(292\) 447.151 0.0896149
\(293\) 4539.89 0.905198 0.452599 0.891714i \(-0.350497\pi\)
0.452599 + 0.891714i \(0.350497\pi\)
\(294\) −14655.9 −2.90730
\(295\) 0 0
\(296\) 501.967 0.0985684
\(297\) 625.472 0.122201
\(298\) 3262.03 0.634108
\(299\) −347.848 −0.0672796
\(300\) 0 0
\(301\) −2994.72 −0.573464
\(302\) −2260.73 −0.430764
\(303\) 8208.80 1.55638
\(304\) −1762.45 −0.332511
\(305\) 0 0
\(306\) 8613.06 1.60907
\(307\) −2906.64 −0.540360 −0.270180 0.962810i \(-0.587083\pi\)
−0.270180 + 0.962810i \(0.587083\pi\)
\(308\) 211.633 0.0391523
\(309\) 10714.7 1.97261
\(310\) 0 0
\(311\) −8212.89 −1.49746 −0.748730 0.662875i \(-0.769336\pi\)
−0.748730 + 0.662875i \(0.769336\pi\)
\(312\) 1175.08 0.213223
\(313\) −201.103 −0.0363163 −0.0181582 0.999835i \(-0.505780\pi\)
−0.0181582 + 0.999835i \(0.505780\pi\)
\(314\) −822.233 −0.147775
\(315\) 0 0
\(316\) −4702.29 −0.837102
\(317\) −2545.20 −0.450954 −0.225477 0.974248i \(-0.572394\pi\)
−0.225477 + 0.974248i \(0.572394\pi\)
\(318\) −11451.2 −2.01934
\(319\) 306.600 0.0538129
\(320\) 0 0
\(321\) −10711.1 −1.86242
\(322\) −1523.92 −0.263742
\(323\) 7046.05 1.21379
\(324\) 7943.61 1.36207
\(325\) 0 0
\(326\) 6301.79 1.07062
\(327\) −13379.6 −2.26267
\(328\) −2370.51 −0.399053
\(329\) 4729.11 0.792475
\(330\) 0 0
\(331\) 7330.61 1.21730 0.608651 0.793438i \(-0.291711\pi\)
0.608651 + 0.793438i \(0.291711\pi\)
\(332\) −380.299 −0.0628663
\(333\) −4224.38 −0.695179
\(334\) 7371.01 1.20756
\(335\) 0 0
\(336\) 5148.01 0.835853
\(337\) 7988.83 1.29133 0.645666 0.763620i \(-0.276580\pi\)
0.645666 + 0.763620i \(0.276580\pi\)
\(338\) 3936.54 0.633490
\(339\) 9608.15 1.53936
\(340\) 0 0
\(341\) 467.100 0.0741786
\(342\) 14832.1 2.34512
\(343\) 13633.0 2.14610
\(344\) 723.171 0.113345
\(345\) 0 0
\(346\) −9032.14 −1.40338
\(347\) −9300.59 −1.43885 −0.719427 0.694569i \(-0.755595\pi\)
−0.719427 + 0.694569i \(0.755595\pi\)
\(348\) 7458.10 1.14884
\(349\) −627.258 −0.0962073 −0.0481037 0.998842i \(-0.515318\pi\)
−0.0481037 + 0.998842i \(0.515318\pi\)
\(350\) 0 0
\(351\) −5923.15 −0.900724
\(352\) −51.1055 −0.00773845
\(353\) −10275.9 −1.54938 −0.774691 0.632339i \(-0.782095\pi\)
−0.774691 + 0.632339i \(0.782095\pi\)
\(354\) 3412.63 0.512371
\(355\) 0 0
\(356\) 3346.80 0.498258
\(357\) −20581.1 −3.05117
\(358\) −6094.49 −0.899731
\(359\) 9083.80 1.33544 0.667722 0.744411i \(-0.267270\pi\)
0.667722 + 0.744411i \(0.267270\pi\)
\(360\) 0 0
\(361\) 5274.67 0.769015
\(362\) 370.895 0.0538503
\(363\) −12902.1 −1.86552
\(364\) −2004.14 −0.288586
\(365\) 0 0
\(366\) 15726.2 2.24595
\(367\) −8578.97 −1.22021 −0.610107 0.792319i \(-0.708873\pi\)
−0.610107 + 0.792319i \(0.708873\pi\)
\(368\) 368.000 0.0521286
\(369\) 19949.4 2.81443
\(370\) 0 0
\(371\) 19530.4 2.73307
\(372\) 11362.3 1.58362
\(373\) −10462.6 −1.45236 −0.726181 0.687503i \(-0.758707\pi\)
−0.726181 + 0.687503i \(0.758707\pi\)
\(374\) 204.314 0.0282482
\(375\) 0 0
\(376\) −1142.00 −0.156633
\(377\) −2903.46 −0.396647
\(378\) −25949.3 −3.53092
\(379\) −7320.67 −0.992184 −0.496092 0.868270i \(-0.665232\pi\)
−0.496092 + 0.868270i \(0.665232\pi\)
\(380\) 0 0
\(381\) 20281.0 2.72711
\(382\) −6899.52 −0.924111
\(383\) 2226.12 0.296995 0.148498 0.988913i \(-0.452556\pi\)
0.148498 + 0.988913i \(0.452556\pi\)
\(384\) −1243.15 −0.165206
\(385\) 0 0
\(386\) −3186.81 −0.420219
\(387\) −6085.95 −0.799396
\(388\) 2399.92 0.314013
\(389\) 1358.18 0.177024 0.0885121 0.996075i \(-0.471789\pi\)
0.0885121 + 0.996075i \(0.471789\pi\)
\(390\) 0 0
\(391\) −1471.22 −0.190288
\(392\) −6036.12 −0.777729
\(393\) −20913.5 −2.68434
\(394\) 183.966 0.0235230
\(395\) 0 0
\(396\) 430.086 0.0545774
\(397\) 9938.92 1.25647 0.628237 0.778022i \(-0.283777\pi\)
0.628237 + 0.778022i \(0.283777\pi\)
\(398\) 6504.73 0.819227
\(399\) −35441.7 −4.44688
\(400\) 0 0
\(401\) −13384.5 −1.66680 −0.833401 0.552669i \(-0.813609\pi\)
−0.833401 + 0.552669i \(0.813609\pi\)
\(402\) 8375.21 1.03910
\(403\) −4423.38 −0.546760
\(404\) 3380.85 0.416345
\(405\) 0 0
\(406\) −12720.1 −1.55489
\(407\) −100.208 −0.0122043
\(408\) 4969.97 0.603064
\(409\) 2957.56 0.357560 0.178780 0.983889i \(-0.442785\pi\)
0.178780 + 0.983889i \(0.442785\pi\)
\(410\) 0 0
\(411\) −12704.7 −1.52476
\(412\) 4412.91 0.527690
\(413\) −5820.38 −0.693467
\(414\) −3096.96 −0.367650
\(415\) 0 0
\(416\) 483.963 0.0570390
\(417\) −20613.5 −2.42073
\(418\) 351.839 0.0411699
\(419\) −13178.4 −1.53654 −0.768268 0.640128i \(-0.778881\pi\)
−0.768268 + 0.640128i \(0.778881\pi\)
\(420\) 0 0
\(421\) −1367.55 −0.158314 −0.0791569 0.996862i \(-0.525223\pi\)
−0.0791569 + 0.996862i \(0.525223\pi\)
\(422\) −3183.12 −0.367185
\(423\) 9610.63 1.10469
\(424\) −4716.24 −0.540191
\(425\) 0 0
\(426\) −8811.94 −1.00221
\(427\) −26821.6 −3.03978
\(428\) −4411.44 −0.498213
\(429\) −234.581 −0.0264002
\(430\) 0 0
\(431\) 34.6193 0.00386903 0.00193451 0.999998i \(-0.499384\pi\)
0.00193451 + 0.999998i \(0.499384\pi\)
\(432\) 6266.29 0.697886
\(433\) 3270.08 0.362933 0.181466 0.983397i \(-0.441916\pi\)
0.181466 + 0.983397i \(0.441916\pi\)
\(434\) −19378.8 −2.14335
\(435\) 0 0
\(436\) −5510.47 −0.605284
\(437\) −2533.52 −0.277333
\(438\) −2171.39 −0.236879
\(439\) 6565.41 0.713781 0.356891 0.934146i \(-0.383837\pi\)
0.356891 + 0.934146i \(0.383837\pi\)
\(440\) 0 0
\(441\) 50797.8 5.48514
\(442\) −1934.83 −0.208213
\(443\) 8809.74 0.944838 0.472419 0.881374i \(-0.343381\pi\)
0.472419 + 0.881374i \(0.343381\pi\)
\(444\) −2437.58 −0.260546
\(445\) 0 0
\(446\) −4599.27 −0.488300
\(447\) −15840.6 −1.67614
\(448\) 2120.24 0.223598
\(449\) −8977.39 −0.943584 −0.471792 0.881710i \(-0.656393\pi\)
−0.471792 + 0.881710i \(0.656393\pi\)
\(450\) 0 0
\(451\) 473.227 0.0494089
\(452\) 3957.18 0.411792
\(453\) 10978.3 1.13864
\(454\) −6508.37 −0.672803
\(455\) 0 0
\(456\) 8558.55 0.878927
\(457\) −856.195 −0.0876392 −0.0438196 0.999039i \(-0.513953\pi\)
−0.0438196 + 0.999039i \(0.513953\pi\)
\(458\) 9869.60 1.00693
\(459\) −25051.9 −2.54754
\(460\) 0 0
\(461\) 367.756 0.0371543 0.0185771 0.999827i \(-0.494086\pi\)
0.0185771 + 0.999827i \(0.494086\pi\)
\(462\) −1027.70 −0.103491
\(463\) 7330.47 0.735801 0.367901 0.929865i \(-0.380077\pi\)
0.367901 + 0.929865i \(0.380077\pi\)
\(464\) 3071.67 0.307325
\(465\) 0 0
\(466\) 2388.96 0.237481
\(467\) −11503.1 −1.13983 −0.569914 0.821705i \(-0.693023\pi\)
−0.569914 + 0.821705i \(0.693023\pi\)
\(468\) −4072.86 −0.402282
\(469\) −14284.2 −1.40636
\(470\) 0 0
\(471\) 3992.81 0.390614
\(472\) 1405.52 0.137064
\(473\) −144.367 −0.0140339
\(474\) 22834.6 2.21271
\(475\) 0 0
\(476\) −8476.47 −0.816215
\(477\) 39690.2 3.80983
\(478\) −3105.21 −0.297132
\(479\) 8580.47 0.818479 0.409240 0.912427i \(-0.365794\pi\)
0.409240 + 0.912427i \(0.365794\pi\)
\(480\) 0 0
\(481\) 948.959 0.0899559
\(482\) 8356.39 0.789675
\(483\) 7400.26 0.697150
\(484\) −5313.80 −0.499042
\(485\) 0 0
\(486\) −17425.9 −1.62645
\(487\) 15826.8 1.47265 0.736325 0.676628i \(-0.236559\pi\)
0.736325 + 0.676628i \(0.236559\pi\)
\(488\) 6476.92 0.600813
\(489\) −30601.8 −2.82999
\(490\) 0 0
\(491\) −6219.11 −0.571618 −0.285809 0.958287i \(-0.592262\pi\)
−0.285809 + 0.958287i \(0.592262\pi\)
\(492\) 11511.3 1.05482
\(493\) −12280.2 −1.12185
\(494\) −3331.87 −0.303457
\(495\) 0 0
\(496\) 4679.64 0.423633
\(497\) 15029.1 1.35643
\(498\) 1846.75 0.166175
\(499\) 12820.1 1.15011 0.575056 0.818114i \(-0.304980\pi\)
0.575056 + 0.818114i \(0.304980\pi\)
\(500\) 0 0
\(501\) −35794.0 −3.19194
\(502\) −1344.99 −0.119581
\(503\) −423.446 −0.0375358 −0.0187679 0.999824i \(-0.505974\pi\)
−0.0187679 + 0.999824i \(0.505974\pi\)
\(504\) −17843.2 −1.57698
\(505\) 0 0
\(506\) −73.4642 −0.00645431
\(507\) −19116.1 −1.67451
\(508\) 8352.87 0.729525
\(509\) −13039.2 −1.13546 −0.567731 0.823214i \(-0.692179\pi\)
−0.567731 + 0.823214i \(0.692179\pi\)
\(510\) 0 0
\(511\) 3703.39 0.320603
\(512\) −512.000 −0.0441942
\(513\) −43140.6 −3.71288
\(514\) 3973.67 0.340994
\(515\) 0 0
\(516\) −3511.76 −0.299606
\(517\) 227.978 0.0193935
\(518\) 4157.39 0.352635
\(519\) 43860.6 3.70957
\(520\) 0 0
\(521\) 13783.7 1.15907 0.579535 0.814948i \(-0.303234\pi\)
0.579535 + 0.814948i \(0.303234\pi\)
\(522\) −25850.1 −2.16749
\(523\) 4223.40 0.353109 0.176555 0.984291i \(-0.443505\pi\)
0.176555 + 0.984291i \(0.443505\pi\)
\(524\) −8613.36 −0.718085
\(525\) 0 0
\(526\) 3167.69 0.262582
\(527\) −18708.6 −1.54641
\(528\) 248.171 0.0204551
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −11828.3 −0.966678
\(532\) −14596.9 −1.18958
\(533\) −4481.40 −0.364186
\(534\) −16252.2 −1.31705
\(535\) 0 0
\(536\) 3449.39 0.277968
\(537\) 29595.2 2.37826
\(538\) 10619.3 0.850987
\(539\) 1205.00 0.0962947
\(540\) 0 0
\(541\) −8572.42 −0.681252 −0.340626 0.940199i \(-0.610639\pi\)
−0.340626 + 0.940199i \(0.610639\pi\)
\(542\) 2166.07 0.171662
\(543\) −1801.09 −0.142343
\(544\) 2046.91 0.161325
\(545\) 0 0
\(546\) 9732.20 0.762820
\(547\) 17318.1 1.35369 0.676845 0.736125i \(-0.263347\pi\)
0.676845 + 0.736125i \(0.263347\pi\)
\(548\) −5232.50 −0.407886
\(549\) −54507.5 −4.23738
\(550\) 0 0
\(551\) −21147.1 −1.63502
\(552\) −1787.03 −0.137792
\(553\) −38945.2 −2.99479
\(554\) 17588.0 1.34881
\(555\) 0 0
\(556\) −8489.79 −0.647567
\(557\) −17447.9 −1.32727 −0.663635 0.748057i \(-0.730987\pi\)
−0.663635 + 0.748057i \(0.730987\pi\)
\(558\) −39382.2 −2.98778
\(559\) 1367.14 0.103442
\(560\) 0 0
\(561\) −992.159 −0.0746684
\(562\) −13207.7 −0.991341
\(563\) −22775.6 −1.70493 −0.852465 0.522784i \(-0.824893\pi\)
−0.852465 + 0.522784i \(0.824893\pi\)
\(564\) 5545.59 0.414028
\(565\) 0 0
\(566\) −14775.6 −1.09729
\(567\) 65790.5 4.87291
\(568\) −3629.26 −0.268099
\(569\) −14993.4 −1.10467 −0.552333 0.833624i \(-0.686262\pi\)
−0.552333 + 0.833624i \(0.686262\pi\)
\(570\) 0 0
\(571\) 5161.10 0.378258 0.189129 0.981952i \(-0.439434\pi\)
0.189129 + 0.981952i \(0.439434\pi\)
\(572\) −96.6140 −0.00706229
\(573\) 33504.5 2.44270
\(574\) −19633.0 −1.42764
\(575\) 0 0
\(576\) 4308.81 0.311691
\(577\) 7474.63 0.539294 0.269647 0.962959i \(-0.413093\pi\)
0.269647 + 0.962959i \(0.413093\pi\)
\(578\) 1642.68 0.118212
\(579\) 15475.3 1.11077
\(580\) 0 0
\(581\) −3149.71 −0.224909
\(582\) −11654.1 −0.830033
\(583\) 941.507 0.0668838
\(584\) −894.302 −0.0633673
\(585\) 0 0
\(586\) −9079.78 −0.640072
\(587\) 10806.8 0.759869 0.379934 0.925013i \(-0.375947\pi\)
0.379934 + 0.925013i \(0.375947\pi\)
\(588\) 29311.7 2.05577
\(589\) −32217.2 −2.25380
\(590\) 0 0
\(591\) −893.349 −0.0621785
\(592\) −1003.93 −0.0696984
\(593\) 2031.95 0.140712 0.0703559 0.997522i \(-0.477587\pi\)
0.0703559 + 0.997522i \(0.477587\pi\)
\(594\) −1250.94 −0.0864089
\(595\) 0 0
\(596\) −6524.06 −0.448382
\(597\) −31587.3 −2.16547
\(598\) 695.697 0.0475738
\(599\) −17544.8 −1.19677 −0.598383 0.801210i \(-0.704190\pi\)
−0.598383 + 0.801210i \(0.704190\pi\)
\(600\) 0 0
\(601\) 38.6142 0.00262081 0.00131041 0.999999i \(-0.499583\pi\)
0.00131041 + 0.999999i \(0.499583\pi\)
\(602\) 5989.44 0.405500
\(603\) −29028.8 −1.96044
\(604\) 4521.47 0.304596
\(605\) 0 0
\(606\) −16417.6 −1.10053
\(607\) −10452.9 −0.698961 −0.349480 0.936944i \(-0.613642\pi\)
−0.349480 + 0.936944i \(0.613642\pi\)
\(608\) 3524.89 0.235121
\(609\) 61769.4 4.11005
\(610\) 0 0
\(611\) −2158.92 −0.142947
\(612\) −17226.1 −1.13778
\(613\) −27674.5 −1.82343 −0.911715 0.410823i \(-0.865241\pi\)
−0.911715 + 0.410823i \(0.865241\pi\)
\(614\) 5813.27 0.382092
\(615\) 0 0
\(616\) −423.266 −0.0276848
\(617\) 24533.5 1.60078 0.800390 0.599480i \(-0.204626\pi\)
0.800390 + 0.599480i \(0.204626\pi\)
\(618\) −21429.3 −1.39485
\(619\) −1794.30 −0.116509 −0.0582545 0.998302i \(-0.518554\pi\)
−0.0582545 + 0.998302i \(0.518554\pi\)
\(620\) 0 0
\(621\) 9007.79 0.582077
\(622\) 16425.8 1.05886
\(623\) 27718.8 1.78255
\(624\) −2350.15 −0.150771
\(625\) 0 0
\(626\) 402.206 0.0256795
\(627\) −1708.55 −0.108824
\(628\) 1644.47 0.104493
\(629\) 4013.61 0.254425
\(630\) 0 0
\(631\) −12771.3 −0.805735 −0.402868 0.915258i \(-0.631986\pi\)
−0.402868 + 0.915258i \(0.631986\pi\)
\(632\) 9404.57 0.591921
\(633\) 15457.4 0.970581
\(634\) 5090.39 0.318873
\(635\) 0 0
\(636\) 22902.3 1.42789
\(637\) −11411.2 −0.709775
\(638\) −613.200 −0.0380514
\(639\) 30542.5 1.89084
\(640\) 0 0
\(641\) 15626.1 0.962863 0.481432 0.876484i \(-0.340117\pi\)
0.481432 + 0.876484i \(0.340117\pi\)
\(642\) 21422.2 1.31693
\(643\) 12756.7 0.782384 0.391192 0.920309i \(-0.372063\pi\)
0.391192 + 0.920309i \(0.372063\pi\)
\(644\) 3047.85 0.186494
\(645\) 0 0
\(646\) −14092.1 −0.858276
\(647\) 22.8807 0.00139031 0.000695157 1.00000i \(-0.499779\pi\)
0.000695157 1.00000i \(0.499779\pi\)
\(648\) −15887.2 −0.963131
\(649\) −280.584 −0.0169706
\(650\) 0 0
\(651\) 94104.7 5.66552
\(652\) −12603.6 −0.757046
\(653\) 5985.07 0.358674 0.179337 0.983788i \(-0.442605\pi\)
0.179337 + 0.983788i \(0.442605\pi\)
\(654\) 26759.2 1.59995
\(655\) 0 0
\(656\) 4741.02 0.282173
\(657\) 7526.13 0.446914
\(658\) −9458.22 −0.560364
\(659\) −12224.7 −0.722622 −0.361311 0.932445i \(-0.617671\pi\)
−0.361311 + 0.932445i \(0.617671\pi\)
\(660\) 0 0
\(661\) −24940.4 −1.46758 −0.733790 0.679376i \(-0.762251\pi\)
−0.733790 + 0.679376i \(0.762251\pi\)
\(662\) −14661.2 −0.860762
\(663\) 9395.62 0.550371
\(664\) 760.598 0.0444532
\(665\) 0 0
\(666\) 8448.76 0.491566
\(667\) 4415.52 0.256326
\(668\) −14742.0 −0.853871
\(669\) 22334.3 1.29073
\(670\) 0 0
\(671\) −1292.99 −0.0743897
\(672\) −10296.0 −0.591038
\(673\) 15461.4 0.885576 0.442788 0.896626i \(-0.353989\pi\)
0.442788 + 0.896626i \(0.353989\pi\)
\(674\) −15977.7 −0.913110
\(675\) 0 0
\(676\) −7873.08 −0.447945
\(677\) 6904.24 0.391952 0.195976 0.980609i \(-0.437212\pi\)
0.195976 + 0.980609i \(0.437212\pi\)
\(678\) −19216.3 −1.08849
\(679\) 19876.6 1.12341
\(680\) 0 0
\(681\) 31605.0 1.77842
\(682\) −934.200 −0.0524522
\(683\) 9644.73 0.540330 0.270165 0.962814i \(-0.412922\pi\)
0.270165 + 0.962814i \(0.412922\pi\)
\(684\) −29664.3 −1.65825
\(685\) 0 0
\(686\) −27265.9 −1.51752
\(687\) −47927.4 −2.66163
\(688\) −1446.34 −0.0801472
\(689\) −8915.96 −0.492991
\(690\) 0 0
\(691\) −704.001 −0.0387575 −0.0193788 0.999812i \(-0.506169\pi\)
−0.0193788 + 0.999812i \(0.506169\pi\)
\(692\) 18064.3 0.992342
\(693\) 3562.05 0.195254
\(694\) 18601.2 1.01742
\(695\) 0 0
\(696\) −14916.2 −0.812352
\(697\) −18954.0 −1.03004
\(698\) 1254.52 0.0680289
\(699\) −11600.9 −0.627735
\(700\) 0 0
\(701\) 2557.38 0.137790 0.0688952 0.997624i \(-0.478053\pi\)
0.0688952 + 0.997624i \(0.478053\pi\)
\(702\) 11846.3 0.636908
\(703\) 6911.64 0.370807
\(704\) 102.211 0.00547191
\(705\) 0 0
\(706\) 20551.8 1.09558
\(707\) 28000.8 1.48950
\(708\) −6825.27 −0.362301
\(709\) −17999.7 −0.953448 −0.476724 0.879053i \(-0.658176\pi\)
−0.476724 + 0.879053i \(0.658176\pi\)
\(710\) 0 0
\(711\) −79145.6 −4.17467
\(712\) −6693.59 −0.352322
\(713\) 6726.98 0.353334
\(714\) 41162.2 2.15750
\(715\) 0 0
\(716\) 12189.0 0.636206
\(717\) 15079.1 0.785410
\(718\) −18167.6 −0.944301
\(719\) −24565.1 −1.27416 −0.637082 0.770796i \(-0.719859\pi\)
−0.637082 + 0.770796i \(0.719859\pi\)
\(720\) 0 0
\(721\) 36548.5 1.88785
\(722\) −10549.3 −0.543775
\(723\) −40579.1 −2.08735
\(724\) −741.790 −0.0380779
\(725\) 0 0
\(726\) 25804.1 1.31912
\(727\) 16301.8 0.831638 0.415819 0.909447i \(-0.363495\pi\)
0.415819 + 0.909447i \(0.363495\pi\)
\(728\) 4008.27 0.204061
\(729\) 31001.8 1.57506
\(730\) 0 0
\(731\) 5782.30 0.292566
\(732\) −31452.3 −1.58813
\(733\) 6884.70 0.346920 0.173460 0.984841i \(-0.444505\pi\)
0.173460 + 0.984841i \(0.444505\pi\)
\(734\) 17157.9 0.862821
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) −688.604 −0.0344166
\(738\) −39898.8 −1.99010
\(739\) −32833.4 −1.63436 −0.817182 0.576380i \(-0.804465\pi\)
−0.817182 + 0.576380i \(0.804465\pi\)
\(740\) 0 0
\(741\) 16179.8 0.802130
\(742\) −39060.8 −1.93257
\(743\) 32228.8 1.59133 0.795666 0.605736i \(-0.207121\pi\)
0.795666 + 0.605736i \(0.207121\pi\)
\(744\) −22724.6 −1.11979
\(745\) 0 0
\(746\) 20925.1 1.02698
\(747\) −6400.93 −0.313518
\(748\) −408.627 −0.0199745
\(749\) −36536.4 −1.78239
\(750\) 0 0
\(751\) −10938.3 −0.531481 −0.265741 0.964045i \(-0.585616\pi\)
−0.265741 + 0.964045i \(0.585616\pi\)
\(752\) 2283.99 0.110756
\(753\) 6531.34 0.316090
\(754\) 5806.93 0.280472
\(755\) 0 0
\(756\) 51898.6 2.49674
\(757\) −13881.7 −0.666496 −0.333248 0.942839i \(-0.608145\pi\)
−0.333248 + 0.942839i \(0.608145\pi\)
\(758\) 14641.3 0.701580
\(759\) 356.746 0.0170607
\(760\) 0 0
\(761\) −32811.6 −1.56297 −0.781485 0.623924i \(-0.785538\pi\)
−0.781485 + 0.623924i \(0.785538\pi\)
\(762\) −40562.0 −1.92836
\(763\) −45638.8 −2.16544
\(764\) 13799.0 0.653445
\(765\) 0 0
\(766\) −4452.23 −0.210007
\(767\) 2657.10 0.125088
\(768\) 2486.30 0.116819
\(769\) 9987.66 0.468354 0.234177 0.972194i \(-0.424760\pi\)
0.234177 + 0.972194i \(0.424760\pi\)
\(770\) 0 0
\(771\) −19296.4 −0.901352
\(772\) 6373.62 0.297140
\(773\) −3484.56 −0.162135 −0.0810677 0.996709i \(-0.525833\pi\)
−0.0810677 + 0.996709i \(0.525833\pi\)
\(774\) 12171.9 0.565258
\(775\) 0 0
\(776\) −4799.83 −0.222041
\(777\) −20188.5 −0.932122
\(778\) −2716.36 −0.125175
\(779\) −32639.8 −1.50121
\(780\) 0 0
\(781\) 724.512 0.0331947
\(782\) 2942.44 0.134554
\(783\) 75187.3 3.43164
\(784\) 12072.2 0.549938
\(785\) 0 0
\(786\) 41827.0 1.89812
\(787\) 12421.1 0.562597 0.281298 0.959620i \(-0.409235\pi\)
0.281298 + 0.959620i \(0.409235\pi\)
\(788\) −367.932 −0.0166333
\(789\) −15382.5 −0.694083
\(790\) 0 0
\(791\) 32774.1 1.47322
\(792\) −860.172 −0.0385920
\(793\) 12244.5 0.548316
\(794\) −19877.8 −0.888461
\(795\) 0 0
\(796\) −13009.5 −0.579281
\(797\) 24083.7 1.07037 0.535187 0.844734i \(-0.320241\pi\)
0.535187 + 0.844734i \(0.320241\pi\)
\(798\) 70883.5 3.14442
\(799\) −9131.12 −0.404300
\(800\) 0 0
\(801\) 56330.9 2.48484
\(802\) 26768.9 1.17861
\(803\) 178.530 0.00784583
\(804\) −16750.4 −0.734753
\(805\) 0 0
\(806\) 8846.76 0.386618
\(807\) −51568.0 −2.24942
\(808\) −6761.70 −0.294401
\(809\) 3687.22 0.160242 0.0801209 0.996785i \(-0.474469\pi\)
0.0801209 + 0.996785i \(0.474469\pi\)
\(810\) 0 0
\(811\) 19516.5 0.845028 0.422514 0.906356i \(-0.361148\pi\)
0.422514 + 0.906356i \(0.361148\pi\)
\(812\) 25440.1 1.09948
\(813\) −10518.6 −0.453755
\(814\) 200.416 0.00862971
\(815\) 0 0
\(816\) −9939.93 −0.426431
\(817\) 9957.42 0.426397
\(818\) −5915.12 −0.252833
\(819\) −33732.2 −1.43919
\(820\) 0 0
\(821\) −25386.0 −1.07914 −0.539571 0.841940i \(-0.681414\pi\)
−0.539571 + 0.841940i \(0.681414\pi\)
\(822\) 25409.3 1.07817
\(823\) −34018.2 −1.44083 −0.720413 0.693545i \(-0.756048\pi\)
−0.720413 + 0.693545i \(0.756048\pi\)
\(824\) −8825.82 −0.373133
\(825\) 0 0
\(826\) 11640.8 0.490355
\(827\) 23934.0 1.00637 0.503183 0.864180i \(-0.332162\pi\)
0.503183 + 0.864180i \(0.332162\pi\)
\(828\) 6193.92 0.259968
\(829\) −26149.2 −1.09554 −0.547768 0.836630i \(-0.684522\pi\)
−0.547768 + 0.836630i \(0.684522\pi\)
\(830\) 0 0
\(831\) −85408.2 −3.56532
\(832\) −967.926 −0.0403327
\(833\) −48263.3 −2.00747
\(834\) 41226.9 1.71172
\(835\) 0 0
\(836\) −703.678 −0.0291115
\(837\) 114547. 4.73036
\(838\) 26356.9 1.08649
\(839\) 13611.0 0.560074 0.280037 0.959989i \(-0.409653\pi\)
0.280037 + 0.959989i \(0.409653\pi\)
\(840\) 0 0
\(841\) 12467.0 0.511175
\(842\) 2735.09 0.111945
\(843\) 64137.4 2.62042
\(844\) 6366.24 0.259639
\(845\) 0 0
\(846\) −19221.3 −0.781135
\(847\) −44009.9 −1.78536
\(848\) 9432.48 0.381973
\(849\) 71751.0 2.90046
\(850\) 0 0
\(851\) −1443.16 −0.0581325
\(852\) 17623.9 0.708667
\(853\) 27108.9 1.08815 0.544073 0.839038i \(-0.316881\pi\)
0.544073 + 0.839038i \(0.316881\pi\)
\(854\) 53643.1 2.14945
\(855\) 0 0
\(856\) 8822.89 0.352290
\(857\) 11549.4 0.460349 0.230175 0.973149i \(-0.426070\pi\)
0.230175 + 0.973149i \(0.426070\pi\)
\(858\) 469.163 0.0186678
\(859\) −15491.8 −0.615335 −0.307668 0.951494i \(-0.599549\pi\)
−0.307668 + 0.951494i \(0.599549\pi\)
\(860\) 0 0
\(861\) 95339.1 3.77369
\(862\) −69.2386 −0.00273582
\(863\) 4709.17 0.185750 0.0928749 0.995678i \(-0.470394\pi\)
0.0928749 + 0.995678i \(0.470394\pi\)
\(864\) −12532.6 −0.493480
\(865\) 0 0
\(866\) −6540.15 −0.256632
\(867\) −7976.96 −0.312470
\(868\) 38757.6 1.51558
\(869\) −1877.44 −0.0732887
\(870\) 0 0
\(871\) 6520.99 0.253680
\(872\) 11020.9 0.428000
\(873\) 40393.7 1.56600
\(874\) 5067.04 0.196104
\(875\) 0 0
\(876\) 4342.78 0.167499
\(877\) −22566.1 −0.868875 −0.434438 0.900702i \(-0.643053\pi\)
−0.434438 + 0.900702i \(0.643053\pi\)
\(878\) −13130.8 −0.504720
\(879\) 44091.9 1.69190
\(880\) 0 0
\(881\) 15121.2 0.578261 0.289130 0.957290i \(-0.406634\pi\)
0.289130 + 0.957290i \(0.406634\pi\)
\(882\) −101596. −3.87858
\(883\) 48306.7 1.84105 0.920527 0.390678i \(-0.127760\pi\)
0.920527 + 0.390678i \(0.127760\pi\)
\(884\) 3869.65 0.147229
\(885\) 0 0
\(886\) −17619.5 −0.668101
\(887\) −15632.8 −0.591767 −0.295883 0.955224i \(-0.595614\pi\)
−0.295883 + 0.955224i \(0.595614\pi\)
\(888\) 4875.16 0.184234
\(889\) 69180.0 2.60993
\(890\) 0 0
\(891\) 3171.58 0.119250
\(892\) 9198.55 0.345280
\(893\) −15724.3 −0.589241
\(894\) 31681.2 1.18521
\(895\) 0 0
\(896\) −4240.48 −0.158108
\(897\) −3378.34 −0.125752
\(898\) 17954.8 0.667215
\(899\) 56149.6 2.08309
\(900\) 0 0
\(901\) −37709.9 −1.39434
\(902\) −946.454 −0.0349373
\(903\) −29085.1 −1.07186
\(904\) −7914.36 −0.291181
\(905\) 0 0
\(906\) −21956.5 −0.805139
\(907\) 15321.2 0.560897 0.280449 0.959869i \(-0.409517\pi\)
0.280449 + 0.959869i \(0.409517\pi\)
\(908\) 13016.7 0.475744
\(909\) 56904.1 2.07634
\(910\) 0 0
\(911\) 27566.7 1.00255 0.501275 0.865288i \(-0.332864\pi\)
0.501275 + 0.865288i \(0.332864\pi\)
\(912\) −17117.1 −0.621495
\(913\) −151.839 −0.00550398
\(914\) 1712.39 0.0619702
\(915\) 0 0
\(916\) −19739.2 −0.712010
\(917\) −71337.5 −2.56900
\(918\) 50103.7 1.80138
\(919\) 6372.54 0.228738 0.114369 0.993438i \(-0.463515\pi\)
0.114369 + 0.993438i \(0.463515\pi\)
\(920\) 0 0
\(921\) −28229.6 −1.00999
\(922\) −735.512 −0.0262720
\(923\) −6861.04 −0.244674
\(924\) 2055.40 0.0731794
\(925\) 0 0
\(926\) −14660.9 −0.520290
\(927\) 74275.0 2.63162
\(928\) −6143.34 −0.217311
\(929\) 39918.6 1.40978 0.704890 0.709316i \(-0.250996\pi\)
0.704890 + 0.709316i \(0.250996\pi\)
\(930\) 0 0
\(931\) −83112.0 −2.92576
\(932\) −4777.91 −0.167925
\(933\) −79764.5 −2.79890
\(934\) 23006.2 0.805980
\(935\) 0 0
\(936\) 8145.72 0.284457
\(937\) −11758.4 −0.409957 −0.204979 0.978766i \(-0.565712\pi\)
−0.204979 + 0.978766i \(0.565712\pi\)
\(938\) 28568.5 0.994449
\(939\) −1953.14 −0.0678788
\(940\) 0 0
\(941\) −26312.9 −0.911559 −0.455779 0.890093i \(-0.650639\pi\)
−0.455779 + 0.890093i \(0.650639\pi\)
\(942\) −7985.62 −0.276206
\(943\) 6815.22 0.235349
\(944\) −2811.03 −0.0969188
\(945\) 0 0
\(946\) 288.734 0.00992343
\(947\) −8785.42 −0.301466 −0.150733 0.988575i \(-0.548163\pi\)
−0.150733 + 0.988575i \(0.548163\pi\)
\(948\) −45669.1 −1.56463
\(949\) −1690.66 −0.0578305
\(950\) 0 0
\(951\) −24719.2 −0.842877
\(952\) 16952.9 0.577151
\(953\) 11133.8 0.378447 0.189223 0.981934i \(-0.439403\pi\)
0.189223 + 0.981934i \(0.439403\pi\)
\(954\) −79380.5 −2.69396
\(955\) 0 0
\(956\) 6210.42 0.210104
\(957\) 2977.73 0.100581
\(958\) −17160.9 −0.578752
\(959\) −43336.6 −1.45924
\(960\) 0 0
\(961\) 55752.0 1.87144
\(962\) −1897.92 −0.0636084
\(963\) −74250.3 −2.48461
\(964\) −16712.8 −0.558384
\(965\) 0 0
\(966\) −14800.5 −0.492959
\(967\) −30546.1 −1.01582 −0.507910 0.861410i \(-0.669582\pi\)
−0.507910 + 0.861410i \(0.669582\pi\)
\(968\) 10627.6 0.352876
\(969\) 68432.1 2.26868
\(970\) 0 0
\(971\) −26757.1 −0.884322 −0.442161 0.896936i \(-0.645788\pi\)
−0.442161 + 0.896936i \(0.645788\pi\)
\(972\) 34851.8 1.15007
\(973\) −70314.1 −2.31672
\(974\) −31653.6 −1.04132
\(975\) 0 0
\(976\) −12953.8 −0.424839
\(977\) −36550.8 −1.19689 −0.598447 0.801163i \(-0.704215\pi\)
−0.598447 + 0.801163i \(0.704215\pi\)
\(978\) 61203.7 2.00110
\(979\) 1336.25 0.0436228
\(980\) 0 0
\(981\) −92748.4 −3.01858
\(982\) 12438.2 0.404195
\(983\) 7459.39 0.242032 0.121016 0.992651i \(-0.461385\pi\)
0.121016 + 0.992651i \(0.461385\pi\)
\(984\) −23022.7 −0.745870
\(985\) 0 0
\(986\) 24560.3 0.793266
\(987\) 45929.7 1.48121
\(988\) 6663.74 0.214577
\(989\) −2079.12 −0.0668474
\(990\) 0 0
\(991\) −56932.3 −1.82494 −0.912470 0.409145i \(-0.865827\pi\)
−0.912470 + 0.409145i \(0.865827\pi\)
\(992\) −9359.27 −0.299554
\(993\) 71195.7 2.27526
\(994\) −30058.2 −0.959142
\(995\) 0 0
\(996\) −3693.51 −0.117503
\(997\) −34243.6 −1.08777 −0.543885 0.839160i \(-0.683047\pi\)
−0.543885 + 0.839160i \(0.683047\pi\)
\(998\) −25640.2 −0.813252
\(999\) −24574.0 −0.778265
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.w.1.6 6
5.2 odd 4 1150.4.b.s.599.1 12
5.3 odd 4 1150.4.b.s.599.12 12
5.4 even 2 1150.4.a.x.1.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.4.a.w.1.6 6 1.1 even 1 trivial
1150.4.a.x.1.1 yes 6 5.4 even 2
1150.4.b.s.599.1 12 5.2 odd 4
1150.4.b.s.599.12 12 5.3 odd 4