Properties

Label 1150.4.b
Level $1150$
Weight $4$
Character orbit 1150.b
Rep. character $\chi_{1150}(599,\cdot)$
Character field $\Q$
Dimension $100$
Newform subspaces $19$
Sturm bound $720$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 19 \)
Sturm bound: \(720\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1150, [\chi])\).

Total New Old
Modular forms 552 100 452
Cusp forms 528 100 428
Eisenstein series 24 0 24

Trace form

\( 100 q - 400 q^{4} + 24 q^{6} - 808 q^{9} - 32 q^{11} + 1600 q^{16} - 144 q^{19} + 448 q^{21} - 96 q^{24} + 384 q^{26} - 944 q^{29} - 872 q^{31} + 680 q^{34} + 3232 q^{36} - 1168 q^{39} + 756 q^{41} + 128 q^{44}+ \cdots - 3140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1150, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1150.4.b.a 1150.b 5.b $2$ $67.852$ \(\Q(\sqrt{-1}) \) None 46.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+9 i q^{3}-4 q^{4}-18 q^{6}+\cdots\)
1150.4.b.b 1150.b 5.b $2$ $67.852$ \(\Q(\sqrt{-1}) \) None 230.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+7 i q^{3}-4 q^{4}-14 q^{6}+\cdots\)
1150.4.b.c 1150.b 5.b $2$ $67.852$ \(\Q(\sqrt{-1}) \) None 230.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+4 i q^{3}-4 q^{4}-8 q^{6}+\cdots\)
1150.4.b.d 1150.b 5.b $2$ $67.852$ \(\Q(\sqrt{-1}) \) None 230.4.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+i q^{3}-4 q^{4}-2 q^{6}-32 i q^{7}+\cdots\)
1150.4.b.e 1150.b 5.b $2$ $67.852$ \(\Q(\sqrt{-1}) \) None 46.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2 i q^{2}+i q^{3}-4 q^{4}+2 q^{6}-12 i q^{7}+\cdots\)
1150.4.b.f 1150.b 5.b $2$ $67.852$ \(\Q(\sqrt{-1}) \) None 230.4.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2 i q^{2}+i q^{3}-4 q^{4}+2 q^{6}+18 i q^{7}+\cdots\)
1150.4.b.g 1150.b 5.b $2$ $67.852$ \(\Q(\sqrt{-1}) \) None 1150.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2 i q^{2}+2 i q^{3}-4 q^{4}+4 q^{6}+\cdots\)
1150.4.b.h 1150.b 5.b $2$ $67.852$ \(\Q(\sqrt{-1}) \) None 230.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2 i q^{2}+5 i q^{3}-4 q^{4}+10 q^{6}+\cdots\)
1150.4.b.i 1150.b 5.b $4$ $67.852$ \(\Q(i, \sqrt{41})\) None 46.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta _{2}q^{2}+(-3\beta _{1}-\beta _{2})q^{3}-4q^{4}+\cdots\)
1150.4.b.j 1150.b 5.b $4$ $67.852$ \(\Q(i, \sqrt{73})\) None 46.4.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{2}q^{2}+(\beta _{1}-\beta _{2})q^{3}-4q^{4}+(4+\cdots)q^{6}+\cdots\)
1150.4.b.k 1150.b 5.b $4$ $67.852$ \(\Q(i, \sqrt{73})\) None 230.4.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{2}q^{2}+(\beta _{1}-\beta _{2})q^{3}-4q^{4}+(4+\cdots)q^{6}+\cdots\)
1150.4.b.l 1150.b 5.b $6$ $67.852$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 230.4.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{2}q^{2}+\beta _{1}q^{3}-4q^{4}-2\beta _{3}q^{6}+\cdots\)
1150.4.b.m 1150.b 5.b $8$ $67.852$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 230.4.a.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{2}q^{2}+(\beta _{1}-\beta _{2})q^{3}-4q^{4}+(2+\cdots)q^{6}+\cdots\)
1150.4.b.n 1150.b 5.b $8$ $67.852$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 230.4.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{2}q^{2}+(\beta _{1}-\beta _{2})q^{3}-4q^{4}+(2+\cdots)q^{6}+\cdots\)
1150.4.b.o 1150.b 5.b $8$ $67.852$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 230.4.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{6}q^{2}+(\beta _{1}-3\beta _{6})q^{3}-4q^{4}+(6+\cdots)q^{6}+\cdots\)
1150.4.b.p 1150.b 5.b $10$ $67.852$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 1150.4.a.s \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta _{5}q^{2}+(-2\beta _{5}+\beta _{8})q^{3}-4q^{4}+\cdots\)
1150.4.b.q 1150.b 5.b $10$ $67.852$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 1150.4.a.r \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta _{6}q^{2}+\beta _{1}q^{3}-4q^{4}+2\beta _{2}q^{6}+\cdots\)
1150.4.b.r 1150.b 5.b $10$ $67.852$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 1150.4.a.q \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{2}q^{2}+(\beta _{1}-\beta _{2})q^{3}-4q^{4}+(2+\cdots)q^{6}+\cdots\)
1150.4.b.s 1150.b 5.b $12$ $67.852$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1150.4.a.w \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{7}q^{2}+(\beta _{1}+\beta _{7})q^{3}-4q^{4}+(-2+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(1150, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1150, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 2}\)