Properties

Label 1134.3.c.d.811.5
Level $1134$
Weight $3$
Character 1134.811
Analytic conductor $30.899$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,3,Mod(811,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.811"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1134.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,32,0,0,2,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.8992619785\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} - 21 x^{14} + 48 x^{13} + 1111 x^{12} - 3102 x^{11} - 3 x^{10} - 28164 x^{9} + \cdots + 937890625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.5
Root \(-0.0370234 + 2.81559i\) of defining polynomial
Character \(\chi\) \(=\) 1134.811
Dual form 1134.3.c.d.811.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} +2.00000 q^{4} +1.38272i q^{5} +(4.59851 + 5.27766i) q^{7} -2.82843 q^{8} -1.95546i q^{10} +16.3713 q^{11} -18.5572i q^{13} +(-6.50328 - 7.46374i) q^{14} +4.00000 q^{16} -1.67115i q^{17} -28.9316i q^{19} +2.76543i q^{20} -23.1525 q^{22} -24.5167 q^{23} +23.0881 q^{25} +26.2439i q^{26} +(9.19702 + 10.5553i) q^{28} -41.4015 q^{29} -43.0220i q^{31} -5.65685 q^{32} +2.36336i q^{34} +(-7.29751 + 6.35844i) q^{35} -18.5784 q^{37} +40.9155i q^{38} -3.91091i q^{40} -11.3233i q^{41} +57.9277 q^{43} +32.7425 q^{44} +34.6719 q^{46} +12.9768i q^{47} +(-6.70739 + 48.5388i) q^{49} -32.6515 q^{50} -37.1145i q^{52} +45.2169 q^{53} +22.6368i q^{55} +(-13.0066 - 14.9275i) q^{56} +58.5506 q^{58} -24.9870i q^{59} +16.0979i q^{61} +60.8422i q^{62} +8.00000 q^{64} +25.6594 q^{65} +44.2782 q^{67} -3.34229i q^{68} +(10.3202 - 8.99219i) q^{70} -80.7195 q^{71} -79.4212i q^{73} +26.2738 q^{74} -57.8633i q^{76} +(75.2835 + 86.4020i) q^{77} -39.2311 q^{79} +5.53087i q^{80} +16.0136i q^{82} -115.894i q^{83} +2.31072 q^{85} -81.9221 q^{86} -46.3050 q^{88} -30.2467i q^{89} +(97.9389 - 85.3357i) q^{91} -49.0335 q^{92} -18.3519i q^{94} +40.0043 q^{95} -82.7997i q^{97} +(9.48569 - 68.6442i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 32 q^{4} + 2 q^{7} - 12 q^{11} - 12 q^{14} + 64 q^{16} + 12 q^{23} - 80 q^{25} + 4 q^{28} - 48 q^{29} - 174 q^{35} - 44 q^{37} - 32 q^{43} - 24 q^{44} + 24 q^{46} - 50 q^{49} + 48 q^{50} + 432 q^{53}+ \cdots - 312 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −0.707107
\(3\) 0 0
\(4\) 2.00000 0.500000
\(5\) 1.38272i 0.276543i 0.990394 + 0.138272i \(0.0441547\pi\)
−0.990394 + 0.138272i \(0.955845\pi\)
\(6\) 0 0
\(7\) 4.59851 + 5.27766i 0.656930 + 0.753951i
\(8\) −2.82843 −0.353553
\(9\) 0 0
\(10\) 1.95546i 0.195546i
\(11\) 16.3713 1.48830 0.744149 0.668014i \(-0.232855\pi\)
0.744149 + 0.668014i \(0.232855\pi\)
\(12\) 0 0
\(13\) 18.5572i 1.42748i −0.700410 0.713740i \(-0.747000\pi\)
0.700410 0.713740i \(-0.253000\pi\)
\(14\) −6.50328 7.46374i −0.464520 0.533124i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 1.67115i 0.0983028i −0.998791 0.0491514i \(-0.984348\pi\)
0.998791 0.0491514i \(-0.0156517\pi\)
\(18\) 0 0
\(19\) 28.9316i 1.52272i −0.648330 0.761359i \(-0.724532\pi\)
0.648330 0.761359i \(-0.275468\pi\)
\(20\) 2.76543i 0.138272i
\(21\) 0 0
\(22\) −23.1525 −1.05239
\(23\) −24.5167 −1.06594 −0.532972 0.846133i \(-0.678925\pi\)
−0.532972 + 0.846133i \(0.678925\pi\)
\(24\) 0 0
\(25\) 23.0881 0.923524
\(26\) 26.2439i 1.00938i
\(27\) 0 0
\(28\) 9.19702 + 10.5553i 0.328465 + 0.376976i
\(29\) −41.4015 −1.42764 −0.713820 0.700330i \(-0.753036\pi\)
−0.713820 + 0.700330i \(0.753036\pi\)
\(30\) 0 0
\(31\) 43.0220i 1.38781i −0.720069 0.693903i \(-0.755890\pi\)
0.720069 0.693903i \(-0.244110\pi\)
\(32\) −5.65685 −0.176777
\(33\) 0 0
\(34\) 2.36336i 0.0695105i
\(35\) −7.29751 + 6.35844i −0.208500 + 0.181670i
\(36\) 0 0
\(37\) −18.5784 −0.502118 −0.251059 0.967972i \(-0.580779\pi\)
−0.251059 + 0.967972i \(0.580779\pi\)
\(38\) 40.9155i 1.07672i
\(39\) 0 0
\(40\) 3.91091i 0.0977728i
\(41\) 11.3233i 0.276179i −0.990420 0.138090i \(-0.955904\pi\)
0.990420 0.138090i \(-0.0440962\pi\)
\(42\) 0 0
\(43\) 57.9277 1.34716 0.673578 0.739116i \(-0.264757\pi\)
0.673578 + 0.739116i \(0.264757\pi\)
\(44\) 32.7425 0.744149
\(45\) 0 0
\(46\) 34.6719 0.753737
\(47\) 12.9768i 0.276101i 0.990425 + 0.138051i \(0.0440837\pi\)
−0.990425 + 0.138051i \(0.955916\pi\)
\(48\) 0 0
\(49\) −6.70739 + 48.5388i −0.136886 + 0.990587i
\(50\) −32.6515 −0.653030
\(51\) 0 0
\(52\) 37.1145i 0.713740i
\(53\) 45.2169 0.853148 0.426574 0.904453i \(-0.359720\pi\)
0.426574 + 0.904453i \(0.359720\pi\)
\(54\) 0 0
\(55\) 22.6368i 0.411579i
\(56\) −13.0066 14.9275i −0.232260 0.266562i
\(57\) 0 0
\(58\) 58.5506 1.00949
\(59\) 24.9870i 0.423509i −0.977323 0.211754i \(-0.932082\pi\)
0.977323 0.211754i \(-0.0679177\pi\)
\(60\) 0 0
\(61\) 16.0979i 0.263900i 0.991256 + 0.131950i \(0.0421239\pi\)
−0.991256 + 0.131950i \(0.957876\pi\)
\(62\) 60.8422i 0.981327i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 25.6594 0.394760
\(66\) 0 0
\(67\) 44.2782 0.660869 0.330434 0.943829i \(-0.392805\pi\)
0.330434 + 0.943829i \(0.392805\pi\)
\(68\) 3.34229i 0.0491514i
\(69\) 0 0
\(70\) 10.3202 8.99219i 0.147432 0.128460i
\(71\) −80.7195 −1.13690 −0.568448 0.822720i \(-0.692456\pi\)
−0.568448 + 0.822720i \(0.692456\pi\)
\(72\) 0 0
\(73\) 79.4212i 1.08796i −0.839098 0.543981i \(-0.816917\pi\)
0.839098 0.543981i \(-0.183083\pi\)
\(74\) 26.2738 0.355051
\(75\) 0 0
\(76\) 57.8633i 0.761359i
\(77\) 75.2835 + 86.4020i 0.977708 + 1.12210i
\(78\) 0 0
\(79\) −39.2311 −0.496596 −0.248298 0.968684i \(-0.579871\pi\)
−0.248298 + 0.968684i \(0.579871\pi\)
\(80\) 5.53087i 0.0691358i
\(81\) 0 0
\(82\) 16.0136i 0.195288i
\(83\) 115.894i 1.39631i −0.715947 0.698155i \(-0.754005\pi\)
0.715947 0.698155i \(-0.245995\pi\)
\(84\) 0 0
\(85\) 2.31072 0.0271850
\(86\) −81.9221 −0.952583
\(87\) 0 0
\(88\) −46.3050 −0.526193
\(89\) 30.2467i 0.339850i −0.985457 0.169925i \(-0.945647\pi\)
0.985457 0.169925i \(-0.0543526\pi\)
\(90\) 0 0
\(91\) 97.9389 85.3357i 1.07625 0.937755i
\(92\) −49.0335 −0.532972
\(93\) 0 0
\(94\) 18.3519i 0.195233i
\(95\) 40.0043 0.421098
\(96\) 0 0
\(97\) 82.7997i 0.853605i −0.904345 0.426803i \(-0.859640\pi\)
0.904345 0.426803i \(-0.140360\pi\)
\(98\) 9.48569 68.6442i 0.0967927 0.700451i
\(99\) 0 0
\(100\) 46.1762 0.461762
\(101\) 131.198i 1.29899i 0.760367 + 0.649493i \(0.225019\pi\)
−0.760367 + 0.649493i \(0.774981\pi\)
\(102\) 0 0
\(103\) 17.1016i 0.166035i −0.996548 0.0830174i \(-0.973544\pi\)
0.996548 0.0830174i \(-0.0264557\pi\)
\(104\) 52.4878i 0.504691i
\(105\) 0 0
\(106\) −63.9463 −0.603267
\(107\) −19.9716 −0.186650 −0.0933252 0.995636i \(-0.529750\pi\)
−0.0933252 + 0.995636i \(0.529750\pi\)
\(108\) 0 0
\(109\) −97.1390 −0.891184 −0.445592 0.895236i \(-0.647007\pi\)
−0.445592 + 0.895236i \(0.647007\pi\)
\(110\) 32.0133i 0.291030i
\(111\) 0 0
\(112\) 18.3940 + 21.1106i 0.164233 + 0.188488i
\(113\) 79.4528 0.703122 0.351561 0.936165i \(-0.385651\pi\)
0.351561 + 0.936165i \(0.385651\pi\)
\(114\) 0 0
\(115\) 33.8997i 0.294780i
\(116\) −82.8031 −0.713820
\(117\) 0 0
\(118\) 35.3370i 0.299466i
\(119\) 8.81974 7.68479i 0.0741155 0.0645780i
\(120\) 0 0
\(121\) 147.019 1.21503
\(122\) 22.7659i 0.186606i
\(123\) 0 0
\(124\) 86.0439i 0.693903i
\(125\) 66.4922i 0.531938i
\(126\) 0 0
\(127\) 69.1372 0.544388 0.272194 0.962242i \(-0.412251\pi\)
0.272194 + 0.962242i \(0.412251\pi\)
\(128\) −11.3137 −0.0883883
\(129\) 0 0
\(130\) −36.2879 −0.279138
\(131\) 117.754i 0.898885i 0.893309 + 0.449443i \(0.148377\pi\)
−0.893309 + 0.449443i \(0.851623\pi\)
\(132\) 0 0
\(133\) 152.691 133.042i 1.14806 1.00032i
\(134\) −62.6188 −0.467305
\(135\) 0 0
\(136\) 4.72672i 0.0347553i
\(137\) −1.91179 −0.0139547 −0.00697733 0.999976i \(-0.502221\pi\)
−0.00697733 + 0.999976i \(0.502221\pi\)
\(138\) 0 0
\(139\) 251.133i 1.80671i −0.428892 0.903356i \(-0.641096\pi\)
0.428892 0.903356i \(-0.358904\pi\)
\(140\) −14.5950 + 12.7169i −0.104250 + 0.0908348i
\(141\) 0 0
\(142\) 114.155 0.803906
\(143\) 303.806i 2.12452i
\(144\) 0 0
\(145\) 57.2466i 0.394804i
\(146\) 112.318i 0.769305i
\(147\) 0 0
\(148\) −37.1567 −0.251059
\(149\) 156.226 1.04850 0.524248 0.851566i \(-0.324347\pi\)
0.524248 + 0.851566i \(0.324347\pi\)
\(150\) 0 0
\(151\) 27.0753 0.179306 0.0896532 0.995973i \(-0.471424\pi\)
0.0896532 + 0.995973i \(0.471424\pi\)
\(152\) 81.8311i 0.538362i
\(153\) 0 0
\(154\) −106.467 122.191i −0.691344 0.793448i
\(155\) 59.4872 0.383788
\(156\) 0 0
\(157\) 149.775i 0.953983i 0.878908 + 0.476992i \(0.158273\pi\)
−0.878908 + 0.476992i \(0.841727\pi\)
\(158\) 55.4812 0.351147
\(159\) 0 0
\(160\) 7.82183i 0.0488864i
\(161\) −112.740 129.391i −0.700251 0.803671i
\(162\) 0 0
\(163\) 105.699 0.648463 0.324231 0.945978i \(-0.394894\pi\)
0.324231 + 0.945978i \(0.394894\pi\)
\(164\) 22.6467i 0.138090i
\(165\) 0 0
\(166\) 163.898i 0.987340i
\(167\) 259.204i 1.55212i −0.630659 0.776060i \(-0.717216\pi\)
0.630659 0.776060i \(-0.282784\pi\)
\(168\) 0 0
\(169\) −175.371 −1.03770
\(170\) −3.26786 −0.0192227
\(171\) 0 0
\(172\) 115.855 0.673578
\(173\) 235.867i 1.36339i −0.731636 0.681696i \(-0.761243\pi\)
0.731636 0.681696i \(-0.238757\pi\)
\(174\) 0 0
\(175\) 106.171 + 121.851i 0.606691 + 0.696292i
\(176\) 65.4851 0.372074
\(177\) 0 0
\(178\) 42.7753i 0.240311i
\(179\) 238.022 1.32973 0.664865 0.746963i \(-0.268489\pi\)
0.664865 + 0.746963i \(0.268489\pi\)
\(180\) 0 0
\(181\) 163.801i 0.904980i 0.891770 + 0.452490i \(0.149464\pi\)
−0.891770 + 0.452490i \(0.850536\pi\)
\(182\) −138.506 + 120.683i −0.761024 + 0.663093i
\(183\) 0 0
\(184\) 69.3438 0.376868
\(185\) 25.6886i 0.138857i
\(186\) 0 0
\(187\) 27.3588i 0.146304i
\(188\) 25.9535i 0.138051i
\(189\) 0 0
\(190\) −56.5746 −0.297761
\(191\) 253.517 1.32731 0.663656 0.748038i \(-0.269004\pi\)
0.663656 + 0.748038i \(0.269004\pi\)
\(192\) 0 0
\(193\) 31.1312 0.161301 0.0806507 0.996742i \(-0.474300\pi\)
0.0806507 + 0.996742i \(0.474300\pi\)
\(194\) 117.096i 0.603590i
\(195\) 0 0
\(196\) −13.4148 + 97.0775i −0.0684428 + 0.495293i
\(197\) 197.604 1.00307 0.501533 0.865138i \(-0.332770\pi\)
0.501533 + 0.865138i \(0.332770\pi\)
\(198\) 0 0
\(199\) 161.524i 0.811680i 0.913944 + 0.405840i \(0.133021\pi\)
−0.913944 + 0.405840i \(0.866979\pi\)
\(200\) −65.3030 −0.326515
\(201\) 0 0
\(202\) 185.542i 0.918522i
\(203\) −190.385 218.503i −0.937859 1.07637i
\(204\) 0 0
\(205\) 15.6570 0.0763755
\(206\) 24.1853i 0.117404i
\(207\) 0 0
\(208\) 74.2290i 0.356870i
\(209\) 473.648i 2.26626i
\(210\) 0 0
\(211\) 14.4107 0.0682971 0.0341486 0.999417i \(-0.489128\pi\)
0.0341486 + 0.999417i \(0.489128\pi\)
\(212\) 90.4337 0.426574
\(213\) 0 0
\(214\) 28.2441 0.131982
\(215\) 80.0976i 0.372547i
\(216\) 0 0
\(217\) 227.055 197.837i 1.04634 0.911691i
\(218\) 137.375 0.630162
\(219\) 0 0
\(220\) 45.2737i 0.205789i
\(221\) −31.0119 −0.140325
\(222\) 0 0
\(223\) 187.618i 0.841337i 0.907214 + 0.420668i \(0.138204\pi\)
−0.907214 + 0.420668i \(0.861796\pi\)
\(224\) −26.0131 29.8550i −0.116130 0.133281i
\(225\) 0 0
\(226\) −112.363 −0.497182
\(227\) 276.147i 1.21650i 0.793744 + 0.608252i \(0.208129\pi\)
−0.793744 + 0.608252i \(0.791871\pi\)
\(228\) 0 0
\(229\) 361.226i 1.57741i −0.614775 0.788703i \(-0.710753\pi\)
0.614775 0.788703i \(-0.289247\pi\)
\(230\) 47.9414i 0.208441i
\(231\) 0 0
\(232\) 117.101 0.504747
\(233\) 313.585 1.34586 0.672929 0.739707i \(-0.265036\pi\)
0.672929 + 0.739707i \(0.265036\pi\)
\(234\) 0 0
\(235\) −17.9432 −0.0763540
\(236\) 49.9740i 0.211754i
\(237\) 0 0
\(238\) −12.4730 + 10.8679i −0.0524076 + 0.0456636i
\(239\) −401.379 −1.67941 −0.839705 0.543043i \(-0.817272\pi\)
−0.839705 + 0.543043i \(0.817272\pi\)
\(240\) 0 0
\(241\) 99.4418i 0.412622i 0.978487 + 0.206311i \(0.0661458\pi\)
−0.978487 + 0.206311i \(0.933854\pi\)
\(242\) −207.916 −0.859156
\(243\) 0 0
\(244\) 32.1958i 0.131950i
\(245\) −67.1153 9.27443i −0.273940 0.0378548i
\(246\) 0 0
\(247\) −536.892 −2.17365
\(248\) 121.684i 0.490663i
\(249\) 0 0
\(250\) 94.0342i 0.376137i
\(251\) 450.528i 1.79493i 0.441082 + 0.897467i \(0.354595\pi\)
−0.441082 + 0.897467i \(0.645405\pi\)
\(252\) 0 0
\(253\) −401.370 −1.58644
\(254\) −97.7748 −0.384940
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 367.887i 1.43147i −0.698373 0.715734i \(-0.746092\pi\)
0.698373 0.715734i \(-0.253908\pi\)
\(258\) 0 0
\(259\) −85.4328 98.0503i −0.329857 0.378573i
\(260\) 51.3188 0.197380
\(261\) 0 0
\(262\) 166.529i 0.635608i
\(263\) 37.9448 0.144277 0.0721385 0.997395i \(-0.477018\pi\)
0.0721385 + 0.997395i \(0.477018\pi\)
\(264\) 0 0
\(265\) 62.5221i 0.235932i
\(266\) −215.938 + 188.151i −0.811798 + 0.707333i
\(267\) 0 0
\(268\) 88.5564 0.330434
\(269\) 25.3987i 0.0944190i 0.998885 + 0.0472095i \(0.0150328\pi\)
−0.998885 + 0.0472095i \(0.984967\pi\)
\(270\) 0 0
\(271\) 171.660i 0.633432i 0.948520 + 0.316716i \(0.102580\pi\)
−0.948520 + 0.316716i \(0.897420\pi\)
\(272\) 6.68459i 0.0245757i
\(273\) 0 0
\(274\) 2.70368 0.00986743
\(275\) 377.982 1.37448
\(276\) 0 0
\(277\) −190.029 −0.686027 −0.343013 0.939331i \(-0.611448\pi\)
−0.343013 + 0.939331i \(0.611448\pi\)
\(278\) 355.156i 1.27754i
\(279\) 0 0
\(280\) 20.6405 17.9844i 0.0737160 0.0642299i
\(281\) −104.297 −0.371164 −0.185582 0.982629i \(-0.559417\pi\)
−0.185582 + 0.982629i \(0.559417\pi\)
\(282\) 0 0
\(283\) 151.697i 0.536032i 0.963414 + 0.268016i \(0.0863681\pi\)
−0.963414 + 0.268016i \(0.913632\pi\)
\(284\) −161.439 −0.568448
\(285\) 0 0
\(286\) 429.646i 1.50226i
\(287\) 59.7608 52.0705i 0.208226 0.181430i
\(288\) 0 0
\(289\) 286.207 0.990337
\(290\) 80.9589i 0.279169i
\(291\) 0 0
\(292\) 158.842i 0.543981i
\(293\) 59.7746i 0.204009i −0.994784 0.102004i \(-0.967474\pi\)
0.994784 0.102004i \(-0.0325256\pi\)
\(294\) 0 0
\(295\) 34.5500 0.117119
\(296\) 52.5476 0.177526
\(297\) 0 0
\(298\) −220.937 −0.741398
\(299\) 454.963i 1.52162i
\(300\) 0 0
\(301\) 266.381 + 305.723i 0.884987 + 1.01569i
\(302\) −38.2902 −0.126789
\(303\) 0 0
\(304\) 115.727i 0.380680i
\(305\) −22.2589 −0.0729798
\(306\) 0 0
\(307\) 474.281i 1.54489i 0.635082 + 0.772445i \(0.280967\pi\)
−0.635082 + 0.772445i \(0.719033\pi\)
\(308\) 150.567 + 172.804i 0.488854 + 0.561052i
\(309\) 0 0
\(310\) −84.1276 −0.271379
\(311\) 104.558i 0.336200i −0.985770 0.168100i \(-0.946237\pi\)
0.985770 0.168100i \(-0.0537632\pi\)
\(312\) 0 0
\(313\) 288.084i 0.920397i 0.887816 + 0.460198i \(0.152222\pi\)
−0.887816 + 0.460198i \(0.847778\pi\)
\(314\) 211.814i 0.674568i
\(315\) 0 0
\(316\) −78.4622 −0.248298
\(317\) 123.488 0.389552 0.194776 0.980848i \(-0.437602\pi\)
0.194776 + 0.980848i \(0.437602\pi\)
\(318\) 0 0
\(319\) −677.796 −2.12475
\(320\) 11.0617i 0.0345679i
\(321\) 0 0
\(322\) 159.439 + 182.987i 0.495153 + 0.568281i
\(323\) −48.3490 −0.149687
\(324\) 0 0
\(325\) 428.452i 1.31831i
\(326\) −149.482 −0.458533
\(327\) 0 0
\(328\) 32.0272i 0.0976440i
\(329\) −68.4870 + 59.6738i −0.208167 + 0.181379i
\(330\) 0 0
\(331\) 400.180 1.20900 0.604502 0.796604i \(-0.293372\pi\)
0.604502 + 0.796604i \(0.293372\pi\)
\(332\) 231.787i 0.698155i
\(333\) 0 0
\(334\) 366.570i 1.09751i
\(335\) 61.2242i 0.182759i
\(336\) 0 0
\(337\) −344.372 −1.02187 −0.510937 0.859618i \(-0.670702\pi\)
−0.510937 + 0.859618i \(0.670702\pi\)
\(338\) 248.013 0.733766
\(339\) 0 0
\(340\) 4.62144 0.0135925
\(341\) 704.324i 2.06547i
\(342\) 0 0
\(343\) −287.015 + 187.807i −0.836779 + 0.547541i
\(344\) −163.844 −0.476292
\(345\) 0 0
\(346\) 333.566i 0.964064i
\(347\) −90.3115 −0.260264 −0.130132 0.991497i \(-0.541540\pi\)
−0.130132 + 0.991497i \(0.541540\pi\)
\(348\) 0 0
\(349\) 147.918i 0.423834i −0.977288 0.211917i \(-0.932029\pi\)
0.977288 0.211917i \(-0.0679707\pi\)
\(350\) −150.148 172.324i −0.428995 0.492353i
\(351\) 0 0
\(352\) −92.6099 −0.263096
\(353\) 352.158i 0.997615i −0.866713 0.498808i \(-0.833771\pi\)
0.866713 0.498808i \(-0.166229\pi\)
\(354\) 0 0
\(355\) 111.612i 0.314401i
\(356\) 60.4934i 0.169925i
\(357\) 0 0
\(358\) −336.614 −0.940261
\(359\) −122.724 −0.341850 −0.170925 0.985284i \(-0.554676\pi\)
−0.170925 + 0.985284i \(0.554676\pi\)
\(360\) 0 0
\(361\) −476.040 −1.31867
\(362\) 231.650i 0.639917i
\(363\) 0 0
\(364\) 195.878 170.671i 0.538126 0.468878i
\(365\) 109.817 0.300868
\(366\) 0 0
\(367\) 50.2068i 0.136803i 0.997658 + 0.0684017i \(0.0217899\pi\)
−0.997658 + 0.0684017i \(0.978210\pi\)
\(368\) −98.0669 −0.266486
\(369\) 0 0
\(370\) 36.3292i 0.0981870i
\(371\) 207.930 + 238.639i 0.560459 + 0.643232i
\(372\) 0 0
\(373\) 528.187 1.41605 0.708025 0.706187i \(-0.249586\pi\)
0.708025 + 0.706187i \(0.249586\pi\)
\(374\) 38.6912i 0.103452i
\(375\) 0 0
\(376\) 36.7038i 0.0976166i
\(377\) 768.299i 2.03793i
\(378\) 0 0
\(379\) 122.654 0.323624 0.161812 0.986822i \(-0.448266\pi\)
0.161812 + 0.986822i \(0.448266\pi\)
\(380\) 80.0085 0.210549
\(381\) 0 0
\(382\) −358.527 −0.938551
\(383\) 237.126i 0.619127i 0.950879 + 0.309563i \(0.100183\pi\)
−0.950879 + 0.309563i \(0.899817\pi\)
\(384\) 0 0
\(385\) −119.470 + 104.096i −0.310310 + 0.270379i
\(386\) −44.0261 −0.114057
\(387\) 0 0
\(388\) 165.599i 0.426803i
\(389\) 172.514 0.443480 0.221740 0.975106i \(-0.428826\pi\)
0.221740 + 0.975106i \(0.428826\pi\)
\(390\) 0 0
\(391\) 40.9711i 0.104785i
\(392\) 18.9714 137.288i 0.0483964 0.350225i
\(393\) 0 0
\(394\) −279.454 −0.709275
\(395\) 54.2455i 0.137330i
\(396\) 0 0
\(397\) 188.846i 0.475683i 0.971304 + 0.237842i \(0.0764400\pi\)
−0.971304 + 0.237842i \(0.923560\pi\)
\(398\) 228.430i 0.573945i
\(399\) 0 0
\(400\) 92.3524 0.230881
\(401\) −65.0129 −0.162127 −0.0810634 0.996709i \(-0.525832\pi\)
−0.0810634 + 0.996709i \(0.525832\pi\)
\(402\) 0 0
\(403\) −798.369 −1.98107
\(404\) 262.395i 0.649493i
\(405\) 0 0
\(406\) 269.246 + 309.010i 0.663167 + 0.761109i
\(407\) −304.152 −0.747301
\(408\) 0 0
\(409\) 439.887i 1.07552i 0.843098 + 0.537760i \(0.180729\pi\)
−0.843098 + 0.537760i \(0.819271\pi\)
\(410\) −22.1423 −0.0540056
\(411\) 0 0
\(412\) 34.2032i 0.0830174i
\(413\) 131.873 114.903i 0.319305 0.278216i
\(414\) 0 0
\(415\) 160.248 0.386140
\(416\) 104.976i 0.252345i
\(417\) 0 0
\(418\) 669.839i 1.60249i
\(419\) 613.028i 1.46307i 0.681802 + 0.731537i \(0.261197\pi\)
−0.681802 + 0.731537i \(0.738803\pi\)
\(420\) 0 0
\(421\) −314.404 −0.746803 −0.373402 0.927670i \(-0.621809\pi\)
−0.373402 + 0.927670i \(0.621809\pi\)
\(422\) −20.3798 −0.0482934
\(423\) 0 0
\(424\) −127.893 −0.301633
\(425\) 38.5836i 0.0907849i
\(426\) 0 0
\(427\) −84.9593 + 74.0264i −0.198968 + 0.173364i
\(428\) −39.9432 −0.0933252
\(429\) 0 0
\(430\) 113.275i 0.263431i
\(431\) −545.839 −1.26645 −0.633224 0.773968i \(-0.718269\pi\)
−0.633224 + 0.773968i \(0.718269\pi\)
\(432\) 0 0
\(433\) 243.306i 0.561908i 0.959721 + 0.280954i \(0.0906509\pi\)
−0.959721 + 0.280954i \(0.909349\pi\)
\(434\) −321.105 + 279.784i −0.739873 + 0.644663i
\(435\) 0 0
\(436\) −194.278 −0.445592
\(437\) 709.310i 1.62313i
\(438\) 0 0
\(439\) 786.048i 1.79054i 0.445522 + 0.895271i \(0.353018\pi\)
−0.445522 + 0.895271i \(0.646982\pi\)
\(440\) 64.0266i 0.145515i
\(441\) 0 0
\(442\) 43.8574 0.0992250
\(443\) −545.786 −1.23202 −0.616011 0.787737i \(-0.711252\pi\)
−0.616011 + 0.787737i \(0.711252\pi\)
\(444\) 0 0
\(445\) 41.8226 0.0939834
\(446\) 265.332i 0.594915i
\(447\) 0 0
\(448\) 36.7881 + 42.2213i 0.0821163 + 0.0942439i
\(449\) −789.261 −1.75782 −0.878910 0.476987i \(-0.841729\pi\)
−0.878910 + 0.476987i \(0.841729\pi\)
\(450\) 0 0
\(451\) 185.378i 0.411037i
\(452\) 158.906 0.351561
\(453\) 0 0
\(454\) 390.530i 0.860199i
\(455\) 117.995 + 135.422i 0.259330 + 0.297630i
\(456\) 0 0
\(457\) −88.2385 −0.193082 −0.0965411 0.995329i \(-0.530778\pi\)
−0.0965411 + 0.995329i \(0.530778\pi\)
\(458\) 510.851i 1.11539i
\(459\) 0 0
\(460\) 67.7994i 0.147390i
\(461\) 27.7852i 0.0602715i 0.999546 + 0.0301358i \(0.00959396\pi\)
−0.999546 + 0.0301358i \(0.990406\pi\)
\(462\) 0 0
\(463\) 466.865 1.00835 0.504174 0.863602i \(-0.331797\pi\)
0.504174 + 0.863602i \(0.331797\pi\)
\(464\) −165.606 −0.356910
\(465\) 0 0
\(466\) −443.476 −0.951666
\(467\) 163.433i 0.349963i 0.984572 + 0.174981i \(0.0559865\pi\)
−0.984572 + 0.174981i \(0.944014\pi\)
\(468\) 0 0
\(469\) 203.614 + 233.685i 0.434145 + 0.498263i
\(470\) 25.3755 0.0539904
\(471\) 0 0
\(472\) 70.6740i 0.149733i
\(473\) 948.350 2.00497
\(474\) 0 0
\(475\) 667.977i 1.40627i
\(476\) 17.6395 15.3696i 0.0370578 0.0322890i
\(477\) 0 0
\(478\) 567.635 1.18752
\(479\) 224.810i 0.469332i −0.972076 0.234666i \(-0.924600\pi\)
0.972076 0.234666i \(-0.0753997\pi\)
\(480\) 0 0
\(481\) 344.763i 0.716764i
\(482\) 140.632i 0.291768i
\(483\) 0 0
\(484\) 294.037 0.607515
\(485\) 114.489 0.236059
\(486\) 0 0
\(487\) −350.781 −0.720290 −0.360145 0.932896i \(-0.617273\pi\)
−0.360145 + 0.932896i \(0.617273\pi\)
\(488\) 45.5318i 0.0933028i
\(489\) 0 0
\(490\) 94.9154 + 13.1160i 0.193705 + 0.0267674i
\(491\) −734.288 −1.49550 −0.747748 0.663983i \(-0.768865\pi\)
−0.747748 + 0.663983i \(0.768865\pi\)
\(492\) 0 0
\(493\) 69.1881i 0.140341i
\(494\) 759.280 1.53700
\(495\) 0 0
\(496\) 172.088i 0.346951i
\(497\) −371.190 426.010i −0.746861 0.857164i
\(498\) 0 0
\(499\) 935.150 1.87405 0.937024 0.349265i \(-0.113569\pi\)
0.937024 + 0.349265i \(0.113569\pi\)
\(500\) 132.984i 0.265969i
\(501\) 0 0
\(502\) 637.143i 1.26921i
\(503\) 670.586i 1.33317i −0.745427 0.666587i \(-0.767755\pi\)
0.745427 0.666587i \(-0.232245\pi\)
\(504\) 0 0
\(505\) −181.409 −0.359226
\(506\) 567.623 1.12178
\(507\) 0 0
\(508\) 138.274 0.272194
\(509\) 7.40802i 0.0145541i −0.999974 0.00727703i \(-0.997684\pi\)
0.999974 0.00727703i \(-0.00231637\pi\)
\(510\) 0 0
\(511\) 419.158 365.219i 0.820270 0.714714i
\(512\) −22.6274 −0.0441942
\(513\) 0 0
\(514\) 520.271i 1.01220i
\(515\) 23.6467 0.0459158
\(516\) 0 0
\(517\) 212.446i 0.410921i
\(518\) 120.820 + 138.664i 0.233244 + 0.267691i
\(519\) 0 0
\(520\) −72.5758 −0.139569
\(521\) 855.964i 1.64292i −0.570263 0.821462i \(-0.693159\pi\)
0.570263 0.821462i \(-0.306841\pi\)
\(522\) 0 0
\(523\) 26.4383i 0.0505512i −0.999681 0.0252756i \(-0.991954\pi\)
0.999681 0.0252756i \(-0.00804633\pi\)
\(524\) 235.508i 0.449443i
\(525\) 0 0
\(526\) −53.6621 −0.102019
\(527\) −71.8960 −0.136425
\(528\) 0 0
\(529\) 72.0703 0.136239
\(530\) 88.4196i 0.166829i
\(531\) 0 0
\(532\) 305.383 266.085i 0.574028 0.500160i
\(533\) −210.130 −0.394240
\(534\) 0 0
\(535\) 27.6151i 0.0516169i
\(536\) −125.238 −0.233652
\(537\) 0 0
\(538\) 35.9192i 0.0667643i
\(539\) −109.809 + 794.641i −0.203727 + 1.47429i
\(540\) 0 0
\(541\) −607.504 −1.12293 −0.561464 0.827501i \(-0.689762\pi\)
−0.561464 + 0.827501i \(0.689762\pi\)
\(542\) 242.764i 0.447904i
\(543\) 0 0
\(544\) 9.45343i 0.0173776i
\(545\) 134.316i 0.246451i
\(546\) 0 0
\(547\) −246.647 −0.450909 −0.225455 0.974254i \(-0.572387\pi\)
−0.225455 + 0.974254i \(0.572387\pi\)
\(548\) −3.82358 −0.00697733
\(549\) 0 0
\(550\) −534.547 −0.971903
\(551\) 1197.81i 2.17389i
\(552\) 0 0
\(553\) −180.405 207.048i −0.326229 0.374409i
\(554\) 268.742 0.485094
\(555\) 0 0
\(556\) 502.266i 0.903356i
\(557\) 947.646 1.70134 0.850670 0.525700i \(-0.176197\pi\)
0.850670 + 0.525700i \(0.176197\pi\)
\(558\) 0 0
\(559\) 1074.98i 1.92304i
\(560\) −29.1900 + 25.4338i −0.0521251 + 0.0454174i
\(561\) 0 0
\(562\) 147.499 0.262453
\(563\) 181.336i 0.322089i −0.986947 0.161045i \(-0.948514\pi\)
0.986947 0.161045i \(-0.0514863\pi\)
\(564\) 0 0
\(565\) 109.861i 0.194444i
\(566\) 214.532i 0.379032i
\(567\) 0 0
\(568\) 228.309 0.401953
\(569\) 578.055 1.01591 0.507957 0.861383i \(-0.330401\pi\)
0.507957 + 0.861383i \(0.330401\pi\)
\(570\) 0 0
\(571\) −753.049 −1.31883 −0.659413 0.751781i \(-0.729195\pi\)
−0.659413 + 0.751781i \(0.729195\pi\)
\(572\) 607.612i 1.06226i
\(573\) 0 0
\(574\) −84.5145 + 73.6388i −0.147238 + 0.128291i
\(575\) −566.045 −0.984426
\(576\) 0 0
\(577\) 11.7220i 0.0203154i 0.999948 + 0.0101577i \(0.00323335\pi\)
−0.999948 + 0.0101577i \(0.996767\pi\)
\(578\) −404.758 −0.700274
\(579\) 0 0
\(580\) 114.493i 0.197402i
\(581\) 611.648 532.938i 1.05275 0.917278i
\(582\) 0 0
\(583\) 740.258 1.26974
\(584\) 224.637i 0.384652i
\(585\) 0 0
\(586\) 84.5340i 0.144256i
\(587\) 619.395i 1.05519i −0.849497 0.527594i \(-0.823094\pi\)
0.849497 0.527594i \(-0.176906\pi\)
\(588\) 0 0
\(589\) −1244.70 −2.11324
\(590\) −48.8610 −0.0828153
\(591\) 0 0
\(592\) −74.3135 −0.125530
\(593\) 242.416i 0.408797i −0.978888 0.204398i \(-0.934476\pi\)
0.978888 0.204398i \(-0.0655238\pi\)
\(594\) 0 0
\(595\) 10.6259 + 12.1952i 0.0178586 + 0.0204961i
\(596\) 312.452 0.524248
\(597\) 0 0
\(598\) 643.415i 1.07594i
\(599\) 98.2526 0.164028 0.0820139 0.996631i \(-0.473865\pi\)
0.0820139 + 0.996631i \(0.473865\pi\)
\(600\) 0 0
\(601\) 148.886i 0.247730i 0.992299 + 0.123865i \(0.0395290\pi\)
−0.992299 + 0.123865i \(0.960471\pi\)
\(602\) −376.720 432.357i −0.625781 0.718201i
\(603\) 0 0
\(604\) 54.1505 0.0896532
\(605\) 203.285i 0.336008i
\(606\) 0 0
\(607\) 1194.81i 1.96839i −0.177080 0.984196i \(-0.556665\pi\)
0.177080 0.984196i \(-0.443335\pi\)
\(608\) 163.662i 0.269181i
\(609\) 0 0
\(610\) 31.4788 0.0516045
\(611\) 240.813 0.394129
\(612\) 0 0
\(613\) 333.307 0.543731 0.271866 0.962335i \(-0.412359\pi\)
0.271866 + 0.962335i \(0.412359\pi\)
\(614\) 670.735i 1.09240i
\(615\) 0 0
\(616\) −212.934 244.382i −0.345672 0.396724i
\(617\) 361.482 0.585871 0.292935 0.956132i \(-0.405368\pi\)
0.292935 + 0.956132i \(0.405368\pi\)
\(618\) 0 0
\(619\) 186.138i 0.300707i 0.988632 + 0.150353i \(0.0480412\pi\)
−0.988632 + 0.150353i \(0.951959\pi\)
\(620\) 118.974 0.191894
\(621\) 0 0
\(622\) 147.868i 0.237730i
\(623\) 159.632 139.090i 0.256231 0.223258i
\(624\) 0 0
\(625\) 485.262 0.776420
\(626\) 407.413i 0.650819i
\(627\) 0 0
\(628\) 299.551i 0.476992i
\(629\) 31.0472i 0.0493596i
\(630\) 0 0
\(631\) 72.1705 0.114375 0.0571874 0.998363i \(-0.481787\pi\)
0.0571874 + 0.998363i \(0.481787\pi\)
\(632\) 110.962 0.175573
\(633\) 0 0
\(634\) −174.638 −0.275455
\(635\) 95.5972i 0.150547i
\(636\) 0 0
\(637\) 900.746 + 124.471i 1.41404 + 0.195402i
\(638\) 958.548 1.50243
\(639\) 0 0
\(640\) 15.6437i 0.0244432i
\(641\) 882.583 1.37688 0.688442 0.725291i \(-0.258295\pi\)
0.688442 + 0.725291i \(0.258295\pi\)
\(642\) 0 0
\(643\) 1027.08i 1.59732i 0.601782 + 0.798660i \(0.294458\pi\)
−0.601782 + 0.798660i \(0.705542\pi\)
\(644\) −225.481 258.782i −0.350126 0.401835i
\(645\) 0 0
\(646\) 68.3759 0.105845
\(647\) 1016.79i 1.57154i 0.618516 + 0.785772i \(0.287734\pi\)
−0.618516 + 0.785772i \(0.712266\pi\)
\(648\) 0 0
\(649\) 409.069i 0.630307i
\(650\) 605.922i 0.932188i
\(651\) 0 0
\(652\) 211.399 0.324231
\(653\) −765.713 −1.17261 −0.586304 0.810091i \(-0.699418\pi\)
−0.586304 + 0.810091i \(0.699418\pi\)
\(654\) 0 0
\(655\) −162.820 −0.248581
\(656\) 45.2934i 0.0690448i
\(657\) 0 0
\(658\) 96.8552 84.3915i 0.147196 0.128255i
\(659\) −909.582 −1.38025 −0.690123 0.723692i \(-0.742444\pi\)
−0.690123 + 0.723692i \(0.742444\pi\)
\(660\) 0 0
\(661\) 719.961i 1.08920i −0.838696 0.544600i \(-0.816681\pi\)
0.838696 0.544600i \(-0.183319\pi\)
\(662\) −565.940 −0.854895
\(663\) 0 0
\(664\) 327.797i 0.493670i
\(665\) 183.960 + 211.129i 0.276632 + 0.317487i
\(666\) 0 0
\(667\) 1015.03 1.52179
\(668\) 518.408i 0.776060i
\(669\) 0 0
\(670\) 86.5841i 0.129230i
\(671\) 263.543i 0.392762i
\(672\) 0 0
\(673\) 908.284 1.34961 0.674803 0.737998i \(-0.264229\pi\)
0.674803 + 0.737998i \(0.264229\pi\)
\(674\) 487.015 0.722574
\(675\) 0 0
\(676\) −350.743 −0.518851
\(677\) 146.915i 0.217010i −0.994096 0.108505i \(-0.965394\pi\)
0.994096 0.108505i \(-0.0346063\pi\)
\(678\) 0 0
\(679\) 436.989 380.755i 0.643577 0.560759i
\(680\) −6.53571 −0.00961134
\(681\) 0 0
\(682\) 996.065i 1.46051i
\(683\) −532.770 −0.780044 −0.390022 0.920805i \(-0.627533\pi\)
−0.390022 + 0.920805i \(0.627533\pi\)
\(684\) 0 0
\(685\) 2.64346i 0.00385907i
\(686\) 405.901 265.599i 0.591692 0.387170i
\(687\) 0 0
\(688\) 231.711 0.336789
\(689\) 839.101i 1.21785i
\(690\) 0 0
\(691\) 38.9893i 0.0564244i 0.999602 + 0.0282122i \(0.00898142\pi\)
−0.999602 + 0.0282122i \(0.991019\pi\)
\(692\) 471.734i 0.681696i
\(693\) 0 0
\(694\) 127.720 0.184034
\(695\) 347.246 0.499634
\(696\) 0 0
\(697\) −18.9230 −0.0271492
\(698\) 209.188i 0.299696i
\(699\) 0 0
\(700\) 212.342 + 243.702i 0.303345 + 0.348146i
\(701\) −508.129 −0.724863 −0.362432 0.932010i \(-0.618053\pi\)
−0.362432 + 0.932010i \(0.618053\pi\)
\(702\) 0 0
\(703\) 537.503i 0.764584i
\(704\) 130.970 0.186037
\(705\) 0 0
\(706\) 498.027i 0.705421i
\(707\) −692.417 + 603.314i −0.979373 + 0.853344i
\(708\) 0 0
\(709\) 607.768 0.857219 0.428609 0.903490i \(-0.359004\pi\)
0.428609 + 0.903490i \(0.359004\pi\)
\(710\) 157.844i 0.222315i
\(711\) 0 0
\(712\) 85.5506i 0.120155i
\(713\) 1054.76i 1.47932i
\(714\) 0 0
\(715\) 420.077 0.587521
\(716\) 476.043 0.664865
\(717\) 0 0
\(718\) 173.558 0.241725
\(719\) 313.462i 0.435969i −0.975952 0.217985i \(-0.930052\pi\)
0.975952 0.217985i \(-0.0699483\pi\)
\(720\) 0 0
\(721\) 90.2564 78.6419i 0.125182 0.109073i
\(722\) 673.223 0.932441
\(723\) 0 0
\(724\) 327.603i 0.452490i
\(725\) −955.883 −1.31846
\(726\) 0 0
\(727\) 729.179i 1.00300i 0.865158 + 0.501499i \(0.167218\pi\)
−0.865158 + 0.501499i \(0.832782\pi\)
\(728\) −277.013 + 241.366i −0.380512 + 0.331546i
\(729\) 0 0
\(730\) −155.305 −0.212746
\(731\) 96.8057i 0.132429i
\(732\) 0 0
\(733\) 345.407i 0.471224i −0.971847 0.235612i \(-0.924291\pi\)
0.971847 0.235612i \(-0.0757094\pi\)
\(734\) 71.0032i 0.0967346i
\(735\) 0 0
\(736\) 138.688 0.188434
\(737\) 724.891 0.983569
\(738\) 0 0
\(739\) −1005.34 −1.36041 −0.680203 0.733024i \(-0.738108\pi\)
−0.680203 + 0.733024i \(0.738108\pi\)
\(740\) 51.3772i 0.0694287i
\(741\) 0 0
\(742\) −294.058 337.487i −0.396304 0.454834i
\(743\) 139.031 0.187122 0.0935609 0.995614i \(-0.470175\pi\)
0.0935609 + 0.995614i \(0.470175\pi\)
\(744\) 0 0
\(745\) 216.016i 0.289954i
\(746\) −746.969 −1.00130
\(747\) 0 0
\(748\) 54.7176i 0.0731519i
\(749\) −91.8396 105.403i −0.122616 0.140725i
\(750\) 0 0
\(751\) 35.6531 0.0474741 0.0237371 0.999718i \(-0.492444\pi\)
0.0237371 + 0.999718i \(0.492444\pi\)
\(752\) 51.9071i 0.0690254i
\(753\) 0 0
\(754\) 1086.54i 1.44103i
\(755\) 37.4374i 0.0495860i
\(756\) 0 0
\(757\) 719.557 0.950538 0.475269 0.879841i \(-0.342351\pi\)
0.475269 + 0.879841i \(0.342351\pi\)
\(758\) −173.458 −0.228837
\(759\) 0 0
\(760\) −113.149 −0.148880
\(761\) 186.180i 0.244651i 0.992490 + 0.122326i \(0.0390352\pi\)
−0.992490 + 0.122326i \(0.960965\pi\)
\(762\) 0 0
\(763\) −446.695 512.667i −0.585445 0.671909i
\(764\) 507.033 0.663656
\(765\) 0 0
\(766\) 335.346i 0.437789i
\(767\) −463.690 −0.604551
\(768\) 0 0
\(769\) 61.2943i 0.0797065i −0.999206 0.0398533i \(-0.987311\pi\)
0.999206 0.0398533i \(-0.0126890\pi\)
\(770\) 168.955 147.214i 0.219423 0.191186i
\(771\) 0 0
\(772\) 62.2623 0.0806507
\(773\) 484.245i 0.626449i 0.949679 + 0.313225i \(0.101409\pi\)
−0.949679 + 0.313225i \(0.898591\pi\)
\(774\) 0 0
\(775\) 993.295i 1.28167i
\(776\) 234.193i 0.301795i
\(777\) 0 0
\(778\) −243.971 −0.313588
\(779\) −327.603 −0.420543
\(780\) 0 0
\(781\) −1321.48 −1.69204
\(782\) 57.9418i 0.0740944i
\(783\) 0 0
\(784\) −26.8296 + 194.155i −0.0342214 + 0.247647i
\(785\) −207.097 −0.263818
\(786\) 0 0
\(787\) 679.207i 0.863034i −0.902105 0.431517i \(-0.857979\pi\)
0.902105 0.431517i \(-0.142021\pi\)
\(788\) 395.208 0.501533
\(789\) 0 0
\(790\) 76.7147i 0.0971073i
\(791\) 365.364 + 419.325i 0.461902 + 0.530120i
\(792\) 0 0
\(793\) 298.733 0.376712
\(794\) 267.069i 0.336359i
\(795\) 0 0
\(796\) 323.049i 0.405840i
\(797\) 1481.08i 1.85832i −0.369677 0.929160i \(-0.620532\pi\)
0.369677 0.929160i \(-0.379468\pi\)
\(798\) 0 0
\(799\) 21.6861 0.0271415
\(800\) −130.606 −0.163257
\(801\) 0 0
\(802\) 91.9421 0.114641
\(803\) 1300.23i 1.61921i
\(804\) 0 0
\(805\) 178.911 155.888i 0.222250 0.193650i
\(806\) 1129.06 1.40082
\(807\) 0 0
\(808\) 371.083i 0.459261i
\(809\) 178.357 0.220466 0.110233 0.993906i \(-0.464840\pi\)
0.110233 + 0.993906i \(0.464840\pi\)
\(810\) 0 0
\(811\) 1087.09i 1.34043i −0.742166 0.670216i \(-0.766201\pi\)
0.742166 0.670216i \(-0.233799\pi\)
\(812\) −380.771 437.007i −0.468930 0.538185i
\(813\) 0 0
\(814\) 430.135 0.528422
\(815\) 146.152i 0.179328i
\(816\) 0 0
\(817\) 1675.94i 2.05134i
\(818\) 622.095i 0.760507i
\(819\) 0 0
\(820\) 31.3139 0.0381877
\(821\) −726.271 −0.884618 −0.442309 0.896863i \(-0.645841\pi\)
−0.442309 + 0.896863i \(0.645841\pi\)
\(822\) 0 0
\(823\) −755.729 −0.918261 −0.459130 0.888369i \(-0.651839\pi\)
−0.459130 + 0.888369i \(0.651839\pi\)
\(824\) 48.3706i 0.0587022i
\(825\) 0 0
\(826\) −186.497 + 162.498i −0.225783 + 0.196728i
\(827\) 890.828 1.07718 0.538590 0.842568i \(-0.318957\pi\)
0.538590 + 0.842568i \(0.318957\pi\)
\(828\) 0 0
\(829\) 1129.80i 1.36285i 0.731888 + 0.681425i \(0.238640\pi\)
−0.731888 + 0.681425i \(0.761360\pi\)
\(830\) −226.625 −0.273042
\(831\) 0 0
\(832\) 148.458i 0.178435i
\(833\) 81.1154 + 11.2090i 0.0973774 + 0.0134562i
\(834\) 0 0
\(835\) 358.406 0.429228
\(836\) 947.296i 1.13313i
\(837\) 0 0
\(838\) 866.952i 1.03455i
\(839\) 946.196i 1.12777i 0.825855 + 0.563883i \(0.190693\pi\)
−0.825855 + 0.563883i \(0.809307\pi\)
\(840\) 0 0
\(841\) 873.088 1.03815
\(842\) 444.635 0.528070
\(843\) 0 0
\(844\) 28.8214 0.0341486
\(845\) 242.489i 0.286969i
\(846\) 0 0
\(847\) 676.067 + 775.914i 0.798190 + 0.916074i
\(848\) 180.867 0.213287
\(849\) 0 0
\(850\) 54.5654i 0.0641946i
\(851\) 455.481 0.535230
\(852\) 0 0
\(853\) 1657.51i 1.94316i −0.236719 0.971578i \(-0.576072\pi\)
0.236719 0.971578i \(-0.423928\pi\)
\(854\) 120.151 104.689i 0.140692 0.122587i
\(855\) 0 0
\(856\) 56.4882 0.0659909
\(857\) 72.5068i 0.0846053i 0.999105 + 0.0423027i \(0.0134694\pi\)
−0.999105 + 0.0423027i \(0.986531\pi\)
\(858\) 0 0
\(859\) 1229.82i 1.43169i 0.698259 + 0.715845i \(0.253958\pi\)
−0.698259 + 0.715845i \(0.746042\pi\)
\(860\) 160.195i 0.186274i
\(861\) 0 0
\(862\) 771.933 0.895514
\(863\) −1190.72 −1.37974 −0.689871 0.723932i \(-0.742333\pi\)
−0.689871 + 0.723932i \(0.742333\pi\)
\(864\) 0 0
\(865\) 326.137 0.377037
\(866\) 344.087i 0.397329i
\(867\) 0 0
\(868\) 454.111 395.674i 0.523169 0.455846i
\(869\) −642.263 −0.739083
\(870\) 0 0
\(871\) 821.682i 0.943377i
\(872\) 274.751 0.315081
\(873\) 0 0
\(874\) 1003.12i 1.14773i
\(875\) −350.923 + 305.765i −0.401055 + 0.349446i
\(876\) 0 0
\(877\) 630.661 0.719111 0.359556 0.933124i \(-0.382928\pi\)
0.359556 + 0.933124i \(0.382928\pi\)
\(878\) 1111.64i 1.26610i
\(879\) 0 0
\(880\) 90.5473i 0.102895i
\(881\) 1025.23i 1.16372i −0.813290 0.581858i \(-0.802326\pi\)
0.813290 0.581858i \(-0.197674\pi\)
\(882\) 0 0
\(883\) −571.513 −0.647241 −0.323620 0.946187i \(-0.604900\pi\)
−0.323620 + 0.946187i \(0.604900\pi\)
\(884\) −62.0238 −0.0701626
\(885\) 0 0
\(886\) 771.858 0.871172
\(887\) 1033.52i 1.16519i 0.812763 + 0.582594i \(0.197962\pi\)
−0.812763 + 0.582594i \(0.802038\pi\)
\(888\) 0 0
\(889\) 317.928 + 364.883i 0.357625 + 0.410442i
\(890\) −59.1461 −0.0664563
\(891\) 0 0
\(892\) 375.236i 0.420668i
\(893\) 375.439 0.420425
\(894\) 0 0
\(895\) 329.117i 0.367728i
\(896\) −52.0262 59.7099i −0.0580650 0.0666405i
\(897\) 0 0
\(898\) 1116.18 1.24297
\(899\) 1781.18i 1.98129i
\(900\) 0 0
\(901\) 75.5640i 0.0838668i
\(902\) 262.163i 0.290647i
\(903\) 0 0
\(904\) −224.726 −0.248591
\(905\) −226.491 −0.250266
\(906\) 0 0
\(907\) −931.384 −1.02688 −0.513442 0.858124i \(-0.671630\pi\)
−0.513442 + 0.858124i \(0.671630\pi\)
\(908\) 552.293i 0.608252i
\(909\) 0 0
\(910\) −166.870 191.515i −0.183374 0.210456i
\(911\) 1249.63 1.37171 0.685854 0.727739i \(-0.259429\pi\)
0.685854 + 0.727739i \(0.259429\pi\)
\(912\) 0 0
\(913\) 1897.33i 2.07812i
\(914\) 124.788 0.136530
\(915\) 0 0
\(916\) 722.452i 0.788703i
\(917\) −621.466 + 541.493i −0.677716 + 0.590505i
\(918\) 0 0
\(919\) 659.705 0.717851 0.358925 0.933366i \(-0.383143\pi\)
0.358925 + 0.933366i \(0.383143\pi\)
\(920\) 95.8828i 0.104220i
\(921\) 0 0
\(922\) 39.2942i 0.0426184i
\(923\) 1497.93i 1.62290i
\(924\) 0 0
\(925\) −428.939 −0.463718
\(926\) −660.247 −0.713009
\(927\) 0 0
\(928\) 234.202 0.252373
\(929\) 1199.26i 1.29092i 0.763796 + 0.645458i \(0.223333\pi\)
−0.763796 + 0.645458i \(0.776667\pi\)
\(930\) 0 0
\(931\) 1404.31 + 194.056i 1.50838 + 0.208438i
\(932\) 627.170 0.672929
\(933\) 0 0
\(934\) 231.128i 0.247461i
\(935\) 37.8295 0.0404593
\(936\) 0 0
\(937\) 651.336i 0.695130i 0.937656 + 0.347565i \(0.112991\pi\)
−0.937656 + 0.347565i \(0.887009\pi\)
\(938\) −287.953 330.481i −0.306987 0.352325i
\(939\) 0 0
\(940\) −35.8864 −0.0381770
\(941\) 1458.28i 1.54972i 0.632135 + 0.774858i \(0.282179\pi\)
−0.632135 + 0.774858i \(0.717821\pi\)
\(942\) 0 0
\(943\) 277.611i 0.294392i
\(944\) 99.9481i 0.105877i
\(945\) 0 0
\(946\) −1341.17 −1.41773
\(947\) −1634.00 −1.72545 −0.862724 0.505675i \(-0.831244\pi\)
−0.862724 + 0.505675i \(0.831244\pi\)
\(948\) 0 0
\(949\) −1473.84 −1.55304
\(950\) 944.662i 0.994381i
\(951\) 0 0
\(952\) −24.9460 + 21.7359i −0.0262038 + 0.0228318i
\(953\) 1002.99 1.05245 0.526226 0.850345i \(-0.323607\pi\)
0.526226 + 0.850345i \(0.323607\pi\)
\(954\) 0 0
\(955\) 350.542i 0.367059i
\(956\) −802.758 −0.839705
\(957\) 0 0
\(958\) 317.930i 0.331868i
\(959\) −8.79138 10.0898i −0.00916724 0.0105211i
\(960\) 0 0
\(961\) −889.890 −0.926004
\(962\) 487.569i 0.506829i
\(963\) 0 0
\(964\) 198.884i 0.206311i
\(965\) 43.0456i 0.0446068i
\(966\) 0 0
\(967\) 675.599 0.698654 0.349327 0.937001i \(-0.386410\pi\)
0.349327 + 0.937001i \(0.386410\pi\)
\(968\) −415.831 −0.429578
\(969\) 0 0
\(970\) −161.911 −0.166919
\(971\) 103.021i 0.106098i −0.998592 0.0530489i \(-0.983106\pi\)
0.998592 0.0530489i \(-0.0168939\pi\)
\(972\) 0 0
\(973\) 1325.39 1154.84i 1.36217 1.18688i
\(974\) 496.079 0.509322
\(975\) 0 0
\(976\) 64.3916i 0.0659750i
\(977\) 290.183 0.297014 0.148507 0.988911i \(-0.452553\pi\)
0.148507 + 0.988911i \(0.452553\pi\)
\(978\) 0 0
\(979\) 495.177i 0.505799i
\(980\) −134.231 18.5489i −0.136970 0.0189274i
\(981\) 0 0
\(982\) 1038.44 1.05747
\(983\) 714.870i 0.727233i 0.931549 + 0.363616i \(0.118458\pi\)
−0.931549 + 0.363616i \(0.881542\pi\)
\(984\) 0 0
\(985\) 273.230i 0.277391i
\(986\) 97.8467i 0.0992360i
\(987\) 0 0
\(988\) −1073.78 −1.08683
\(989\) −1420.20 −1.43599
\(990\) 0 0
\(991\) −1129.26 −1.13951 −0.569756 0.821814i \(-0.692962\pi\)
−0.569756 + 0.821814i \(0.692962\pi\)
\(992\) 243.369i 0.245332i
\(993\) 0 0
\(994\) 524.942 + 602.470i 0.528110 + 0.606106i
\(995\) −223.342 −0.224465
\(996\) 0 0
\(997\) 407.106i 0.408331i 0.978936 + 0.204166i \(0.0654481\pi\)
−0.978936 + 0.204166i \(0.934552\pi\)
\(998\) −1322.50 −1.32515
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.3.c.d.811.5 16
3.2 odd 2 1134.3.c.e.811.12 16
7.6 odd 2 inner 1134.3.c.d.811.4 16
9.2 odd 6 126.3.o.a.13.6 yes 32
9.4 even 3 378.3.o.a.181.13 32
9.5 odd 6 126.3.o.a.97.3 yes 32
9.7 even 3 378.3.o.a.307.12 32
21.20 even 2 1134.3.c.e.811.13 16
63.13 odd 6 378.3.o.a.181.12 32
63.20 even 6 126.3.o.a.13.3 32
63.34 odd 6 378.3.o.a.307.13 32
63.41 even 6 126.3.o.a.97.6 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.o.a.13.3 32 63.20 even 6
126.3.o.a.13.6 yes 32 9.2 odd 6
126.3.o.a.97.3 yes 32 9.5 odd 6
126.3.o.a.97.6 yes 32 63.41 even 6
378.3.o.a.181.12 32 63.13 odd 6
378.3.o.a.181.13 32 9.4 even 3
378.3.o.a.307.12 32 9.7 even 3
378.3.o.a.307.13 32 63.34 odd 6
1134.3.c.d.811.4 16 7.6 odd 2 inner
1134.3.c.d.811.5 16 1.1 even 1 trivial
1134.3.c.e.811.12 16 3.2 odd 2
1134.3.c.e.811.13 16 21.20 even 2