Properties

Label 126.3.o.a.13.6
Level $126$
Weight $3$
Character 126.13
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(13,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.13"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 13.6
Character \(\chi\) \(=\) 126.13
Dual form 126.3.o.a.97.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(1.92058 + 2.30464i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(1.19747 + 0.691358i) q^{5} +(1.46454 - 3.98185i) q^{6} +(2.27133 - 6.62126i) q^{7} +2.82843 q^{8} +(-1.62273 + 8.85250i) q^{9} -1.95546i q^{10} +(8.18564 + 14.1779i) q^{11} +(-5.91234 + 1.02190i) q^{12} +(16.0710 + 9.27862i) q^{13} +(-9.71543 + 1.90013i) q^{14} +(0.706502 + 4.08754i) q^{15} +(-2.00000 - 3.46410i) q^{16} +1.67115i q^{17} +(11.9895 - 4.27223i) q^{18} -28.9316i q^{19} +(-2.39494 + 1.38272i) q^{20} +(19.6219 - 7.48206i) q^{21} +(11.5762 - 20.0506i) q^{22} +(-12.2584 + 21.2321i) q^{23} +(5.43223 + 6.51851i) q^{24} +(-11.5440 - 19.9949i) q^{25} -26.2439i q^{26} +(-23.5184 + 13.2621i) q^{27} +(9.19702 + 10.5553i) q^{28} +(-20.7008 - 35.8548i) q^{29} +(4.50662 - 3.75561i) q^{30} +(37.2581 + 21.5110i) q^{31} +(-2.82843 + 4.89898i) q^{32} +(-16.9539 + 46.0948i) q^{33} +(2.04673 - 1.18168i) q^{34} +(7.29751 - 6.35844i) q^{35} +(-13.7102 - 11.6632i) q^{36} -18.5784 q^{37} +(-35.4339 + 20.4578i) q^{38} +(9.48187 + 54.8583i) q^{39} +(3.38695 + 1.95546i) q^{40} +(-9.80630 - 5.66167i) q^{41} +(-23.0384 - 18.7412i) q^{42} +(-28.9639 - 50.1669i) q^{43} -32.7425 q^{44} +(-8.06342 + 9.47869i) q^{45} +34.6719 q^{46} +(-11.2382 + 6.48838i) q^{47} +(4.14234 - 11.2624i) q^{48} +(-38.6821 - 30.0782i) q^{49} +(-16.3257 + 28.2770i) q^{50} +(-3.85139 + 3.20957i) q^{51} +(-32.1421 + 18.5572i) q^{52} -45.2169 q^{53} +(32.8728 + 19.4263i) q^{54} +22.6368i q^{55} +(6.42430 - 18.7277i) q^{56} +(66.6770 - 55.5656i) q^{57} +(-29.2753 + 50.7063i) q^{58} +(-21.6394 - 12.4935i) q^{59} +(-7.78633 - 2.86384i) q^{60} +(13.9412 - 8.04896i) q^{61} -60.8422i q^{62} +(54.9289 + 30.8515i) q^{63} +8.00000 q^{64} +(12.8297 + 22.2217i) q^{65} +(68.4426 - 11.8298i) q^{66} +(-22.1391 + 38.3460i) q^{67} +(-2.89451 - 1.67115i) q^{68} +(-72.4756 + 12.5269i) q^{69} +(-12.9476 - 4.44149i) q^{70} +80.7195 q^{71} +(-4.58978 + 25.0386i) q^{72} -79.4212i q^{73} +(13.1369 + 22.7538i) q^{74} +(23.9097 - 65.0067i) q^{75} +(50.1111 + 28.9316i) q^{76} +(112.468 - 21.9964i) q^{77} +(60.4828 - 50.4036i) q^{78} +(19.6156 + 33.9751i) q^{79} -5.53087i q^{80} +(-75.7335 - 28.7305i) q^{81} +16.0136i q^{82} +(100.367 - 57.9469i) q^{83} +(-6.66258 + 41.4682i) q^{84} +(-1.15536 + 2.00114i) q^{85} +(-40.9611 + 70.9467i) q^{86} +(42.8749 - 116.570i) q^{87} +(23.1525 + 40.1013i) q^{88} +30.2467i q^{89} +(17.3107 + 3.17318i) q^{90} +(97.9389 - 85.3357i) q^{91} +(-24.5167 - 42.4642i) q^{92} +(21.9822 + 127.180i) q^{93} +(15.8932 + 9.17596i) q^{94} +(20.0021 - 34.6447i) q^{95} +(-16.7226 + 2.89038i) q^{96} +(-71.7067 + 41.3999i) q^{97} +(-9.48569 + 68.6442i) q^{98} +(-138.793 + 49.4563i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} - 2 q^{7} + 24 q^{9} - 12 q^{11} - 12 q^{14} + 48 q^{15} - 64 q^{16} - 54 q^{21} + 12 q^{23} + 80 q^{25} + 8 q^{28} - 48 q^{29} - 168 q^{30} + 348 q^{35} - 72 q^{36} - 88 q^{37} + 252 q^{39}+ \cdots - 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.353553 0.612372i
\(3\) 1.92058 + 2.30464i 0.640194 + 0.768213i
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 1.19747 + 0.691358i 0.239494 + 0.138272i 0.614944 0.788571i \(-0.289179\pi\)
−0.375450 + 0.926842i \(0.622512\pi\)
\(6\) 1.46454 3.98185i 0.244090 0.663642i
\(7\) 2.27133 6.62126i 0.324476 0.945894i
\(8\) 2.82843 0.353553
\(9\) −1.62273 + 8.85250i −0.180304 + 0.983611i
\(10\) 1.95546i 0.195546i
\(11\) 8.18564 + 14.1779i 0.744149 + 1.28890i 0.950591 + 0.310445i \(0.100478\pi\)
−0.206443 + 0.978459i \(0.566189\pi\)
\(12\) −5.91234 + 1.02190i −0.492695 + 0.0851587i
\(13\) 16.0710 + 9.27862i 1.23623 + 0.713740i 0.968322 0.249703i \(-0.0803330\pi\)
0.267912 + 0.963443i \(0.413666\pi\)
\(14\) −9.71543 + 1.90013i −0.693959 + 0.135724i
\(15\) 0.706502 + 4.08754i 0.0471002 + 0.272503i
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 1.67115i 0.0983028i 0.998791 + 0.0491514i \(0.0156517\pi\)
−0.998791 + 0.0491514i \(0.984348\pi\)
\(18\) 11.9895 4.27223i 0.666083 0.237346i
\(19\) 28.9316i 1.52272i −0.648330 0.761359i \(-0.724532\pi\)
0.648330 0.761359i \(-0.275468\pi\)
\(20\) −2.39494 + 1.38272i −0.119747 + 0.0691358i
\(21\) 19.6219 7.48206i 0.934376 0.356289i
\(22\) 11.5762 20.0506i 0.526193 0.911392i
\(23\) −12.2584 + 21.2321i −0.532972 + 0.923135i 0.466286 + 0.884634i \(0.345592\pi\)
−0.999259 + 0.0385014i \(0.987742\pi\)
\(24\) 5.43223 + 6.51851i 0.226343 + 0.271604i
\(25\) −11.5440 19.9949i −0.461762 0.799795i
\(26\) 26.2439i 1.00938i
\(27\) −23.5184 + 13.2621i −0.871052 + 0.491190i
\(28\) 9.19702 + 10.5553i 0.328465 + 0.376976i
\(29\) −20.7008 35.8548i −0.713820 1.23637i −0.963413 0.268021i \(-0.913630\pi\)
0.249593 0.968351i \(-0.419703\pi\)
\(30\) 4.50662 3.75561i 0.150221 0.125187i
\(31\) 37.2581 + 21.5110i 1.20187 + 0.693903i 0.960972 0.276647i \(-0.0892231\pi\)
0.240903 + 0.970549i \(0.422556\pi\)
\(32\) −2.82843 + 4.89898i −0.0883883 + 0.153093i
\(33\) −16.9539 + 46.0948i −0.513753 + 1.39681i
\(34\) 2.04673 1.18168i 0.0601979 0.0347553i
\(35\) 7.29751 6.35844i 0.208500 0.181670i
\(36\) −13.7102 11.6632i −0.380840 0.323976i
\(37\) −18.5784 −0.502118 −0.251059 0.967972i \(-0.580779\pi\)
−0.251059 + 0.967972i \(0.580779\pi\)
\(38\) −35.4339 + 20.4578i −0.932471 + 0.538362i
\(39\) 9.48187 + 54.8583i 0.243125 + 1.40662i
\(40\) 3.38695 + 1.95546i 0.0846738 + 0.0488864i
\(41\) −9.80630 5.66167i −0.239178 0.138090i 0.375621 0.926773i \(-0.377430\pi\)
−0.614799 + 0.788684i \(0.710763\pi\)
\(42\) −23.0384 18.7412i −0.548533 0.446219i
\(43\) −28.9639 50.1669i −0.673578 1.16667i −0.976882 0.213778i \(-0.931423\pi\)
0.303304 0.952894i \(-0.401910\pi\)
\(44\) −32.7425 −0.744149
\(45\) −8.06342 + 9.47869i −0.179187 + 0.210638i
\(46\) 34.6719 0.753737
\(47\) −11.2382 + 6.48838i −0.239111 + 0.138051i −0.614768 0.788708i \(-0.710750\pi\)
0.375657 + 0.926759i \(0.377417\pi\)
\(48\) 4.14234 11.2624i 0.0862988 0.234633i
\(49\) −38.6821 30.0782i −0.789431 0.613840i
\(50\) −16.3257 + 28.2770i −0.326515 + 0.565541i
\(51\) −3.85139 + 3.20957i −0.0755175 + 0.0629328i
\(52\) −32.1421 + 18.5572i −0.618117 + 0.356870i
\(53\) −45.2169 −0.853148 −0.426574 0.904453i \(-0.640280\pi\)
−0.426574 + 0.904453i \(0.640280\pi\)
\(54\) 32.8728 + 19.4263i 0.608755 + 0.359747i
\(55\) 22.6368i 0.411579i
\(56\) 6.42430 18.7277i 0.114720 0.334424i
\(57\) 66.6770 55.5656i 1.16977 0.974835i
\(58\) −29.2753 + 50.7063i −0.504747 + 0.874247i
\(59\) −21.6394 12.4935i −0.366769 0.211754i 0.305277 0.952264i \(-0.401251\pi\)
−0.672046 + 0.740509i \(0.734584\pi\)
\(60\) −7.78633 2.86384i −0.129772 0.0477307i
\(61\) 13.9412 8.04896i 0.228544 0.131950i −0.381356 0.924428i \(-0.624543\pi\)
0.609900 + 0.792478i \(0.291209\pi\)
\(62\) 60.8422i 0.981327i
\(63\) 54.9289 + 30.8515i 0.871887 + 0.489706i
\(64\) 8.00000 0.125000
\(65\) 12.8297 + 22.2217i 0.197380 + 0.341872i
\(66\) 68.4426 11.8298i 1.03701 0.179240i
\(67\) −22.1391 + 38.3460i −0.330434 + 0.572329i −0.982597 0.185750i \(-0.940529\pi\)
0.652163 + 0.758079i \(0.273862\pi\)
\(68\) −2.89451 1.67115i −0.0425663 0.0245757i
\(69\) −72.4756 + 12.5269i −1.05037 + 0.181549i
\(70\) −12.9476 4.44149i −0.184965 0.0634499i
\(71\) 80.7195 1.13690 0.568448 0.822720i \(-0.307544\pi\)
0.568448 + 0.822720i \(0.307544\pi\)
\(72\) −4.58978 + 25.0386i −0.0637469 + 0.347759i
\(73\) 79.4212i 1.08796i −0.839098 0.543981i \(-0.816917\pi\)
0.839098 0.543981i \(-0.183083\pi\)
\(74\) 13.1369 + 22.7538i 0.177526 + 0.307483i
\(75\) 23.9097 65.0067i 0.318796 0.866756i
\(76\) 50.1111 + 28.9316i 0.659356 + 0.380680i
\(77\) 112.468 21.9964i 1.46062 0.285668i
\(78\) 60.4828 50.4036i 0.775420 0.646200i
\(79\) 19.6156 + 33.9751i 0.248298 + 0.430065i 0.963054 0.269309i \(-0.0867954\pi\)
−0.714756 + 0.699374i \(0.753462\pi\)
\(80\) 5.53087i 0.0691358i
\(81\) −75.7335 28.7305i −0.934981 0.354697i
\(82\) 16.0136i 0.195288i
\(83\) 100.367 57.9469i 1.20924 0.698155i 0.246646 0.969106i \(-0.420671\pi\)
0.962593 + 0.270951i \(0.0873380\pi\)
\(84\) −6.66258 + 41.4682i −0.0793165 + 0.493669i
\(85\) −1.15536 + 2.00114i −0.0135925 + 0.0235429i
\(86\) −40.9611 + 70.9467i −0.476292 + 0.824961i
\(87\) 42.8749 116.570i 0.492814 1.33988i
\(88\) 23.1525 + 40.1013i 0.263096 + 0.455696i
\(89\) 30.2467i 0.339850i 0.985457 + 0.169925i \(0.0543526\pi\)
−0.985457 + 0.169925i \(0.945647\pi\)
\(90\) 17.3107 + 3.17318i 0.192341 + 0.0352576i
\(91\) 97.9389 85.3357i 1.07625 0.937755i
\(92\) −24.5167 42.4642i −0.266486 0.461568i
\(93\) 21.9822 + 127.180i 0.236368 + 1.36753i
\(94\) 15.8932 + 9.17596i 0.169077 + 0.0976166i
\(95\) 20.0021 34.6447i 0.210549 0.364681i
\(96\) −16.7226 + 2.89038i −0.174194 + 0.0301082i
\(97\) −71.7067 + 41.3999i −0.739244 + 0.426803i −0.821794 0.569784i \(-0.807027\pi\)
0.0825504 + 0.996587i \(0.473693\pi\)
\(98\) −9.48569 + 68.6442i −0.0967927 + 0.700451i
\(99\) −138.793 + 49.4563i −1.40195 + 0.499559i
\(100\) 46.1762 0.461762
\(101\) −113.621 + 65.5988i −1.12496 + 0.649493i −0.942661 0.333751i \(-0.891686\pi\)
−0.182294 + 0.983244i \(0.558352\pi\)
\(102\) 6.65425 + 2.44746i 0.0652378 + 0.0239947i
\(103\) 14.8104 + 8.55080i 0.143790 + 0.0830174i 0.570169 0.821527i \(-0.306878\pi\)
−0.426379 + 0.904545i \(0.640211\pi\)
\(104\) 45.4558 + 26.2439i 0.437075 + 0.252345i
\(105\) 28.6694 + 4.60623i 0.273042 + 0.0438689i
\(106\) 31.9732 + 55.3791i 0.301633 + 0.522445i
\(107\) 19.9716 0.186650 0.0933252 0.995636i \(-0.470250\pi\)
0.0933252 + 0.995636i \(0.470250\pi\)
\(108\) 0.547726 53.9972i 0.00507154 0.499974i
\(109\) −97.1390 −0.891184 −0.445592 0.895236i \(-0.647007\pi\)
−0.445592 + 0.895236i \(0.647007\pi\)
\(110\) 27.7243 16.0067i 0.252040 0.145515i
\(111\) −35.6813 42.8165i −0.321453 0.385734i
\(112\) −27.4794 + 5.37439i −0.245352 + 0.0479856i
\(113\) 39.7264 68.8081i 0.351561 0.608921i −0.634962 0.772543i \(-0.718984\pi\)
0.986523 + 0.163622i \(0.0523177\pi\)
\(114\) −115.201 42.3716i −1.01054 0.371680i
\(115\) −29.3580 + 16.9498i −0.255287 + 0.147390i
\(116\) 82.8031 0.713820
\(117\) −108.218 + 127.212i −0.924940 + 1.08728i
\(118\) 35.3370i 0.299466i
\(119\) 11.0651 + 3.79573i 0.0929840 + 0.0318969i
\(120\) 1.99829 + 11.5613i 0.0166524 + 0.0963443i
\(121\) −73.5093 + 127.322i −0.607515 + 1.05225i
\(122\) −19.7158 11.3829i −0.161605 0.0933028i
\(123\) −5.78569 33.4737i −0.0470381 0.272144i
\(124\) −74.5162 + 43.0220i −0.600937 + 0.346951i
\(125\) 66.4922i 0.531938i
\(126\) −1.05539 89.0892i −0.00837614 0.707057i
\(127\) 69.1372 0.544388 0.272194 0.962242i \(-0.412251\pi\)
0.272194 + 0.962242i \(0.412251\pi\)
\(128\) −5.65685 9.79796i −0.0441942 0.0765466i
\(129\) 59.9891 163.101i 0.465032 1.26435i
\(130\) 18.1439 31.4262i 0.139569 0.241740i
\(131\) 101.978 + 58.8770i 0.778458 + 0.449443i 0.835883 0.548907i \(-0.184956\pi\)
−0.0574258 + 0.998350i \(0.518289\pi\)
\(132\) −62.8847 75.4598i −0.476400 0.571665i
\(133\) −191.564 65.7134i −1.44033 0.494086i
\(134\) 62.6188 0.467305
\(135\) −37.3314 0.378675i −0.276529 0.00280500i
\(136\) 4.72672i 0.0347553i
\(137\) −0.955894 1.65566i −0.00697733 0.0120851i 0.862516 0.506030i \(-0.168888\pi\)
−0.869493 + 0.493945i \(0.835554\pi\)
\(138\) 66.5902 + 79.9063i 0.482538 + 0.579031i
\(139\) 217.488 + 125.566i 1.56466 + 0.903356i 0.996775 + 0.0802469i \(0.0255709\pi\)
0.567883 + 0.823109i \(0.307762\pi\)
\(140\) 3.71563 + 18.9981i 0.0265402 + 0.135701i
\(141\) −36.5373 13.4386i −0.259130 0.0953089i
\(142\) −57.0773 98.8609i −0.401953 0.696203i
\(143\) 303.806i 2.12452i
\(144\) 33.9114 12.0837i 0.235496 0.0839145i
\(145\) 57.2466i 0.394804i
\(146\) −97.2707 + 56.1592i −0.666237 + 0.384652i
\(147\) −4.97281 146.916i −0.0338286 0.999428i
\(148\) 18.5784 32.1787i 0.125530 0.217424i
\(149\) 78.1129 135.295i 0.524248 0.908023i −0.475354 0.879795i \(-0.657680\pi\)
0.999601 0.0282288i \(-0.00898670\pi\)
\(150\) −96.5233 + 16.6834i −0.643489 + 0.111222i
\(151\) −13.5376 23.4479i −0.0896532 0.155284i 0.817711 0.575628i \(-0.195243\pi\)
−0.907365 + 0.420345i \(0.861909\pi\)
\(152\) 81.8311i 0.538362i
\(153\) −14.7938 2.71182i −0.0966917 0.0177243i
\(154\) −106.467 122.191i −0.691344 0.793448i
\(155\) 29.7436 + 51.5174i 0.191894 + 0.332370i
\(156\) −104.499 38.4353i −0.669867 0.246380i
\(157\) −129.709 74.8877i −0.826174 0.476992i 0.0263672 0.999652i \(-0.491606\pi\)
−0.852541 + 0.522661i \(0.824939\pi\)
\(158\) 27.7406 48.0481i 0.175573 0.304102i
\(159\) −86.8427 104.209i −0.546180 0.655400i
\(160\) −6.77390 + 3.91091i −0.0423369 + 0.0244432i
\(161\) 112.740 + 129.391i 0.700251 + 0.803671i
\(162\) 18.3642 + 113.070i 0.113359 + 0.697961i
\(163\) 105.699 0.648463 0.324231 0.945978i \(-0.394894\pi\)
0.324231 + 0.945978i \(0.394894\pi\)
\(164\) 19.6126 11.3233i 0.119589 0.0690448i
\(165\) −52.1698 + 43.4759i −0.316180 + 0.263490i
\(166\) −141.940 81.9492i −0.855062 0.493670i
\(167\) −224.477 129.602i −1.34417 0.776060i −0.356758 0.934197i \(-0.616118\pi\)
−0.987417 + 0.158137i \(0.949451\pi\)
\(168\) 55.4991 21.1625i 0.330352 0.125967i
\(169\) 87.6857 + 151.876i 0.518851 + 0.898676i
\(170\) 3.26786 0.0192227
\(171\) 256.117 + 46.9483i 1.49776 + 0.274552i
\(172\) 115.855 0.673578
\(173\) 204.267 117.933i 1.18073 0.681696i 0.224548 0.974463i \(-0.427909\pi\)
0.956184 + 0.292767i \(0.0945760\pi\)
\(174\) −173.085 + 29.9166i −0.994744 + 0.171934i
\(175\) −158.612 + 31.0211i −0.906352 + 0.177263i
\(176\) 32.7425 56.7118i 0.186037 0.322226i
\(177\) −12.7672 73.8658i −0.0721310 0.417321i
\(178\) 37.0445 21.3876i 0.208115 0.120155i
\(179\) −238.022 −1.32973 −0.664865 0.746963i \(-0.731511\pi\)
−0.664865 + 0.746963i \(0.731511\pi\)
\(180\) −8.35416 23.4449i −0.0464120 0.130250i
\(181\) 163.801i 0.904980i 0.891770 + 0.452490i \(0.149464\pi\)
−0.891770 + 0.452490i \(0.850536\pi\)
\(182\) −173.768 59.6086i −0.954768 0.327520i
\(183\) 45.3252 + 16.6708i 0.247678 + 0.0910971i
\(184\) −34.6719 + 60.0535i −0.188434 + 0.326378i
\(185\) −22.2470 12.8443i −0.120254 0.0694287i
\(186\) 140.219 116.853i 0.753868 0.628239i
\(187\) −23.6934 + 13.6794i −0.126703 + 0.0731519i
\(188\) 25.9535i 0.138051i
\(189\) 34.3939 + 185.844i 0.181978 + 0.983303i
\(190\) −56.5746 −0.297761
\(191\) 126.758 + 219.552i 0.663656 + 1.14949i 0.979648 + 0.200724i \(0.0643294\pi\)
−0.315992 + 0.948762i \(0.602337\pi\)
\(192\) 15.3647 + 18.4371i 0.0800242 + 0.0960267i
\(193\) −15.5656 + 26.9604i −0.0806507 + 0.139691i −0.903530 0.428526i \(-0.859033\pi\)
0.822879 + 0.568217i \(0.192366\pi\)
\(194\) 101.409 + 58.5482i 0.522724 + 0.301795i
\(195\) −26.5725 + 72.2465i −0.136269 + 0.370495i
\(196\) 90.7790 36.9212i 0.463158 0.188374i
\(197\) −197.604 −1.00307 −0.501533 0.865138i \(-0.667230\pi\)
−0.501533 + 0.865138i \(0.667230\pi\)
\(198\) 158.713 + 135.015i 0.801581 + 0.681896i
\(199\) 161.524i 0.811680i 0.913944 + 0.405840i \(0.133021\pi\)
−0.913944 + 0.405840i \(0.866979\pi\)
\(200\) −32.6515 56.5541i −0.163257 0.282770i
\(201\) −130.894 + 22.6241i −0.651213 + 0.112557i
\(202\) 160.684 + 92.7708i 0.795464 + 0.459261i
\(203\) −284.422 + 55.6270i −1.40109 + 0.274025i
\(204\) −1.70775 9.88038i −0.00837134 0.0484332i
\(205\) −7.82849 13.5593i −0.0381877 0.0661431i
\(206\) 24.1853i 0.117404i
\(207\) −168.065 142.971i −0.811909 0.690682i
\(208\) 74.2290i 0.356870i
\(209\) 410.191 236.824i 1.96264 1.13313i
\(210\) −14.6308 38.3698i −0.0696707 0.182713i
\(211\) −7.20535 + 12.4800i −0.0341486 + 0.0591470i −0.882595 0.470135i \(-0.844205\pi\)
0.848446 + 0.529282i \(0.177539\pi\)
\(212\) 45.2169 78.3179i 0.213287 0.369424i
\(213\) 155.028 + 186.030i 0.727833 + 0.873378i
\(214\) −14.1221 24.4601i −0.0659909 0.114300i
\(215\) 80.0976i 0.372547i
\(216\) −66.5201 + 37.5110i −0.307964 + 0.173662i
\(217\) 227.055 197.837i 1.04634 0.911691i
\(218\) 68.6877 + 118.971i 0.315081 + 0.545736i
\(219\) 183.037 152.535i 0.835786 0.696506i
\(220\) −39.2081 22.6368i −0.178219 0.102895i
\(221\) −15.5059 + 26.8571i −0.0701626 + 0.121525i
\(222\) −27.2088 + 73.9763i −0.122562 + 0.333226i
\(223\) 162.482 93.8091i 0.728619 0.420668i −0.0892977 0.996005i \(-0.528462\pi\)
0.817917 + 0.575337i \(0.195129\pi\)
\(224\) 26.0131 + 29.8550i 0.116130 + 0.133281i
\(225\) 195.738 69.7473i 0.869945 0.309988i
\(226\) −112.363 −0.497182
\(227\) −239.150 + 138.073i −1.05352 + 0.608252i −0.923634 0.383276i \(-0.874796\pi\)
−0.129890 + 0.991528i \(0.541462\pi\)
\(228\) 29.5654 + 171.054i 0.129673 + 0.750235i
\(229\) 312.831 + 180.613i 1.36607 + 0.788703i 0.990424 0.138059i \(-0.0440864\pi\)
0.375649 + 0.926762i \(0.377420\pi\)
\(230\) 41.5185 + 23.9707i 0.180515 + 0.104220i
\(231\) 266.698 + 216.953i 1.15454 + 0.939189i
\(232\) −58.5506 101.413i −0.252373 0.437123i
\(233\) −313.585 −1.34586 −0.672929 0.739707i \(-0.734964\pi\)
−0.672929 + 0.739707i \(0.734964\pi\)
\(234\) 232.324 + 42.5868i 0.992839 + 0.181995i
\(235\) −17.9432 −0.0763540
\(236\) 43.2788 24.9870i 0.183385 0.105877i
\(237\) −40.6272 + 110.459i −0.171423 + 0.466071i
\(238\) −3.17540 16.2359i −0.0133420 0.0682181i
\(239\) −200.689 + 347.604i −0.839705 + 1.45441i 0.0504372 + 0.998727i \(0.483939\pi\)
−0.890142 + 0.455684i \(0.849395\pi\)
\(240\) 12.7467 10.6225i 0.0531111 0.0442603i
\(241\) 86.1192 49.7209i 0.357341 0.206311i −0.310573 0.950550i \(-0.600521\pi\)
0.667914 + 0.744239i \(0.267188\pi\)
\(242\) 207.916 0.859156
\(243\) −79.2389 229.718i −0.326086 0.945340i
\(244\) 32.1958i 0.131950i
\(245\) −25.5258 62.7608i −0.104187 0.256167i
\(246\) −36.9056 + 30.7555i −0.150023 + 0.125022i
\(247\) 268.446 464.962i 1.08683 1.88244i
\(248\) 105.382 + 60.8422i 0.424927 + 0.245332i
\(249\) 326.309 + 120.018i 1.31048 + 0.482000i
\(250\) −81.4360 + 47.0171i −0.325744 + 0.188068i
\(251\) 450.528i 1.79493i −0.441082 0.897467i \(-0.645405\pi\)
0.441082 0.897467i \(-0.354595\pi\)
\(252\) −108.365 + 64.2882i −0.430021 + 0.255112i
\(253\) −401.370 −1.58644
\(254\) −48.8874 84.6755i −0.192470 0.333368i
\(255\) −6.83088 + 1.18067i −0.0267878 + 0.00463008i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −318.600 183.944i −1.23969 0.715734i −0.270657 0.962676i \(-0.587241\pi\)
−0.969030 + 0.246942i \(0.920574\pi\)
\(258\) −242.176 + 41.8583i −0.938665 + 0.162242i
\(259\) −42.1977 + 123.012i −0.162925 + 0.474950i
\(260\) −51.3188 −0.197380
\(261\) 350.996 125.071i 1.34481 0.479199i
\(262\) 166.529i 0.635608i
\(263\) 18.9724 + 32.8612i 0.0721385 + 0.124947i 0.899838 0.436224i \(-0.143684\pi\)
−0.827700 + 0.561171i \(0.810351\pi\)
\(264\) −47.9528 + 130.376i −0.181639 + 0.493848i
\(265\) −54.1457 31.2611i −0.204324 0.117966i
\(266\) 54.9740 + 281.083i 0.206669 + 1.05670i
\(267\) −69.7077 + 58.0912i −0.261078 + 0.217570i
\(268\) −44.2782 76.6921i −0.165217 0.286165i
\(269\) 25.3987i 0.0944190i −0.998885 0.0472095i \(-0.984967\pi\)
0.998885 0.0472095i \(-0.0150328\pi\)
\(270\) 25.9335 + 45.9892i 0.0960501 + 0.170331i
\(271\) 171.660i 0.633432i 0.948520 + 0.316716i \(0.102580\pi\)
−0.948520 + 0.316716i \(0.897420\pi\)
\(272\) 5.78902 3.34229i 0.0212832 0.0122878i
\(273\) 384.768 + 61.8196i 1.40941 + 0.226445i
\(274\) −1.35184 + 2.34145i −0.00493372 + 0.00854545i
\(275\) 188.991 327.342i 0.687239 1.19033i
\(276\) 50.7784 138.058i 0.183980 0.500211i
\(277\) 95.0147 + 164.570i 0.343013 + 0.594117i 0.984991 0.172607i \(-0.0552191\pi\)
−0.641977 + 0.766724i \(0.721886\pi\)
\(278\) 355.156i 1.27754i
\(279\) −250.886 + 294.921i −0.899233 + 1.05706i
\(280\) 20.6405 17.9844i 0.0737160 0.0642299i
\(281\) −52.1486 90.3240i −0.185582 0.321438i 0.758190 0.652033i \(-0.226084\pi\)
−0.943773 + 0.330595i \(0.892750\pi\)
\(282\) 9.37696 + 54.2513i 0.0332516 + 0.192381i
\(283\) −131.374 75.8486i −0.464218 0.268016i 0.249598 0.968349i \(-0.419701\pi\)
−0.713816 + 0.700333i \(0.753035\pi\)
\(284\) −80.7195 + 139.810i −0.284224 + 0.492290i
\(285\) 118.259 20.4403i 0.414945 0.0717203i
\(286\) 372.085 214.823i 1.30100 0.751130i
\(287\) −59.7608 + 52.0705i −0.208226 + 0.181430i
\(288\) −38.7784 32.9884i −0.134647 0.114543i
\(289\) 286.207 0.990337
\(290\) −70.1125 + 40.4795i −0.241767 + 0.139584i
\(291\) −233.130 85.7462i −0.801135 0.294661i
\(292\) 137.561 + 79.4212i 0.471101 + 0.271990i
\(293\) −51.7663 29.8873i −0.176677 0.102004i 0.409054 0.912510i \(-0.365859\pi\)
−0.585730 + 0.810506i \(0.699192\pi\)
\(294\) −176.418 + 109.976i −0.600062 + 0.374067i
\(295\) −17.2750 29.9212i −0.0585593 0.101428i
\(296\) −52.5476 −0.177526
\(297\) −380.543 224.884i −1.28129 0.757184i
\(298\) −220.937 −0.741398
\(299\) −394.010 + 227.482i −1.31776 + 0.760808i
\(300\) 88.6851 + 106.419i 0.295617 + 0.354732i
\(301\) −397.954 + 77.8315i −1.32211 + 0.258576i
\(302\) −19.1451 + 33.1603i −0.0633944 + 0.109802i
\(303\) −369.399 135.866i −1.21914 0.448404i
\(304\) −100.222 + 57.8633i −0.329678 + 0.190340i
\(305\) 22.2589 0.0729798
\(306\) 7.13952 + 20.0362i 0.0233318 + 0.0654778i
\(307\) 474.281i 1.54489i 0.635082 + 0.772445i \(0.280967\pi\)
−0.635082 + 0.772445i \(0.719033\pi\)
\(308\) −74.3692 + 216.797i −0.241458 + 0.703886i
\(309\) 8.73810 + 50.5552i 0.0282786 + 0.163609i
\(310\) 42.0638 72.8566i 0.135690 0.235021i
\(311\) −90.5502 52.2792i −0.291158 0.168100i 0.347306 0.937752i \(-0.387097\pi\)
−0.638464 + 0.769652i \(0.720430\pi\)
\(312\) 26.8188 + 155.163i 0.0859576 + 0.497317i
\(313\) 249.488 144.042i 0.797087 0.460198i −0.0453645 0.998970i \(-0.514445\pi\)
0.842452 + 0.538772i \(0.181112\pi\)
\(314\) 211.814i 0.674568i
\(315\) 44.4462 + 74.9192i 0.141099 + 0.237839i
\(316\) −78.4622 −0.248298
\(317\) 61.7440 + 106.944i 0.194776 + 0.337362i 0.946827 0.321743i \(-0.104269\pi\)
−0.752051 + 0.659105i \(0.770935\pi\)
\(318\) −66.2219 + 180.047i −0.208245 + 0.566185i
\(319\) 338.898 586.989i 1.06238 1.84009i
\(320\) 9.57974 + 5.53087i 0.0299367 + 0.0172840i
\(321\) 38.3571 + 46.0273i 0.119492 + 0.143387i
\(322\) 78.7514 229.572i 0.244570 0.712955i
\(323\) 48.3490 0.149687
\(324\) 125.496 102.444i 0.387334 0.316184i
\(325\) 428.452i 1.31831i
\(326\) −74.7408 129.455i −0.229266 0.397101i
\(327\) −186.563 223.871i −0.570530 0.684619i
\(328\) −27.7364 16.0136i −0.0845622 0.0488220i
\(329\) 17.4355 + 89.1483i 0.0529956 + 0.270968i
\(330\) 90.1365 + 33.1525i 0.273141 + 0.100462i
\(331\) −200.090 346.566i −0.604502 1.04703i −0.992130 0.125212i \(-0.960039\pi\)
0.387628 0.921816i \(-0.373294\pi\)
\(332\) 231.787i 0.698155i
\(333\) 30.1477 164.465i 0.0905337 0.493889i
\(334\) 366.570i 1.09751i
\(335\) −53.0217 + 30.6121i −0.158274 + 0.0913794i
\(336\) −65.1624 53.0081i −0.193936 0.157762i
\(337\) 172.186 298.235i 0.510937 0.884969i −0.488982 0.872294i \(-0.662632\pi\)
0.999920 0.0126757i \(-0.00403491\pi\)
\(338\) 124.006 214.785i 0.366883 0.635460i
\(339\) 234.876 40.5966i 0.692849 0.119754i
\(340\) −2.31072 4.00229i −0.00679624 0.0117714i
\(341\) 704.324i 2.06547i
\(342\) −123.603 346.876i −0.361411 1.01426i
\(343\) −287.015 + 187.807i −0.836779 + 0.547541i
\(344\) −81.9221 141.893i −0.238146 0.412481i
\(345\) −95.4477 35.1061i −0.276660 0.101757i
\(346\) −288.877 166.783i −0.834904 0.482032i
\(347\) −45.1558 + 78.2121i −0.130132 + 0.225395i −0.923727 0.383051i \(-0.874873\pi\)
0.793595 + 0.608446i \(0.208207\pi\)
\(348\) 159.030 + 190.831i 0.456983 + 0.548366i
\(349\) −128.101 + 73.9590i −0.367051 + 0.211917i −0.672169 0.740397i \(-0.734637\pi\)
0.305118 + 0.952314i \(0.401304\pi\)
\(350\) 150.148 + 172.324i 0.428995 + 0.492353i
\(351\) −501.020 5.08215i −1.42741 0.0144791i
\(352\) −92.6099 −0.263096
\(353\) 304.978 176.079i 0.863960 0.498808i −0.00137625 0.999999i \(-0.500438\pi\)
0.865336 + 0.501191i \(0.167105\pi\)
\(354\) −81.4390 + 67.8676i −0.230054 + 0.191716i
\(355\) 96.6591 + 55.8061i 0.272279 + 0.157200i
\(356\) −52.3888 30.2467i −0.147160 0.0849626i
\(357\) 12.5036 + 32.7911i 0.0350242 + 0.0918517i
\(358\) 168.307 + 291.516i 0.470131 + 0.814290i
\(359\) 122.724 0.341850 0.170925 0.985284i \(-0.445324\pi\)
0.170925 + 0.985284i \(0.445324\pi\)
\(360\) −22.8068 + 26.8098i −0.0633522 + 0.0744716i
\(361\) −476.040 −1.31867
\(362\) 200.615 115.825i 0.554185 0.319959i
\(363\) −434.612 + 75.1195i −1.19728 + 0.206941i
\(364\) 49.8669 + 254.971i 0.136997 + 0.700469i
\(365\) 54.9085 95.1043i 0.150434 0.260560i
\(366\) −11.6323 67.2998i −0.0317822 0.183879i
\(367\) 43.4804 25.1034i 0.118475 0.0684017i −0.439591 0.898198i \(-0.644877\pi\)
0.558067 + 0.829796i \(0.311543\pi\)
\(368\) 98.0669 0.266486
\(369\) 66.0329 77.6229i 0.178951 0.210360i
\(370\) 36.3292i 0.0981870i
\(371\) −102.703 + 299.392i −0.276826 + 0.806988i
\(372\) −242.265 89.1059i −0.651249 0.239532i
\(373\) −264.093 + 457.423i −0.708025 + 1.22634i 0.257564 + 0.966261i \(0.417080\pi\)
−0.965589 + 0.260074i \(0.916253\pi\)
\(374\) 33.5076 + 19.3456i 0.0895924 + 0.0517262i
\(375\) 153.241 127.704i 0.408642 0.340543i
\(376\) −31.7865 + 18.3519i −0.0845384 + 0.0488083i
\(377\) 768.299i 2.03793i
\(378\) 203.292 173.535i 0.537808 0.459088i
\(379\) 122.654 0.323624 0.161812 0.986822i \(-0.448266\pi\)
0.161812 + 0.986822i \(0.448266\pi\)
\(380\) 40.0043 + 69.2894i 0.105274 + 0.182341i
\(381\) 132.784 + 159.336i 0.348514 + 0.418206i
\(382\) 179.263 310.493i 0.469276 0.812809i
\(383\) 205.357 + 118.563i 0.536180 + 0.309563i 0.743529 0.668703i \(-0.233150\pi\)
−0.207350 + 0.978267i \(0.566484\pi\)
\(384\) 11.7163 31.8548i 0.0305112 0.0829552i
\(385\) 149.884 + 51.4158i 0.389310 + 0.133547i
\(386\) 44.0261 0.114057
\(387\) 491.103 174.995i 1.26900 0.452184i
\(388\) 165.599i 0.426803i
\(389\) 86.2568 + 149.401i 0.221740 + 0.384065i 0.955336 0.295520i \(-0.0954931\pi\)
−0.733596 + 0.679585i \(0.762160\pi\)
\(390\) 107.273 18.5414i 0.275059 0.0475420i
\(391\) −35.4820 20.4855i −0.0907468 0.0523927i
\(392\) −109.409 85.0739i −0.279106 0.217025i
\(393\) 60.1667 + 348.101i 0.153096 + 0.885752i
\(394\) 139.727 + 242.015i 0.354637 + 0.614250i
\(395\) 54.2455i 0.137330i
\(396\) 53.1324 289.853i 0.134173 0.731953i
\(397\) 188.846i 0.475683i 0.971304 + 0.237842i \(0.0764400\pi\)
−0.971304 + 0.237842i \(0.923560\pi\)
\(398\) 197.826 114.215i 0.497051 0.286972i
\(399\) −216.468 567.694i −0.542527 1.42279i
\(400\) −46.1762 + 79.9795i −0.115440 + 0.199949i
\(401\) −32.5064 + 56.3028i −0.0810634 + 0.140406i −0.903707 0.428151i \(-0.859165\pi\)
0.822644 + 0.568557i \(0.192498\pi\)
\(402\) 120.265 + 144.314i 0.299166 + 0.358990i
\(403\) 399.185 + 691.408i 0.990533 + 1.71565i
\(404\) 262.395i 0.649493i
\(405\) −70.8253 86.7628i −0.174877 0.214229i
\(406\) 269.246 + 309.010i 0.663167 + 0.761109i
\(407\) −152.076 263.403i −0.373651 0.647182i
\(408\) −10.8934 + 9.07805i −0.0266995 + 0.0222501i
\(409\) −380.954 219.944i −0.931427 0.537760i −0.0441644 0.999024i \(-0.514063\pi\)
−0.887263 + 0.461265i \(0.847396\pi\)
\(410\) −11.0712 + 19.1758i −0.0270028 + 0.0467702i
\(411\) 1.97982 5.38282i 0.00481708 0.0130969i
\(412\) −29.6208 + 17.1016i −0.0718952 + 0.0415087i
\(413\) −131.873 + 114.903i −0.319305 + 0.278216i
\(414\) −56.2632 + 306.933i −0.135901 + 0.741384i
\(415\) 160.248 0.386140
\(416\) −90.9116 + 52.4878i −0.218537 + 0.126173i
\(417\) 128.317 + 742.391i 0.307715 + 1.78031i
\(418\) −580.098 334.920i −1.38779 0.801243i
\(419\) 530.898 + 306.514i 1.26706 + 0.731537i 0.974430 0.224689i \(-0.0721367\pi\)
0.292629 + 0.956226i \(0.405470\pi\)
\(420\) −36.6476 + 45.0506i −0.0872562 + 0.107263i
\(421\) 157.202 + 272.282i 0.373402 + 0.646750i 0.990086 0.140460i \(-0.0448580\pi\)
−0.616685 + 0.787210i \(0.711525\pi\)
\(422\) 20.3798 0.0482934
\(423\) −39.2018 110.015i −0.0926756 0.260083i
\(424\) −127.893 −0.301633
\(425\) 33.4144 19.2918i 0.0786221 0.0453925i
\(426\) 118.217 321.413i 0.277505 0.754491i
\(427\) −21.6291 110.590i −0.0506536 0.258993i
\(428\) −19.9716 + 34.5918i −0.0466626 + 0.0808220i
\(429\) −700.163 + 583.484i −1.63208 + 1.36010i
\(430\) −98.0991 + 56.6376i −0.228138 + 0.131715i
\(431\) 545.839 1.26645 0.633224 0.773968i \(-0.281731\pi\)
0.633224 + 0.773968i \(0.281731\pi\)
\(432\) 92.9782 + 54.9459i 0.215227 + 0.127190i
\(433\) 243.306i 0.561908i 0.959721 + 0.280954i \(0.0906509\pi\)
−0.959721 + 0.280954i \(0.909349\pi\)
\(434\) −402.852 138.193i −0.928231 0.318417i
\(435\) 131.933 109.947i 0.303294 0.252751i
\(436\) 97.1390 168.250i 0.222796 0.385894i
\(437\) 614.280 + 354.655i 1.40568 + 0.811567i
\(438\) −316.243 116.315i −0.722016 0.265560i
\(439\) 680.738 393.024i 1.55066 0.895271i 0.552567 0.833469i \(-0.313648\pi\)
0.998088 0.0618024i \(-0.0196849\pi\)
\(440\) 64.0266i 0.145515i
\(441\) 329.038 293.624i 0.746117 0.665815i
\(442\) 43.8574 0.0992250
\(443\) −272.893 472.665i −0.616011 1.06696i −0.990206 0.139613i \(-0.955414\pi\)
0.374195 0.927350i \(-0.377919\pi\)
\(444\) 109.842 18.9853i 0.247391 0.0427597i
\(445\) −20.9113 + 36.2194i −0.0469917 + 0.0813920i
\(446\) −229.784 132.666i −0.515211 0.297457i
\(447\) 461.830 79.8239i 1.03318 0.178577i
\(448\) 18.1707 52.9701i 0.0405595 0.118237i
\(449\) 789.261 1.75782 0.878910 0.476987i \(-0.158271\pi\)
0.878910 + 0.476987i \(0.158271\pi\)
\(450\) −223.830 190.410i −0.497400 0.423133i
\(451\) 185.378i 0.411037i
\(452\) 79.4528 + 137.616i 0.175780 + 0.304461i
\(453\) 28.0388 76.2329i 0.0618957 0.168284i
\(454\) 338.209 + 195.265i 0.744954 + 0.430099i
\(455\) 176.276 34.4759i 0.387420 0.0757713i
\(456\) 188.591 157.163i 0.413577 0.344656i
\(457\) 44.1193 + 76.4168i 0.0965411 + 0.167214i 0.910251 0.414057i \(-0.135889\pi\)
−0.813710 + 0.581272i \(0.802555\pi\)
\(458\) 510.851i 1.11539i
\(459\) −22.1630 39.3027i −0.0482853 0.0856268i
\(460\) 67.7994i 0.147390i
\(461\) −24.0627 + 13.8926i −0.0521967 + 0.0301358i −0.525871 0.850564i \(-0.676261\pi\)
0.473675 + 0.880700i \(0.342927\pi\)
\(462\) 77.1277 480.046i 0.166943 1.03906i
\(463\) −233.432 + 404.317i −0.504174 + 0.873254i 0.495815 + 0.868428i \(0.334870\pi\)
−0.999988 + 0.00482604i \(0.998464\pi\)
\(464\) −82.8031 + 143.419i −0.178455 + 0.309093i
\(465\) −61.6041 + 167.492i −0.132482 + 0.360197i
\(466\) 221.738 + 384.062i 0.475833 + 0.824167i
\(467\) 163.433i 0.349963i −0.984572 0.174981i \(-0.944014\pi\)
0.984572 0.174981i \(-0.0559865\pi\)
\(468\) −112.120 314.651i −0.239573 0.672332i
\(469\) 203.614 + 233.685i 0.434145 + 0.498263i
\(470\) 12.6878 + 21.9758i 0.0269952 + 0.0467571i
\(471\) −76.5281 442.761i −0.162480 0.940045i
\(472\) −61.2055 35.3370i −0.129673 0.0748665i
\(473\) 474.175 821.296i 1.00248 1.73635i
\(474\) 164.012 28.3482i 0.346016 0.0598064i
\(475\) −578.485 + 333.988i −1.21786 + 0.703133i
\(476\) −17.6395 + 15.3696i −0.0370578 + 0.0322890i
\(477\) 73.3749 400.282i 0.153826 0.839166i
\(478\) 567.635 1.18752
\(479\) 194.691 112.405i 0.406454 0.234666i −0.282811 0.959176i \(-0.591267\pi\)
0.689265 + 0.724509i \(0.257934\pi\)
\(480\) −22.0231 8.10017i −0.0458814 0.0168754i
\(481\) −298.574 172.382i −0.620736 0.358382i
\(482\) −121.791 70.3160i −0.252678 0.145884i
\(483\) −81.6724 + 508.332i −0.169094 + 1.05245i
\(484\) −147.019 254.644i −0.303758 0.526123i
\(485\) −114.489 −0.236059
\(486\) −225.315 + 259.482i −0.463611 + 0.533914i
\(487\) −350.781 −0.720290 −0.360145 0.932896i \(-0.617273\pi\)
−0.360145 + 0.932896i \(0.617273\pi\)
\(488\) 39.4317 22.7659i 0.0808026 0.0466514i
\(489\) 203.004 + 243.599i 0.415142 + 0.498158i
\(490\) −58.8165 + 75.6412i −0.120034 + 0.154370i
\(491\) −367.144 + 635.912i −0.747748 + 1.29514i 0.201152 + 0.979560i \(0.435531\pi\)
−0.948900 + 0.315577i \(0.897802\pi\)
\(492\) 63.7638 + 23.4526i 0.129601 + 0.0476679i
\(493\) 59.9186 34.5940i 0.121539 0.0701704i
\(494\) −759.280 −1.53700
\(495\) −200.393 36.7335i −0.404833 0.0742091i
\(496\) 172.088i 0.346951i
\(497\) 183.341 534.465i 0.368895 1.07538i
\(498\) −83.7443 484.511i −0.168161 0.972914i
\(499\) −467.575 + 809.863i −0.937024 + 1.62297i −0.166039 + 0.986119i \(0.553098\pi\)
−0.770985 + 0.636854i \(0.780236\pi\)
\(500\) 115.168 + 66.4922i 0.230336 + 0.132984i
\(501\) −132.441 766.250i −0.264353 1.52944i
\(502\) −551.782 + 318.572i −1.09917 + 0.634605i
\(503\) 670.586i 1.33317i 0.745427 + 0.666587i \(0.232245\pi\)
−0.745427 + 0.666587i \(0.767755\pi\)
\(504\) 155.362 + 87.2612i 0.308259 + 0.173137i
\(505\) −181.409 −0.359226
\(506\) 283.812 + 491.576i 0.560892 + 0.971494i
\(507\) −181.612 + 493.775i −0.358210 + 0.973915i
\(508\) −69.1372 + 119.749i −0.136097 + 0.235727i
\(509\) −6.41553 3.70401i −0.0126042 0.00727703i 0.493685 0.869641i \(-0.335650\pi\)
−0.506289 + 0.862364i \(0.668983\pi\)
\(510\) 6.27618 + 7.53123i 0.0123062 + 0.0147671i
\(511\) −525.868 180.392i −1.02910 0.353017i
\(512\) 22.6274 0.0441942
\(513\) 383.695 + 680.426i 0.747944 + 1.32637i
\(514\) 520.271i 1.01220i
\(515\) 11.8233 + 20.4786i 0.0229579 + 0.0397643i
\(516\) 222.510 + 267.005i 0.431221 + 0.517452i
\(517\) −183.984 106.223i −0.355868 0.205461i
\(518\) 180.497 35.3014i 0.348449 0.0681494i
\(519\) 664.105 + 244.260i 1.27959 + 0.470637i
\(520\) 36.2879 + 62.8525i 0.0697844 + 0.120870i
\(521\) 855.964i 1.64292i 0.570263 + 0.821462i \(0.306841\pi\)
−0.570263 + 0.821462i \(0.693159\pi\)
\(522\) −401.372 341.442i −0.768911 0.654104i
\(523\) 26.4383i 0.0505512i −0.999681 0.0252756i \(-0.991954\pi\)
0.999681 0.0252756i \(-0.00804633\pi\)
\(524\) −203.956 + 117.754i −0.389229 + 0.224721i
\(525\) −376.119 305.964i −0.716417 0.582789i
\(526\) 26.8310 46.4727i 0.0510096 0.0883512i
\(527\) −35.9480 + 62.2638i −0.0682125 + 0.118148i
\(528\) 193.585 33.4598i 0.366638 0.0633708i
\(529\) −36.0351 62.4147i −0.0681194 0.117986i
\(530\) 88.4196i 0.166829i
\(531\) 145.714 171.289i 0.274414 0.322578i
\(532\) 305.383 266.085i 0.574028 0.500160i
\(533\) −105.065 181.978i −0.197120 0.341422i
\(534\) 120.438 + 44.2975i 0.225539 + 0.0829541i
\(535\) 23.9153 + 13.8075i 0.0447016 + 0.0258085i
\(536\) −62.6188 + 108.459i −0.116826 + 0.202349i
\(537\) −457.140 548.554i −0.851285 1.02152i
\(538\) −31.1069 + 17.9596i −0.0578196 + 0.0333822i
\(539\) 109.809 794.641i 0.203727 1.47429i
\(540\) 37.9873 64.2813i 0.0703469 0.119039i
\(541\) −607.504 −1.12293 −0.561464 0.827501i \(-0.689762\pi\)
−0.561464 + 0.827501i \(0.689762\pi\)
\(542\) 210.240 121.382i 0.387896 0.223952i
\(543\) −377.503 + 314.594i −0.695217 + 0.579362i
\(544\) −8.18691 4.72672i −0.0150495 0.00868882i
\(545\) −116.321 67.1579i −0.213433 0.123225i
\(546\) −196.359 514.955i −0.359631 0.943142i
\(547\) 123.324 + 213.603i 0.225455 + 0.390499i 0.956456 0.291877i \(-0.0942799\pi\)
−0.731001 + 0.682376i \(0.760947\pi\)
\(548\) 3.82358 0.00697733
\(549\) 48.6305 + 136.476i 0.0885802 + 0.248590i
\(550\) −534.547 −0.971903
\(551\) −1037.34 + 598.907i −1.88265 + 1.08695i
\(552\) −204.992 + 35.4314i −0.371362 + 0.0641873i
\(553\) 269.512 52.7108i 0.487363 0.0953179i
\(554\) 134.371 232.738i 0.242547 0.420104i
\(555\) −13.1257 75.9399i −0.0236498 0.136829i
\(556\) −434.975 + 251.133i −0.782329 + 0.451678i
\(557\) −947.646 −1.70134 −0.850670 0.525700i \(-0.823803\pi\)
−0.850670 + 0.525700i \(0.823803\pi\)
\(558\) 538.606 + 98.7307i 0.965244 + 0.176937i
\(559\) 1074.98i 1.92304i
\(560\) −36.6213 12.5624i −0.0653952 0.0224329i
\(561\) −77.0312 28.3324i −0.137311 0.0505034i
\(562\) −73.7493 + 127.737i −0.131226 + 0.227291i
\(563\) −157.042 90.6681i −0.278937 0.161045i 0.354005 0.935244i \(-0.384820\pi\)
−0.632942 + 0.774199i \(0.718153\pi\)
\(564\) 59.8136 49.8459i 0.106052 0.0883792i
\(565\) 95.1421 54.9303i 0.168393 0.0972218i
\(566\) 214.532i 0.379032i
\(567\) −362.248 + 436.194i −0.638885 + 0.769302i
\(568\) 228.309 0.401953
\(569\) 289.027 + 500.610i 0.507957 + 0.879807i 0.999958 + 0.00921190i \(0.00293228\pi\)
−0.492001 + 0.870595i \(0.663734\pi\)
\(570\) −108.656 130.384i −0.190625 0.228744i
\(571\) 376.525 652.160i 0.659413 1.14214i −0.321355 0.946959i \(-0.604138\pi\)
0.980768 0.195178i \(-0.0625284\pi\)
\(572\) −526.207 303.806i −0.919943 0.531129i
\(573\) −262.538 + 713.799i −0.458182 + 1.24572i
\(574\) 106.030 + 36.3723i 0.184722 + 0.0633663i
\(575\) 566.045 0.984426
\(576\) −12.9819 + 70.8200i −0.0225379 + 0.122951i
\(577\) 11.7220i 0.0203154i 0.999948 + 0.0101577i \(0.00323335\pi\)
−0.999948 + 0.0101577i \(0.996767\pi\)
\(578\) −202.379 350.531i −0.350137 0.606455i
\(579\) −92.0290 + 15.9065i −0.158945 + 0.0274725i
\(580\) 99.1540 + 57.2466i 0.170955 + 0.0987010i
\(581\) −155.714 796.172i −0.268011 1.37035i
\(582\) 59.8307 + 346.157i 0.102802 + 0.594771i
\(583\) −370.129 641.082i −0.634869 1.09963i
\(584\) 224.637i 0.384652i
\(585\) −217.537 + 77.5151i −0.371858 + 0.132504i
\(586\) 84.5340i 0.144256i
\(587\) 536.412 309.697i 0.913819 0.527594i 0.0321610 0.999483i \(-0.489761\pi\)
0.881658 + 0.471889i \(0.156428\pi\)
\(588\) 259.439 + 138.303i 0.441222 + 0.235209i
\(589\) 622.348 1077.94i 1.05662 1.83012i
\(590\) −24.4305 + 42.3149i −0.0414077 + 0.0717202i
\(591\) −379.515 455.406i −0.642157 0.770569i
\(592\) 37.1567 + 64.3574i 0.0627648 + 0.108712i
\(593\) 242.416i 0.408797i 0.978888 + 0.204398i \(0.0655238\pi\)
−0.978888 + 0.204398i \(0.934476\pi\)
\(594\) −6.34061 + 625.085i −0.0106744 + 1.05233i
\(595\) 10.6259 + 12.1952i 0.0178586 + 0.0204961i
\(596\) 156.226 + 270.591i 0.262124 + 0.454012i
\(597\) −372.256 + 310.221i −0.623544 + 0.519633i
\(598\) 557.214 + 321.708i 0.931796 + 0.537972i
\(599\) 49.1263 85.0892i 0.0820139 0.142052i −0.822101 0.569342i \(-0.807198\pi\)
0.904115 + 0.427290i \(0.140531\pi\)
\(600\) 67.6269 183.867i 0.112711 0.306444i
\(601\) 128.939 74.4429i 0.214541 0.123865i −0.388879 0.921289i \(-0.627138\pi\)
0.603420 + 0.797424i \(0.293804\pi\)
\(602\) 376.720 + 432.357i 0.625781 + 0.718201i
\(603\) −303.533 258.212i −0.503371 0.428212i
\(604\) 54.1505 0.0896532
\(605\) −176.050 + 101.643i −0.290992 + 0.168004i
\(606\) 94.8029 + 548.492i 0.156440 + 0.905102i
\(607\) 1034.74 + 597.407i 1.70468 + 0.984196i 0.940879 + 0.338742i \(0.110002\pi\)
0.763799 + 0.645454i \(0.223332\pi\)
\(608\) 141.736 + 81.8311i 0.233118 + 0.134591i
\(609\) −674.456 548.654i −1.10748 0.900910i
\(610\) −15.7394 27.2614i −0.0258023 0.0446908i
\(611\) −240.813 −0.394129
\(612\) 19.4908 22.9118i 0.0318478 0.0374376i
\(613\) 333.307 0.543731 0.271866 0.962335i \(-0.412359\pi\)
0.271866 + 0.962335i \(0.412359\pi\)
\(614\) 580.874 335.368i 0.946048 0.546201i
\(615\) 16.2141 44.0837i 0.0263645 0.0716807i
\(616\) 318.108 62.2152i 0.516409 0.100999i
\(617\) 180.741 313.053i 0.292935 0.507379i −0.681567 0.731756i \(-0.738701\pi\)
0.974502 + 0.224377i \(0.0720346\pi\)
\(618\) 55.7384 46.4498i 0.0901916 0.0751616i
\(619\) 161.200 93.0688i 0.260420 0.150353i −0.364106 0.931357i \(-0.618626\pi\)
0.624526 + 0.781004i \(0.285292\pi\)
\(620\) −118.974 −0.191894
\(621\) 6.71423 661.918i 0.0108120 1.06589i
\(622\) 147.868i 0.237730i
\(623\) 200.271 + 68.7003i 0.321462 + 0.110273i
\(624\) 171.071 142.563i 0.274152 0.228466i
\(625\) −242.631 + 420.250i −0.388210 + 0.672399i
\(626\) −352.830 203.706i −0.563626 0.325409i
\(627\) 1333.60 + 490.503i 2.12695 + 0.782302i
\(628\) 259.418 149.775i 0.413087 0.238496i
\(629\) 31.0472i 0.0493596i
\(630\) 60.3288 107.411i 0.0957599 0.170494i
\(631\) 72.1705 0.114375 0.0571874 0.998363i \(-0.481787\pi\)
0.0571874 + 0.998363i \(0.481787\pi\)
\(632\) 55.4812 + 96.0962i 0.0877866 + 0.152051i
\(633\) −42.6004 + 7.36318i −0.0672992 + 0.0116322i
\(634\) 87.3192 151.241i 0.137727 0.238551i
\(635\) 82.7896 + 47.7986i 0.130377 + 0.0752734i
\(636\) 267.337 46.2073i 0.420342 0.0726530i
\(637\) −342.578 842.304i −0.537799 1.32230i
\(638\) −958.548 −1.50243
\(639\) −130.986 + 714.570i −0.204986 + 1.11826i
\(640\) 15.6437i 0.0244432i
\(641\) 441.291 + 764.339i 0.688442 + 1.19242i 0.972342 + 0.233563i \(0.0750384\pi\)
−0.283900 + 0.958854i \(0.591628\pi\)
\(642\) 29.2492 79.5239i 0.0455595 0.123869i
\(643\) −889.475 513.539i −1.38332 0.798660i −0.390769 0.920489i \(-0.627791\pi\)
−0.992551 + 0.121828i \(0.961124\pi\)
\(644\) −336.852 + 65.8812i −0.523063 + 0.102300i
\(645\) 184.596 153.834i 0.286196 0.238502i
\(646\) −34.1879 59.2152i −0.0529225 0.0916644i
\(647\) 1016.79i 1.57154i −0.618516 0.785772i \(-0.712266\pi\)
0.618516 0.785772i \(-0.287734\pi\)
\(648\) −214.207 81.2620i −0.330566 0.125404i
\(649\) 409.069i 0.630307i
\(650\) −524.744 + 302.961i −0.807298 + 0.466094i
\(651\) 892.021 + 143.319i 1.37023 + 0.220152i
\(652\) −105.699 + 183.077i −0.162116 + 0.280793i
\(653\) −382.857 + 663.127i −0.586304 + 1.01551i 0.408407 + 0.912800i \(0.366084\pi\)
−0.994711 + 0.102709i \(0.967249\pi\)
\(654\) −142.264 + 386.793i −0.217529 + 0.591427i
\(655\) 81.4102 + 141.007i 0.124290 + 0.215277i
\(656\) 45.2934i 0.0690448i
\(657\) 703.076 + 128.879i 1.07013 + 0.196163i
\(658\) 96.8552 84.3915i 0.147196 0.128255i
\(659\) −454.791 787.721i −0.690123 1.19533i −0.971797 0.235818i \(-0.924223\pi\)
0.281674 0.959510i \(-0.409110\pi\)
\(660\) −23.1327 133.837i −0.0350495 0.202783i
\(661\) 623.505 + 359.981i 0.943275 + 0.544600i 0.890985 0.454032i \(-0.150015\pi\)
0.0522895 + 0.998632i \(0.483348\pi\)
\(662\) −282.970 + 490.119i −0.427447 + 0.740360i
\(663\) −91.6763 + 15.8456i −0.138275 + 0.0238998i
\(664\) 283.880 163.898i 0.427531 0.246835i
\(665\) −183.960 211.129i −0.276632 0.317487i
\(666\) −222.745 + 79.3711i −0.334452 + 0.119176i
\(667\) 1015.03 1.52179
\(668\) 448.954 259.204i 0.672087 0.388030i
\(669\) 528.256 + 194.295i 0.789621 + 0.290426i
\(670\) 74.9840 + 43.2921i 0.111916 + 0.0646150i
\(671\) 228.235 + 131.772i 0.340142 + 0.196381i
\(672\) −18.8446 + 117.290i −0.0280426 + 0.174538i
\(673\) −454.142 786.597i −0.674803 1.16879i −0.976527 0.215397i \(-0.930895\pi\)
0.301724 0.953395i \(-0.402438\pi\)
\(674\) −487.015 −0.722574
\(675\) 536.672 + 317.149i 0.795070 + 0.469851i
\(676\) −350.743 −0.518851
\(677\) 127.233 73.4577i 0.187936 0.108505i −0.403080 0.915165i \(-0.632060\pi\)
0.591016 + 0.806660i \(0.298727\pi\)
\(678\) −215.803 258.957i −0.318293 0.381942i
\(679\) 111.249 + 568.821i 0.163843 + 0.837734i
\(680\) −3.26786 + 5.66009i −0.00480567 + 0.00832366i
\(681\) −777.516 285.974i −1.14173 0.419932i
\(682\) 862.618 498.033i 1.26484 0.730253i
\(683\) 532.770 0.780044 0.390022 0.920805i \(-0.372467\pi\)
0.390022 + 0.920805i \(0.372467\pi\)
\(684\) −337.434 + 396.660i −0.493325 + 0.579912i
\(685\) 2.64346i 0.00385907i
\(686\) 432.966 + 218.721i 0.631145 + 0.318835i
\(687\) 184.569 + 1067.84i 0.268660 + 1.55436i
\(688\) −115.855 + 200.667i −0.168394 + 0.291668i
\(689\) −726.682 419.550i −1.05469 0.608926i
\(690\) 24.4958 + 141.723i 0.0355011 + 0.205395i
\(691\) 33.7657 19.4946i 0.0488650 0.0282122i −0.475368 0.879787i \(-0.657685\pi\)
0.524233 + 0.851575i \(0.324352\pi\)
\(692\) 471.734i 0.681696i
\(693\) 12.2175 + 1031.32i 0.0176298 + 1.48819i
\(694\) 127.720 0.184034
\(695\) 173.623 + 300.724i 0.249817 + 0.432696i
\(696\) 121.268 329.709i 0.174236 0.473720i
\(697\) 9.46148 16.3878i 0.0135746 0.0235119i
\(698\) 181.162 + 104.594i 0.259544 + 0.149848i
\(699\) −602.266 722.701i −0.861610 1.03391i
\(700\) 104.881 305.744i 0.149831 0.436778i
\(701\) 508.129 0.724863 0.362432 0.932010i \(-0.381947\pi\)
0.362432 + 0.932010i \(0.381947\pi\)
\(702\) 348.050 + 617.215i 0.495798 + 0.879224i
\(703\) 537.503i 0.764584i
\(704\) 65.4851 + 113.424i 0.0930186 + 0.161113i
\(705\) −34.4614 41.3526i −0.0488814 0.0586562i
\(706\) −431.304 249.013i −0.610912 0.352710i
\(707\) 176.277 + 901.308i 0.249331 + 1.27483i
\(708\) 140.707 + 51.7524i 0.198738 + 0.0730967i
\(709\) −303.884 526.343i −0.428609 0.742373i 0.568140 0.822932i \(-0.307663\pi\)
−0.996750 + 0.0805582i \(0.974330\pi\)
\(710\) 157.844i 0.222315i
\(711\) −332.596 + 118.514i −0.467786 + 0.166687i
\(712\) 85.5506i 0.120155i
\(713\) −913.447 + 527.379i −1.28113 + 0.739662i
\(714\) 31.3193 38.5005i 0.0438646 0.0539223i
\(715\) −210.039 + 363.798i −0.293760 + 0.508808i
\(716\) 238.022 412.266i 0.332433 0.575790i
\(717\) −1186.54 + 205.085i −1.65487 + 0.286033i
\(718\) −86.7791 150.306i −0.120862 0.209340i
\(719\) 313.462i 0.435969i 0.975952 + 0.217985i \(0.0699483\pi\)
−0.975952 + 0.217985i \(0.930052\pi\)
\(720\) 48.9620 + 8.97512i 0.0680028 + 0.0124654i
\(721\) 90.2564 78.6419i 0.125182 0.109073i
\(722\) 336.611 + 583.028i 0.466221 + 0.807518i
\(723\) 279.988 + 102.981i 0.387258 + 0.142435i
\(724\) −283.712 163.801i −0.391868 0.226245i
\(725\) −477.941 + 827.819i −0.659229 + 1.14182i
\(726\) 399.319 + 479.171i 0.550026 + 0.660015i
\(727\) 631.488 364.589i 0.868621 0.501499i 0.00173131 0.999999i \(-0.499449\pi\)
0.866890 + 0.498500i \(0.166116\pi\)
\(728\) 277.013 241.366i 0.380512 0.331546i
\(729\) 377.232 623.809i 0.517465 0.855705i
\(730\) −155.305 −0.212746
\(731\) 83.8362 48.4029i 0.114687 0.0662146i
\(732\) −74.1998 + 61.8347i −0.101366 + 0.0844736i
\(733\) 299.131 + 172.703i 0.408092 + 0.235612i 0.689969 0.723838i \(-0.257624\pi\)
−0.281878 + 0.959450i \(0.590957\pi\)
\(734\) −61.4906 35.5016i −0.0837746 0.0483673i
\(735\) 95.6167 179.365i 0.130091 0.244034i
\(736\) −69.3438 120.107i −0.0942171 0.163189i
\(737\) −724.891 −0.983569
\(738\) −141.761 25.9858i −0.192088 0.0352111i
\(739\) −1005.34 −1.36041 −0.680203 0.733024i \(-0.738108\pi\)
−0.680203 + 0.733024i \(0.738108\pi\)
\(740\) 44.4940 25.6886i 0.0601270 0.0347144i
\(741\) 1587.14 274.326i 2.14189 0.370211i
\(742\) 439.301 85.9181i 0.592050 0.115793i
\(743\) 69.5157 120.405i 0.0935609 0.162052i −0.815446 0.578833i \(-0.803508\pi\)
0.909007 + 0.416781i \(0.136842\pi\)
\(744\) 62.1750 + 359.720i 0.0835685 + 0.483494i
\(745\) 187.075 108.008i 0.251108 0.144977i
\(746\) 746.969 1.00130
\(747\) 350.106 + 982.530i 0.468683 + 1.31530i
\(748\) 54.7176i 0.0731519i
\(749\) 45.3621 132.237i 0.0605636 0.176552i
\(750\) −264.762 97.3805i −0.353016 0.129841i
\(751\) −17.8265 + 30.8765i −0.0237371 + 0.0411138i −0.877650 0.479302i \(-0.840890\pi\)
0.853913 + 0.520416i \(0.174223\pi\)
\(752\) 44.9528 + 25.9535i 0.0597777 + 0.0345127i
\(753\) 1038.31 865.276i 1.37889 1.14911i
\(754\) −940.970 + 543.269i −1.24797 + 0.720516i
\(755\) 37.4374i 0.0495860i
\(756\) −356.285 126.272i −0.471277 0.167027i
\(757\) 719.557 0.950538 0.475269 0.879841i \(-0.342351\pi\)
0.475269 + 0.879841i \(0.342351\pi\)
\(758\) −86.7292 150.219i −0.114418 0.198179i
\(759\) −770.864 925.014i −1.01563 1.21873i
\(760\) 56.5746 97.9901i 0.0744402 0.128934i
\(761\) 161.236 + 93.0898i 0.211874 + 0.122326i 0.602182 0.798359i \(-0.294298\pi\)
−0.390308 + 0.920684i \(0.627631\pi\)
\(762\) 101.254 275.294i 0.132880 0.361278i
\(763\) −220.635 + 643.183i −0.289168 + 0.842965i
\(764\) −507.033 −0.663656
\(765\) −15.8403 13.4752i −0.0207063 0.0176146i
\(766\) 335.346i 0.437789i
\(767\) −231.845 401.568i −0.302275 0.523556i
\(768\) −47.2987 + 8.17524i −0.0615868 + 0.0106448i
\(769\) 53.0824 + 30.6472i 0.0690279 + 0.0398533i 0.534117 0.845411i \(-0.320644\pi\)
−0.465089 + 0.885264i \(0.653978\pi\)
\(770\) −43.0130 219.926i −0.0558610 0.285619i
\(771\) −187.973 1087.54i −0.243804 1.41055i
\(772\) −31.1312 53.9208i −0.0403254 0.0698456i
\(773\) 484.245i 0.626449i −0.949679 0.313225i \(-0.898591\pi\)
0.949679 0.313225i \(-0.101409\pi\)
\(774\) −561.586 477.735i −0.725564 0.617229i
\(775\) 993.295i 1.28167i
\(776\) −202.817 + 117.096i −0.261362 + 0.150898i
\(777\) −364.543 + 139.005i −0.469167 + 0.178899i
\(778\) 121.986 211.285i 0.156794 0.271575i
\(779\) −163.801 + 283.712i −0.210271 + 0.364201i
\(780\) −98.5620 118.271i −0.126362 0.151630i
\(781\) 660.741 + 1144.44i 0.846019 + 1.46535i
\(782\) 57.9418i 0.0740944i
\(783\) 962.360 + 568.711i 1.22907 + 0.726324i
\(784\) −26.8296 + 194.155i −0.0342214 + 0.247647i
\(785\) −103.548 179.351i −0.131909 0.228473i
\(786\) 383.790 319.833i 0.488283 0.406912i
\(787\) 588.211 + 339.604i 0.747409 + 0.431517i 0.824757 0.565487i \(-0.191312\pi\)
−0.0773479 + 0.997004i \(0.524645\pi\)
\(788\) 197.604 342.260i 0.250767 0.434340i
\(789\) −39.2951 + 106.837i −0.0498037 + 0.135408i
\(790\) 66.4369 38.3574i 0.0840973 0.0485536i
\(791\) −365.364 419.325i −0.461902 0.530120i
\(792\) −392.567 + 139.884i −0.495665 + 0.176621i
\(793\) 298.733 0.376712
\(794\) 231.289 133.535i 0.291295 0.168179i
\(795\) −31.9458 184.826i −0.0401834 0.232485i
\(796\) −279.768 161.524i −0.351468 0.202920i
\(797\) −1282.65 740.541i −1.60935 0.929160i −0.989515 0.144430i \(-0.953865\pi\)
−0.619838 0.784730i \(-0.712802\pi\)
\(798\) −542.214 + 666.539i −0.679466 + 0.835261i
\(799\) −10.8430 18.7807i −0.0135708 0.0235053i
\(800\) 130.606 0.163257
\(801\) −267.759 49.0823i −0.334281 0.0612763i
\(802\) 91.9421 0.114641
\(803\) 1126.03 650.113i 1.40228 0.809605i
\(804\) 91.7078 249.339i 0.114064 0.310123i
\(805\) 45.5475 + 232.886i 0.0565808 + 0.289299i
\(806\) 564.532 977.799i 0.700412 1.21315i
\(807\) 58.5349 48.7803i 0.0725340 0.0604465i
\(808\) −321.367 + 185.542i −0.397732 + 0.229631i
\(809\) −178.357 −0.220466 −0.110233 0.993906i \(-0.535160\pi\)
−0.110233 + 0.993906i \(0.535160\pi\)
\(810\) −56.1812 + 148.094i −0.0693595 + 0.182832i
\(811\) 1087.09i 1.34043i −0.742166 0.670216i \(-0.766201\pi\)
0.742166 0.670216i \(-0.233799\pi\)
\(812\) 188.073 548.261i 0.231617 0.675198i
\(813\) −395.615 + 329.687i −0.486611 + 0.405519i
\(814\) −215.068 + 372.508i −0.264211 + 0.457627i
\(815\) 126.572 + 73.0762i 0.155303 + 0.0896641i
\(816\) 18.8211 + 6.92247i 0.0230650 + 0.00848341i
\(817\) −1451.41 + 837.972i −1.77651 + 1.02567i
\(818\) 622.095i 0.760507i
\(819\) 596.506 + 1005.48i 0.728334 + 1.22769i
\(820\) 31.3139 0.0381877
\(821\) −363.136 628.969i −0.442309 0.766102i 0.555551 0.831482i \(-0.312507\pi\)
−0.997860 + 0.0653806i \(0.979174\pi\)
\(822\) −7.99252 + 1.38145i −0.00972326 + 0.00168060i
\(823\) 377.864 654.480i 0.459130 0.795237i −0.539785 0.841803i \(-0.681494\pi\)
0.998915 + 0.0465659i \(0.0148277\pi\)
\(824\) 41.8902 + 24.1853i 0.0508376 + 0.0293511i
\(825\) 1117.38 193.131i 1.35440 0.234098i
\(826\) 233.975 + 80.2620i 0.283263 + 0.0971695i
\(827\) −890.828 −1.07718 −0.538590 0.842568i \(-0.681043\pi\)
−0.538590 + 0.842568i \(0.681043\pi\)
\(828\) 415.699 148.126i 0.502052 0.178896i
\(829\) 1129.80i 1.36285i 0.731888 + 0.681425i \(0.238640\pi\)
−0.731888 + 0.681425i \(0.761360\pi\)
\(830\) −113.313 196.263i −0.136521 0.236462i
\(831\) −196.792 + 535.045i −0.236813 + 0.643857i
\(832\) 128.568 + 74.2290i 0.154529 + 0.0892175i
\(833\) 50.2650 64.6435i 0.0603421 0.0776032i
\(834\) 818.506 682.105i 0.981422 0.817872i
\(835\) −179.203 310.388i −0.214614 0.371723i
\(836\) 947.296i 1.13313i
\(837\) −1161.53 11.7821i −1.38773 0.0140766i
\(838\) 866.952i 1.03455i
\(839\) −819.430 + 473.098i −0.976674 + 0.563883i −0.901264 0.433269i \(-0.857360\pi\)
−0.0754099 + 0.997153i \(0.524027\pi\)
\(840\) 81.0892 + 13.0284i 0.0965348 + 0.0155100i
\(841\) −436.544 + 756.116i −0.519077 + 0.899068i
\(842\) 222.317 385.065i 0.264035 0.457322i
\(843\) 108.009 293.658i 0.128124 0.348349i
\(844\) −14.4107 24.9600i −0.0170743 0.0295735i
\(845\) 242.489i 0.286969i
\(846\) −107.021 + 125.805i −0.126502 + 0.148705i
\(847\) 676.067 + 775.914i 0.798190 + 0.916074i
\(848\) 90.4337 + 156.636i 0.106644 + 0.184712i
\(849\) −77.5100 448.442i −0.0912957 0.528200i
\(850\) −47.2551 27.2827i −0.0555942 0.0320973i
\(851\) 227.740 394.458i 0.267615 0.463523i
\(852\) −477.241 + 82.4877i −0.560142 + 0.0968165i
\(853\) −1435.45 + 828.756i −1.68282 + 0.971578i −0.723052 + 0.690793i \(0.757261\pi\)
−0.959771 + 0.280785i \(0.909405\pi\)
\(854\) −120.151 + 104.689i −0.140692 + 0.122587i
\(855\) 274.234 + 233.288i 0.320742 + 0.272851i
\(856\) 56.4882 0.0659909
\(857\) −62.7927 + 36.2534i −0.0732704 + 0.0423027i −0.536188 0.844099i \(-0.680136\pi\)
0.462917 + 0.886402i \(0.346803\pi\)
\(858\) 1209.71 + 444.936i 1.40992 + 0.518573i
\(859\) −1065.06 614.911i −1.23988 0.715845i −0.270811 0.962633i \(-0.587292\pi\)
−0.969070 + 0.246787i \(0.920625\pi\)
\(860\) 138.733 + 80.0976i 0.161318 + 0.0931368i
\(861\) −234.779 37.7214i −0.272682 0.0438111i
\(862\) −385.967 668.514i −0.447757 0.775538i
\(863\) 1190.72 1.37974 0.689871 0.723932i \(-0.257667\pi\)
0.689871 + 0.723932i \(0.257667\pi\)
\(864\) 1.54920 152.727i 0.00179306 0.176768i
\(865\) 326.137 0.377037
\(866\) 297.988 172.044i 0.344097 0.198665i
\(867\) 549.684 + 659.605i 0.634007 + 0.760790i
\(868\) 115.608 + 591.108i 0.133189 + 0.681000i
\(869\) −321.132 + 556.216i −0.369542 + 0.640065i
\(870\) −227.947 83.8399i −0.262008 0.0963677i
\(871\) −711.597 + 410.841i −0.816989 + 0.471689i
\(872\) −274.751 −0.315081
\(873\) −250.131 701.964i −0.286519 0.804082i
\(874\) 1003.12i 1.14773i
\(875\) −440.262 151.026i −0.503157 0.172601i
\(876\) 81.1609 + 469.565i 0.0926494 + 0.536033i
\(877\) −315.330 + 546.168i −0.359556 + 0.622769i −0.987887 0.155177i \(-0.950405\pi\)
0.628331 + 0.777946i \(0.283738\pi\)
\(878\) −962.708 555.820i −1.09648 0.633052i
\(879\) −30.5420 176.704i −0.0347463 0.201028i
\(880\) 78.4163 45.2737i 0.0891094 0.0514474i
\(881\) 1025.23i 1.16372i 0.813290 + 0.581858i \(0.197674\pi\)
−0.813290 + 0.581858i \(0.802326\pi\)
\(882\) −592.280 195.363i −0.671519 0.221500i
\(883\) −571.513 −0.647241 −0.323620 0.946187i \(-0.604900\pi\)
−0.323620 + 0.946187i \(0.604900\pi\)
\(884\) −31.0119 53.7142i −0.0350813 0.0607626i
\(885\) 35.7795 97.2787i 0.0404288 0.109919i
\(886\) −385.929 + 668.449i −0.435586 + 0.754457i
\(887\) 895.056 + 516.761i 1.00908 + 0.582594i 0.910923 0.412577i \(-0.135371\pi\)
0.0981594 + 0.995171i \(0.468705\pi\)
\(888\) −100.922 121.103i −0.113651 0.136378i
\(889\) 157.034 457.775i 0.176641 0.514933i
\(890\) 59.1461 0.0664563
\(891\) −212.588 1308.92i −0.238595 1.46905i
\(892\) 375.236i 0.420668i
\(893\) 187.720 + 325.140i 0.210212 + 0.364098i
\(894\) −424.327 509.179i −0.474638 0.569552i
\(895\) −285.023 164.558i −0.318462 0.183864i
\(896\) −77.7234 + 15.2011i −0.0867449 + 0.0169655i
\(897\) −1280.99 471.154i −1.42808 0.525255i
\(898\) −558.092 966.644i −0.621483 1.07644i
\(899\) 1781.18i 1.98129i
\(900\) −74.9316 + 408.775i −0.0832573 + 0.454194i
\(901\) 75.5640i 0.0838668i
\(902\) −227.040 + 131.082i −0.251708 + 0.145323i
\(903\) −943.677 767.660i −1.04505 0.850121i
\(904\) 112.363 194.619i 0.124296 0.215286i
\(905\) −113.245 + 196.147i −0.125133 + 0.216737i
\(906\) −113.192 + 19.5645i −0.124936 + 0.0215943i
\(907\) 465.692 + 806.603i 0.513442 + 0.889308i 0.999878 + 0.0155921i \(0.00496331\pi\)
−0.486436 + 0.873716i \(0.661703\pi\)
\(908\) 552.293i 0.608252i
\(909\) −396.338 1112.27i −0.436015 1.22362i
\(910\) −166.870 191.515i −0.183374 0.210456i
\(911\) 624.813 + 1082.21i 0.685854 + 1.18793i 0.973168 + 0.230097i \(0.0739044\pi\)
−0.287314 + 0.957836i \(0.592762\pi\)
\(912\) −325.839 119.845i −0.357280 0.131409i
\(913\) 1643.13 + 948.664i 1.79971 + 1.03906i
\(914\) 62.3941 108.070i 0.0682648 0.118238i
\(915\) 42.7499 + 51.2986i 0.0467212 + 0.0560641i
\(916\) −625.662 + 361.226i −0.683037 + 0.394351i
\(917\) 621.466 541.493i 0.677716 0.590505i
\(918\) −32.4642 + 54.9352i −0.0353641 + 0.0598423i
\(919\) 659.705 0.717851 0.358925 0.933366i \(-0.383143\pi\)
0.358925 + 0.933366i \(0.383143\pi\)
\(920\) −83.0370 + 47.9414i −0.0902576 + 0.0521102i
\(921\) −1093.05 + 910.896i −1.18681 + 0.989029i
\(922\) 34.0297 + 19.6471i 0.0369086 + 0.0213092i
\(923\) 1297.25 + 748.966i 1.40547 + 0.811448i
\(924\) −642.471 + 244.982i −0.695315 + 0.265132i
\(925\) 214.470 + 371.472i 0.231859 + 0.401592i
\(926\) 660.247 0.713009
\(927\) −99.7292 + 117.234i −0.107583 + 0.126465i
\(928\) 234.202 0.252373
\(929\) −1038.59 + 599.631i −1.11797 + 0.645458i −0.940881 0.338737i \(-0.890000\pi\)
−0.177085 + 0.984196i \(0.556667\pi\)
\(930\) 248.695 42.9852i 0.267414 0.0462206i
\(931\) −870.210 + 1119.14i −0.934705 + 1.20208i
\(932\) 313.585 543.145i 0.336465 0.582774i
\(933\) −53.4243 309.092i −0.0572608 0.331288i
\(934\) −200.163 + 115.564i −0.214307 + 0.123730i
\(935\) −37.8295 −0.0404593
\(936\) −306.087 + 359.811i −0.327016 + 0.384413i
\(937\) 651.336i 0.695130i 0.937656 + 0.347565i \(0.112991\pi\)
−0.937656 + 0.347565i \(0.887009\pi\)
\(938\) 142.228 414.615i 0.151629 0.442021i
\(939\) 811.128 + 298.336i 0.863821 + 0.317717i
\(940\) 17.9432 31.0785i 0.0190885 0.0330623i
\(941\) 1262.91 + 729.141i 1.34209 + 0.774858i 0.987114 0.160016i \(-0.0511546\pi\)
0.354979 + 0.934874i \(0.384488\pi\)
\(942\) −488.156 + 406.807i −0.518212 + 0.431854i
\(943\) 240.419 138.806i 0.254951 0.147196i
\(944\) 99.9481i 0.105877i
\(945\) −87.2994 + 246.321i −0.0923803 + 0.260657i
\(946\) −1341.17 −1.41773
\(947\) −817.000 1415.09i −0.862724 1.49428i −0.869289 0.494304i \(-0.835423\pi\)
0.00656479 0.999978i \(-0.497910\pi\)
\(948\) −150.693 180.827i −0.158959 0.190746i
\(949\) 736.919 1276.38i 0.776522 1.34498i
\(950\) 818.101 + 472.331i 0.861159 + 0.497190i
\(951\) −127.882 + 347.692i −0.134472 + 0.365606i
\(952\) 31.2968 + 10.7359i 0.0328748 + 0.0112773i
\(953\) −1002.99 −1.05245 −0.526226 0.850345i \(-0.676393\pi\)
−0.526226 + 0.850345i \(0.676393\pi\)
\(954\) −542.127 + 193.177i −0.568268 + 0.202491i
\(955\) 350.542i 0.367059i
\(956\) −401.379 695.208i −0.419852 0.727205i
\(957\) 2003.68 346.322i 2.09371 0.361882i
\(958\) −275.335 158.965i −0.287406 0.165934i
\(959\) −13.1337 + 2.56867i −0.0136952 + 0.00267849i
\(960\) 5.65202 + 32.7003i 0.00588752 + 0.0340629i
\(961\) 444.945 + 770.667i 0.463002 + 0.801943i
\(962\) 487.569i 0.506829i
\(963\) −32.4086 + 176.799i −0.0336537 + 0.183591i
\(964\) 198.884i 0.206311i
\(965\) −37.2786 + 21.5228i −0.0386307 + 0.0223034i
\(966\) 680.328 259.417i 0.704274 0.268548i
\(967\) −337.799 + 585.086i −0.349327 + 0.605052i −0.986130 0.165974i \(-0.946923\pi\)
0.636803 + 0.771027i \(0.280256\pi\)
\(968\) −207.916 + 360.121i −0.214789 + 0.372025i
\(969\) 92.8583 + 111.427i 0.0958290 + 0.114992i
\(970\) 80.9556 + 140.219i 0.0834594 + 0.144556i
\(971\) 103.021i 0.106098i 0.998592 + 0.0530489i \(0.0168939\pi\)
−0.998592 + 0.0530489i \(0.983106\pi\)
\(972\) 477.122 + 92.4718i 0.490866 + 0.0951356i
\(973\) 1325.39 1154.84i 1.36217 1.18688i
\(974\) 248.040 + 429.617i 0.254661 + 0.441086i
\(975\) 987.427 822.876i 1.01275 0.843976i
\(976\) −55.7648 32.1958i −0.0571361 0.0329875i
\(977\) 145.091 251.306i 0.148507 0.257222i −0.782169 0.623067i \(-0.785887\pi\)
0.930676 + 0.365845i \(0.119220\pi\)
\(978\) 154.801 420.879i 0.158283 0.430347i
\(979\) −428.836 + 247.588i −0.438034 + 0.252899i
\(980\) 134.231 + 18.5489i 0.136970 + 0.0189274i
\(981\) 157.631 859.923i 0.160684 0.876578i
\(982\) 1038.44 1.05747
\(983\) −619.095 + 357.435i −0.629802 + 0.363616i −0.780675 0.624937i \(-0.785125\pi\)
0.150873 + 0.988553i \(0.451791\pi\)
\(984\) −16.3644 94.6779i −0.0166305 0.0962174i
\(985\) −236.624 136.615i −0.240228 0.138696i
\(986\) −84.7377 48.9233i −0.0859409 0.0496180i
\(987\) −171.968 + 211.399i −0.174234 + 0.214184i
\(988\) 536.892 + 929.924i 0.543413 + 0.941218i
\(989\) 1420.20 1.43599
\(990\) 96.7097 + 271.404i 0.0976866 + 0.274146i
\(991\) −1129.26 −1.13951 −0.569756 0.821814i \(-0.692962\pi\)
−0.569756 + 0.821814i \(0.692962\pi\)
\(992\) −210.764 + 121.684i −0.212463 + 0.122666i
\(993\) 414.421 1126.74i 0.417342 1.13469i
\(994\) −784.225 + 153.378i −0.788959 + 0.154304i
\(995\) −111.671 + 193.420i −0.112232 + 0.194392i
\(996\) −534.187 + 445.167i −0.536332 + 0.446954i
\(997\) 352.564 203.553i 0.353625 0.204166i −0.312656 0.949867i \(-0.601219\pi\)
0.666281 + 0.745701i \(0.267885\pi\)
\(998\) 1322.50 1.32515
\(999\) 436.934 246.389i 0.437371 0.246635i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.o.a.13.6 yes 32
3.2 odd 2 378.3.o.a.307.12 32
7.6 odd 2 inner 126.3.o.a.13.3 32
9.2 odd 6 378.3.o.a.181.13 32
9.4 even 3 1134.3.c.e.811.12 16
9.5 odd 6 1134.3.c.d.811.5 16
9.7 even 3 inner 126.3.o.a.97.3 yes 32
21.20 even 2 378.3.o.a.307.13 32
63.13 odd 6 1134.3.c.e.811.13 16
63.20 even 6 378.3.o.a.181.12 32
63.34 odd 6 inner 126.3.o.a.97.6 yes 32
63.41 even 6 1134.3.c.d.811.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.o.a.13.3 32 7.6 odd 2 inner
126.3.o.a.13.6 yes 32 1.1 even 1 trivial
126.3.o.a.97.3 yes 32 9.7 even 3 inner
126.3.o.a.97.6 yes 32 63.34 odd 6 inner
378.3.o.a.181.12 32 63.20 even 6
378.3.o.a.181.13 32 9.2 odd 6
378.3.o.a.307.12 32 3.2 odd 2
378.3.o.a.307.13 32 21.20 even 2
1134.3.c.d.811.4 16 63.41 even 6
1134.3.c.d.811.5 16 9.5 odd 6
1134.3.c.e.811.12 16 9.4 even 3
1134.3.c.e.811.13 16 63.13 odd 6