Properties

Label 1134.3.b.c.323.14
Level $1134$
Weight $3$
Character 1134.323
Analytic conductor $30.899$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,3,Mod(323,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.323"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1134.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.8992619785\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.14
Character \(\chi\) \(=\) 1134.323
Dual form 1134.3.b.c.323.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} -8.59478i q^{5} +2.64575 q^{7} -2.82843i q^{8} +12.1548 q^{10} +14.3608i q^{11} +2.41973 q^{13} +3.74166i q^{14} +4.00000 q^{16} +4.27995i q^{17} +20.7972 q^{19} +17.1896i q^{20} -20.3092 q^{22} +37.6353i q^{23} -48.8702 q^{25} +3.42201i q^{26} -5.29150 q^{28} -43.3995i q^{29} +45.5815 q^{31} +5.65685i q^{32} -6.05276 q^{34} -22.7396i q^{35} +4.78176 q^{37} +29.4116i q^{38} -24.3097 q^{40} -2.97891i q^{41} +24.4298 q^{43} -28.7215i q^{44} -53.2244 q^{46} -1.53301i q^{47} +7.00000 q^{49} -69.1129i q^{50} -4.83946 q^{52} -90.8320i q^{53} +123.427 q^{55} -7.48331i q^{56} +61.3761 q^{58} -17.1433i q^{59} +53.5618 q^{61} +64.4620i q^{62} -8.00000 q^{64} -20.7970i q^{65} +101.014 q^{67} -8.55990i q^{68} +32.1587 q^{70} -127.047i q^{71} -2.38851 q^{73} +6.76242i q^{74} -41.5943 q^{76} +37.9950i q^{77} -48.8195 q^{79} -34.3791i q^{80} +4.21282 q^{82} -85.8416i q^{83} +36.7852 q^{85} +34.5489i q^{86} +40.6184 q^{88} +13.8255i q^{89} +6.40200 q^{91} -75.2706i q^{92} +2.16800 q^{94} -178.747i q^{95} -3.88170 q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 48 q^{4} + 96 q^{16} + 24 q^{19} - 48 q^{22} - 144 q^{25} + 120 q^{31} + 96 q^{34} - 168 q^{37} - 120 q^{43} + 168 q^{49} + 264 q^{55} - 192 q^{64} - 144 q^{67} + 24 q^{73} - 48 q^{76} - 24 q^{79}+ \cdots - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) − 8.59478i − 1.71896i −0.511173 0.859478i \(-0.670789\pi\)
0.511173 0.859478i \(-0.329211\pi\)
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) − 2.82843i − 0.353553i
\(9\) 0 0
\(10\) 12.1548 1.21548
\(11\) 14.3608i 1.30552i 0.757563 + 0.652762i \(0.226390\pi\)
−0.757563 + 0.652762i \(0.773610\pi\)
\(12\) 0 0
\(13\) 2.41973 0.186133 0.0930665 0.995660i \(-0.470333\pi\)
0.0930665 + 0.995660i \(0.470333\pi\)
\(14\) 3.74166i 0.267261i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 4.27995i 0.251762i 0.992045 + 0.125881i \(0.0401757\pi\)
−0.992045 + 0.125881i \(0.959824\pi\)
\(18\) 0 0
\(19\) 20.7972 1.09459 0.547294 0.836940i \(-0.315658\pi\)
0.547294 + 0.836940i \(0.315658\pi\)
\(20\) 17.1896i 0.859478i
\(21\) 0 0
\(22\) −20.3092 −0.923144
\(23\) 37.6353i 1.63632i 0.574992 + 0.818159i \(0.305005\pi\)
−0.574992 + 0.818159i \(0.694995\pi\)
\(24\) 0 0
\(25\) −48.8702 −1.95481
\(26\) 3.42201i 0.131616i
\(27\) 0 0
\(28\) −5.29150 −0.188982
\(29\) − 43.3995i − 1.49653i −0.663398 0.748267i \(-0.730886\pi\)
0.663398 0.748267i \(-0.269114\pi\)
\(30\) 0 0
\(31\) 45.5815 1.47037 0.735186 0.677866i \(-0.237095\pi\)
0.735186 + 0.677866i \(0.237095\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) −6.05276 −0.178022
\(35\) − 22.7396i − 0.649704i
\(36\) 0 0
\(37\) 4.78176 0.129237 0.0646183 0.997910i \(-0.479417\pi\)
0.0646183 + 0.997910i \(0.479417\pi\)
\(38\) 29.4116i 0.773991i
\(39\) 0 0
\(40\) −24.3097 −0.607742
\(41\) − 2.97891i − 0.0726565i −0.999340 0.0363282i \(-0.988434\pi\)
0.999340 0.0363282i \(-0.0115662\pi\)
\(42\) 0 0
\(43\) 24.4298 0.568134 0.284067 0.958804i \(-0.408316\pi\)
0.284067 + 0.958804i \(0.408316\pi\)
\(44\) − 28.7215i − 0.652762i
\(45\) 0 0
\(46\) −53.2244 −1.15705
\(47\) − 1.53301i − 0.0326172i −0.999867 0.0163086i \(-0.994809\pi\)
0.999867 0.0163086i \(-0.00519143\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) − 69.1129i − 1.38226i
\(51\) 0 0
\(52\) −4.83946 −0.0930665
\(53\) − 90.8320i − 1.71381i −0.515473 0.856906i \(-0.672384\pi\)
0.515473 0.856906i \(-0.327616\pi\)
\(54\) 0 0
\(55\) 123.427 2.24414
\(56\) − 7.48331i − 0.133631i
\(57\) 0 0
\(58\) 61.3761 1.05821
\(59\) − 17.1433i − 0.290565i −0.989390 0.145283i \(-0.953591\pi\)
0.989390 0.145283i \(-0.0464091\pi\)
\(60\) 0 0
\(61\) 53.5618 0.878063 0.439031 0.898472i \(-0.355322\pi\)
0.439031 + 0.898472i \(0.355322\pi\)
\(62\) 64.4620i 1.03971i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) − 20.7970i − 0.319954i
\(66\) 0 0
\(67\) 101.014 1.50768 0.753838 0.657060i \(-0.228200\pi\)
0.753838 + 0.657060i \(0.228200\pi\)
\(68\) − 8.55990i − 0.125881i
\(69\) 0 0
\(70\) 32.1587 0.459410
\(71\) − 127.047i − 1.78940i −0.446669 0.894699i \(-0.647390\pi\)
0.446669 0.894699i \(-0.352610\pi\)
\(72\) 0 0
\(73\) −2.38851 −0.0327193 −0.0163596 0.999866i \(-0.505208\pi\)
−0.0163596 + 0.999866i \(0.505208\pi\)
\(74\) 6.76242i 0.0913841i
\(75\) 0 0
\(76\) −41.5943 −0.547294
\(77\) 37.9950i 0.493441i
\(78\) 0 0
\(79\) −48.8195 −0.617968 −0.308984 0.951067i \(-0.599989\pi\)
−0.308984 + 0.951067i \(0.599989\pi\)
\(80\) − 34.3791i − 0.429739i
\(81\) 0 0
\(82\) 4.21282 0.0513759
\(83\) − 85.8416i − 1.03424i −0.855914 0.517118i \(-0.827005\pi\)
0.855914 0.517118i \(-0.172995\pi\)
\(84\) 0 0
\(85\) 36.7852 0.432767
\(86\) 34.5489i 0.401731i
\(87\) 0 0
\(88\) 40.6184 0.461572
\(89\) 13.8255i 0.155343i 0.996979 + 0.0776715i \(0.0247485\pi\)
−0.996979 + 0.0776715i \(0.975251\pi\)
\(90\) 0 0
\(91\) 6.40200 0.0703516
\(92\) − 75.2706i − 0.818159i
\(93\) 0 0
\(94\) 2.16800 0.0230639
\(95\) − 178.747i − 1.88155i
\(96\) 0 0
\(97\) −3.88170 −0.0400175 −0.0200088 0.999800i \(-0.506369\pi\)
−0.0200088 + 0.999800i \(0.506369\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 0 0
\(100\) 97.7404 0.977404
\(101\) − 91.5770i − 0.906703i −0.891332 0.453351i \(-0.850228\pi\)
0.891332 0.453351i \(-0.149772\pi\)
\(102\) 0 0
\(103\) 41.1343 0.399362 0.199681 0.979861i \(-0.436009\pi\)
0.199681 + 0.979861i \(0.436009\pi\)
\(104\) − 6.84403i − 0.0658079i
\(105\) 0 0
\(106\) 128.456 1.21185
\(107\) 149.508i 1.39727i 0.715477 + 0.698637i \(0.246210\pi\)
−0.715477 + 0.698637i \(0.753790\pi\)
\(108\) 0 0
\(109\) 96.1264 0.881894 0.440947 0.897533i \(-0.354643\pi\)
0.440947 + 0.897533i \(0.354643\pi\)
\(110\) 174.553i 1.58684i
\(111\) 0 0
\(112\) 10.5830 0.0944911
\(113\) − 44.6953i − 0.395534i −0.980249 0.197767i \(-0.936631\pi\)
0.980249 0.197767i \(-0.0633689\pi\)
\(114\) 0 0
\(115\) 323.467 2.81276
\(116\) 86.7990i 0.748267i
\(117\) 0 0
\(118\) 24.2443 0.205461
\(119\) 11.3237i 0.0951570i
\(120\) 0 0
\(121\) −85.2313 −0.704391
\(122\) 75.7479i 0.620884i
\(123\) 0 0
\(124\) −91.1630 −0.735186
\(125\) 205.159i 1.64127i
\(126\) 0 0
\(127\) −27.4655 −0.216264 −0.108132 0.994137i \(-0.534487\pi\)
−0.108132 + 0.994137i \(0.534487\pi\)
\(128\) − 11.3137i − 0.0883883i
\(129\) 0 0
\(130\) 29.4114 0.226242
\(131\) 148.389i 1.13274i 0.824150 + 0.566371i \(0.191653\pi\)
−0.824150 + 0.566371i \(0.808347\pi\)
\(132\) 0 0
\(133\) 55.0241 0.413715
\(134\) 142.856i 1.06609i
\(135\) 0 0
\(136\) 12.1055 0.0890112
\(137\) 236.774i 1.72828i 0.503254 + 0.864138i \(0.332136\pi\)
−0.503254 + 0.864138i \(0.667864\pi\)
\(138\) 0 0
\(139\) −42.6164 −0.306593 −0.153296 0.988180i \(-0.548989\pi\)
−0.153296 + 0.988180i \(0.548989\pi\)
\(140\) 45.4793i 0.324852i
\(141\) 0 0
\(142\) 179.672 1.26530
\(143\) 34.7491i 0.243001i
\(144\) 0 0
\(145\) −373.009 −2.57247
\(146\) − 3.37786i − 0.0231360i
\(147\) 0 0
\(148\) −9.56351 −0.0646183
\(149\) − 95.7252i − 0.642451i −0.947003 0.321225i \(-0.895905\pi\)
0.947003 0.321225i \(-0.104095\pi\)
\(150\) 0 0
\(151\) −99.5708 −0.659409 −0.329705 0.944084i \(-0.606949\pi\)
−0.329705 + 0.944084i \(0.606949\pi\)
\(152\) − 58.8233i − 0.386995i
\(153\) 0 0
\(154\) −53.7330 −0.348916
\(155\) − 391.763i − 2.52750i
\(156\) 0 0
\(157\) −9.49278 −0.0604636 −0.0302318 0.999543i \(-0.509625\pi\)
−0.0302318 + 0.999543i \(0.509625\pi\)
\(158\) − 69.0412i − 0.436969i
\(159\) 0 0
\(160\) 48.6194 0.303871
\(161\) 99.5737i 0.618470i
\(162\) 0 0
\(163\) 77.1330 0.473209 0.236604 0.971606i \(-0.423965\pi\)
0.236604 + 0.971606i \(0.423965\pi\)
\(164\) 5.95783i 0.0363282i
\(165\) 0 0
\(166\) 121.398 0.731315
\(167\) 216.493i 1.29637i 0.761485 + 0.648183i \(0.224471\pi\)
−0.761485 + 0.648183i \(0.775529\pi\)
\(168\) 0 0
\(169\) −163.145 −0.965355
\(170\) 52.0221i 0.306013i
\(171\) 0 0
\(172\) −48.8595 −0.284067
\(173\) 118.169i 0.683058i 0.939871 + 0.341529i \(0.110945\pi\)
−0.939871 + 0.341529i \(0.889055\pi\)
\(174\) 0 0
\(175\) −129.298 −0.738848
\(176\) 57.4430i 0.326381i
\(177\) 0 0
\(178\) −19.5523 −0.109844
\(179\) 66.3443i 0.370638i 0.982678 + 0.185319i \(0.0593319\pi\)
−0.982678 + 0.185319i \(0.940668\pi\)
\(180\) 0 0
\(181\) −129.221 −0.713928 −0.356964 0.934118i \(-0.616188\pi\)
−0.356964 + 0.934118i \(0.616188\pi\)
\(182\) 9.05380i 0.0497461i
\(183\) 0 0
\(184\) 106.449 0.578526
\(185\) − 41.0981i − 0.222152i
\(186\) 0 0
\(187\) −61.4633 −0.328681
\(188\) 3.06602i 0.0163086i
\(189\) 0 0
\(190\) 252.786 1.33046
\(191\) − 17.2249i − 0.0901826i −0.998983 0.0450913i \(-0.985642\pi\)
0.998983 0.0450913i \(-0.0143579\pi\)
\(192\) 0 0
\(193\) 263.692 1.36628 0.683141 0.730287i \(-0.260614\pi\)
0.683141 + 0.730287i \(0.260614\pi\)
\(194\) − 5.48955i − 0.0282967i
\(195\) 0 0
\(196\) −14.0000 −0.0714286
\(197\) − 383.896i − 1.94871i −0.225010 0.974356i \(-0.572242\pi\)
0.225010 0.974356i \(-0.427758\pi\)
\(198\) 0 0
\(199\) 324.904 1.63268 0.816342 0.577569i \(-0.195999\pi\)
0.816342 + 0.577569i \(0.195999\pi\)
\(200\) 138.226i 0.691129i
\(201\) 0 0
\(202\) 129.509 0.641136
\(203\) − 114.824i − 0.565637i
\(204\) 0 0
\(205\) −25.6031 −0.124893
\(206\) 58.1727i 0.282392i
\(207\) 0 0
\(208\) 9.67891 0.0465332
\(209\) 298.663i 1.42901i
\(210\) 0 0
\(211\) −248.456 −1.17752 −0.588759 0.808309i \(-0.700383\pi\)
−0.588759 + 0.808309i \(0.700383\pi\)
\(212\) 181.664i 0.856906i
\(213\) 0 0
\(214\) −211.437 −0.988021
\(215\) − 209.968i − 0.976597i
\(216\) 0 0
\(217\) 120.597 0.555748
\(218\) 135.943i 0.623593i
\(219\) 0 0
\(220\) −246.855 −1.12207
\(221\) 10.3563i 0.0468612i
\(222\) 0 0
\(223\) 85.5137 0.383470 0.191735 0.981447i \(-0.438589\pi\)
0.191735 + 0.981447i \(0.438589\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 0 0
\(226\) 63.2088 0.279685
\(227\) − 110.129i − 0.485148i −0.970133 0.242574i \(-0.922008\pi\)
0.970133 0.242574i \(-0.0779918\pi\)
\(228\) 0 0
\(229\) 301.578 1.31693 0.658467 0.752610i \(-0.271205\pi\)
0.658467 + 0.752610i \(0.271205\pi\)
\(230\) 457.451i 1.98892i
\(231\) 0 0
\(232\) −122.752 −0.529105
\(233\) − 175.577i − 0.753550i −0.926305 0.376775i \(-0.877033\pi\)
0.926305 0.376775i \(-0.122967\pi\)
\(234\) 0 0
\(235\) −13.1759 −0.0560676
\(236\) 34.2867i 0.145283i
\(237\) 0 0
\(238\) −16.0141 −0.0672861
\(239\) 22.7242i 0.0950805i 0.998869 + 0.0475403i \(0.0151382\pi\)
−0.998869 + 0.0475403i \(0.984862\pi\)
\(240\) 0 0
\(241\) 67.6076 0.280530 0.140265 0.990114i \(-0.455205\pi\)
0.140265 + 0.990114i \(0.455205\pi\)
\(242\) − 120.535i − 0.498080i
\(243\) 0 0
\(244\) −107.124 −0.439031
\(245\) − 60.1634i − 0.245565i
\(246\) 0 0
\(247\) 50.3235 0.203739
\(248\) − 128.924i − 0.519855i
\(249\) 0 0
\(250\) −290.138 −1.16055
\(251\) 226.850i 0.903785i 0.892072 + 0.451892i \(0.149251\pi\)
−0.892072 + 0.451892i \(0.850749\pi\)
\(252\) 0 0
\(253\) −540.471 −2.13625
\(254\) − 38.8421i − 0.152922i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) − 439.815i − 1.71134i −0.517519 0.855672i \(-0.673144\pi\)
0.517519 0.855672i \(-0.326856\pi\)
\(258\) 0 0
\(259\) 12.6513 0.0488469
\(260\) 41.5941i 0.159977i
\(261\) 0 0
\(262\) −209.854 −0.800969
\(263\) 296.816i 1.12858i 0.825578 + 0.564288i \(0.190849\pi\)
−0.825578 + 0.564288i \(0.809151\pi\)
\(264\) 0 0
\(265\) −780.681 −2.94596
\(266\) 77.8159i 0.292541i
\(267\) 0 0
\(268\) −202.029 −0.753838
\(269\) − 402.596i − 1.49664i −0.663337 0.748321i \(-0.730860\pi\)
0.663337 0.748321i \(-0.269140\pi\)
\(270\) 0 0
\(271\) 483.422 1.78385 0.891923 0.452187i \(-0.149356\pi\)
0.891923 + 0.452187i \(0.149356\pi\)
\(272\) 17.1198i 0.0629404i
\(273\) 0 0
\(274\) −334.849 −1.22208
\(275\) − 701.813i − 2.55205i
\(276\) 0 0
\(277\) 171.722 0.619933 0.309967 0.950747i \(-0.399682\pi\)
0.309967 + 0.950747i \(0.399682\pi\)
\(278\) − 60.2687i − 0.216794i
\(279\) 0 0
\(280\) −64.3174 −0.229705
\(281\) 81.5746i 0.290301i 0.989410 + 0.145151i \(0.0463666\pi\)
−0.989410 + 0.145151i \(0.953633\pi\)
\(282\) 0 0
\(283\) 183.279 0.647629 0.323815 0.946121i \(-0.395035\pi\)
0.323815 + 0.946121i \(0.395035\pi\)
\(284\) 254.095i 0.894699i
\(285\) 0 0
\(286\) −49.1427 −0.171828
\(287\) − 7.88147i − 0.0274616i
\(288\) 0 0
\(289\) 270.682 0.936616
\(290\) − 527.514i − 1.81901i
\(291\) 0 0
\(292\) 4.77701 0.0163596
\(293\) 378.172i 1.29069i 0.763892 + 0.645344i \(0.223286\pi\)
−0.763892 + 0.645344i \(0.776714\pi\)
\(294\) 0 0
\(295\) −147.343 −0.499468
\(296\) − 13.5248i − 0.0456921i
\(297\) 0 0
\(298\) 135.376 0.454281
\(299\) 91.0672i 0.304573i
\(300\) 0 0
\(301\) 64.6351 0.214734
\(302\) − 140.814i − 0.466273i
\(303\) 0 0
\(304\) 83.1887 0.273647
\(305\) − 460.352i − 1.50935i
\(306\) 0 0
\(307\) −313.447 −1.02100 −0.510499 0.859878i \(-0.670539\pi\)
−0.510499 + 0.859878i \(0.670539\pi\)
\(308\) − 75.9900i − 0.246721i
\(309\) 0 0
\(310\) 554.036 1.78721
\(311\) 354.444i 1.13969i 0.821751 + 0.569846i \(0.192997\pi\)
−0.821751 + 0.569846i \(0.807003\pi\)
\(312\) 0 0
\(313\) −260.599 −0.832584 −0.416292 0.909231i \(-0.636671\pi\)
−0.416292 + 0.909231i \(0.636671\pi\)
\(314\) − 13.4248i − 0.0427542i
\(315\) 0 0
\(316\) 97.6390 0.308984
\(317\) 149.312i 0.471016i 0.971872 + 0.235508i \(0.0756754\pi\)
−0.971872 + 0.235508i \(0.924325\pi\)
\(318\) 0 0
\(319\) 623.249 1.95376
\(320\) 68.7582i 0.214869i
\(321\) 0 0
\(322\) −140.818 −0.437324
\(323\) 89.0108i 0.275575i
\(324\) 0 0
\(325\) −118.253 −0.363854
\(326\) 109.083i 0.334609i
\(327\) 0 0
\(328\) −8.42564 −0.0256879
\(329\) − 4.05596i − 0.0123282i
\(330\) 0 0
\(331\) −376.618 −1.13782 −0.568909 0.822400i \(-0.692634\pi\)
−0.568909 + 0.822400i \(0.692634\pi\)
\(332\) 171.683i 0.517118i
\(333\) 0 0
\(334\) −306.167 −0.916669
\(335\) − 868.195i − 2.59163i
\(336\) 0 0
\(337\) −60.9156 −0.180758 −0.0903792 0.995907i \(-0.528808\pi\)
−0.0903792 + 0.995907i \(0.528808\pi\)
\(338\) − 230.722i − 0.682609i
\(339\) 0 0
\(340\) −73.5704 −0.216384
\(341\) 654.585i 1.91960i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) − 69.0978i − 0.200866i
\(345\) 0 0
\(346\) −167.116 −0.482995
\(347\) − 199.846i − 0.575924i −0.957642 0.287962i \(-0.907022\pi\)
0.957642 0.287962i \(-0.0929777\pi\)
\(348\) 0 0
\(349\) 590.653 1.69242 0.846208 0.532852i \(-0.178880\pi\)
0.846208 + 0.532852i \(0.178880\pi\)
\(350\) − 182.855i − 0.522444i
\(351\) 0 0
\(352\) −81.2367 −0.230786
\(353\) 167.974i 0.475846i 0.971284 + 0.237923i \(0.0764666\pi\)
−0.971284 + 0.237923i \(0.923533\pi\)
\(354\) 0 0
\(355\) −1091.94 −3.07590
\(356\) − 27.6511i − 0.0776715i
\(357\) 0 0
\(358\) −93.8250 −0.262081
\(359\) − 374.424i − 1.04296i −0.853262 0.521482i \(-0.825379\pi\)
0.853262 0.521482i \(-0.174621\pi\)
\(360\) 0 0
\(361\) 71.5223 0.198123
\(362\) − 182.746i − 0.504823i
\(363\) 0 0
\(364\) −12.8040 −0.0351758
\(365\) 20.5287i 0.0562429i
\(366\) 0 0
\(367\) −452.977 −1.23427 −0.617135 0.786858i \(-0.711707\pi\)
−0.617135 + 0.786858i \(0.711707\pi\)
\(368\) 150.541i 0.409079i
\(369\) 0 0
\(370\) 58.1215 0.157085
\(371\) − 240.319i − 0.647760i
\(372\) 0 0
\(373\) 104.212 0.279387 0.139694 0.990195i \(-0.455388\pi\)
0.139694 + 0.990195i \(0.455388\pi\)
\(374\) − 86.9222i − 0.232412i
\(375\) 0 0
\(376\) −4.33601 −0.0115319
\(377\) − 105.015i − 0.278554i
\(378\) 0 0
\(379\) 169.966 0.448458 0.224229 0.974536i \(-0.428014\pi\)
0.224229 + 0.974536i \(0.428014\pi\)
\(380\) 357.494i 0.940774i
\(381\) 0 0
\(382\) 24.3597 0.0637687
\(383\) − 500.621i − 1.30710i −0.756882 0.653552i \(-0.773278\pi\)
0.756882 0.653552i \(-0.226722\pi\)
\(384\) 0 0
\(385\) 326.558 0.848204
\(386\) 372.917i 0.966107i
\(387\) 0 0
\(388\) 7.76340 0.0200088
\(389\) − 64.8688i − 0.166758i −0.996518 0.0833789i \(-0.973429\pi\)
0.996518 0.0833789i \(-0.0265712\pi\)
\(390\) 0 0
\(391\) −161.077 −0.411962
\(392\) − 19.7990i − 0.0505076i
\(393\) 0 0
\(394\) 542.912 1.37795
\(395\) 419.593i 1.06226i
\(396\) 0 0
\(397\) −156.916 −0.395254 −0.197627 0.980277i \(-0.563323\pi\)
−0.197627 + 0.980277i \(0.563323\pi\)
\(398\) 459.484i 1.15448i
\(399\) 0 0
\(400\) −195.481 −0.488702
\(401\) 470.283i 1.17278i 0.810030 + 0.586388i \(0.199451\pi\)
−0.810030 + 0.586388i \(0.800549\pi\)
\(402\) 0 0
\(403\) 110.295 0.273685
\(404\) 183.154i 0.453351i
\(405\) 0 0
\(406\) 162.386 0.399965
\(407\) 68.6696i 0.168721i
\(408\) 0 0
\(409\) −290.388 −0.709996 −0.354998 0.934867i \(-0.615518\pi\)
−0.354998 + 0.934867i \(0.615518\pi\)
\(410\) − 36.2083i − 0.0883128i
\(411\) 0 0
\(412\) −82.2687 −0.199681
\(413\) − 45.3570i − 0.109823i
\(414\) 0 0
\(415\) −737.789 −1.77781
\(416\) 13.6881i 0.0329040i
\(417\) 0 0
\(418\) −422.373 −1.01046
\(419\) − 556.113i − 1.32724i −0.748071 0.663619i \(-0.769020\pi\)
0.748071 0.663619i \(-0.230980\pi\)
\(420\) 0 0
\(421\) 239.708 0.569377 0.284688 0.958620i \(-0.408110\pi\)
0.284688 + 0.958620i \(0.408110\pi\)
\(422\) − 351.370i − 0.832631i
\(423\) 0 0
\(424\) −256.912 −0.605924
\(425\) − 209.162i − 0.492146i
\(426\) 0 0
\(427\) 141.711 0.331876
\(428\) − 299.016i − 0.698637i
\(429\) 0 0
\(430\) 296.940 0.690558
\(431\) 200.137i 0.464354i 0.972674 + 0.232177i \(0.0745849\pi\)
−0.972674 + 0.232177i \(0.925415\pi\)
\(432\) 0 0
\(433\) −268.223 −0.619453 −0.309727 0.950826i \(-0.600238\pi\)
−0.309727 + 0.950826i \(0.600238\pi\)
\(434\) 170.550i 0.392973i
\(435\) 0 0
\(436\) −192.253 −0.440947
\(437\) 782.708i 1.79109i
\(438\) 0 0
\(439\) −502.840 −1.14542 −0.572711 0.819757i \(-0.694108\pi\)
−0.572711 + 0.819757i \(0.694108\pi\)
\(440\) − 349.106i − 0.793422i
\(441\) 0 0
\(442\) −14.6460 −0.0331358
\(443\) − 45.1666i − 0.101956i −0.998700 0.0509781i \(-0.983766\pi\)
0.998700 0.0509781i \(-0.0162339\pi\)
\(444\) 0 0
\(445\) 118.827 0.267028
\(446\) 120.935i 0.271154i
\(447\) 0 0
\(448\) −21.1660 −0.0472456
\(449\) 689.707i 1.53610i 0.640392 + 0.768048i \(0.278772\pi\)
−0.640392 + 0.768048i \(0.721228\pi\)
\(450\) 0 0
\(451\) 42.7795 0.0948547
\(452\) 89.3907i 0.197767i
\(453\) 0 0
\(454\) 155.746 0.343052
\(455\) − 55.0238i − 0.120931i
\(456\) 0 0
\(457\) 313.310 0.685581 0.342790 0.939412i \(-0.388628\pi\)
0.342790 + 0.939412i \(0.388628\pi\)
\(458\) 426.495i 0.931212i
\(459\) 0 0
\(460\) −646.934 −1.40638
\(461\) 413.145i 0.896194i 0.893985 + 0.448097i \(0.147898\pi\)
−0.893985 + 0.448097i \(0.852102\pi\)
\(462\) 0 0
\(463\) 271.125 0.585582 0.292791 0.956176i \(-0.405416\pi\)
0.292791 + 0.956176i \(0.405416\pi\)
\(464\) − 173.598i − 0.374133i
\(465\) 0 0
\(466\) 248.304 0.532841
\(467\) − 304.556i − 0.652155i −0.945343 0.326078i \(-0.894273\pi\)
0.945343 0.326078i \(-0.105727\pi\)
\(468\) 0 0
\(469\) 267.259 0.569848
\(470\) − 18.6335i − 0.0396458i
\(471\) 0 0
\(472\) −48.4887 −0.102730
\(473\) 350.830i 0.741712i
\(474\) 0 0
\(475\) −1016.36 −2.13971
\(476\) − 22.6474i − 0.0475785i
\(477\) 0 0
\(478\) −32.1369 −0.0672321
\(479\) 146.318i 0.305465i 0.988268 + 0.152733i \(0.0488073\pi\)
−0.988268 + 0.152733i \(0.951193\pi\)
\(480\) 0 0
\(481\) 11.5706 0.0240552
\(482\) 95.6116i 0.198364i
\(483\) 0 0
\(484\) 170.463 0.352196
\(485\) 33.3623i 0.0687883i
\(486\) 0 0
\(487\) −422.034 −0.866599 −0.433300 0.901250i \(-0.642651\pi\)
−0.433300 + 0.901250i \(0.642651\pi\)
\(488\) − 151.496i − 0.310442i
\(489\) 0 0
\(490\) 85.0839 0.173641
\(491\) 426.496i 0.868627i 0.900762 + 0.434314i \(0.143009\pi\)
−0.900762 + 0.434314i \(0.856991\pi\)
\(492\) 0 0
\(493\) 185.748 0.376770
\(494\) 71.1682i 0.144065i
\(495\) 0 0
\(496\) 182.326 0.367593
\(497\) − 336.136i − 0.676329i
\(498\) 0 0
\(499\) −311.469 −0.624187 −0.312094 0.950051i \(-0.601030\pi\)
−0.312094 + 0.950051i \(0.601030\pi\)
\(500\) − 410.318i − 0.820636i
\(501\) 0 0
\(502\) −320.814 −0.639072
\(503\) 44.9656i 0.0893949i 0.999001 + 0.0446975i \(0.0142324\pi\)
−0.999001 + 0.0446975i \(0.985768\pi\)
\(504\) 0 0
\(505\) −787.084 −1.55858
\(506\) − 764.342i − 1.51056i
\(507\) 0 0
\(508\) 54.9310 0.108132
\(509\) 75.6433i 0.148612i 0.997236 + 0.0743058i \(0.0236741\pi\)
−0.997236 + 0.0743058i \(0.976326\pi\)
\(510\) 0 0
\(511\) −6.31939 −0.0123667
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 621.993 1.21010
\(515\) − 353.540i − 0.686486i
\(516\) 0 0
\(517\) 22.0152 0.0425826
\(518\) 17.8917i 0.0345399i
\(519\) 0 0
\(520\) −58.8229 −0.113121
\(521\) 393.511i 0.755300i 0.925948 + 0.377650i \(0.123268\pi\)
−0.925948 + 0.377650i \(0.876732\pi\)
\(522\) 0 0
\(523\) −140.208 −0.268083 −0.134042 0.990976i \(-0.542796\pi\)
−0.134042 + 0.990976i \(0.542796\pi\)
\(524\) − 296.778i − 0.566371i
\(525\) 0 0
\(526\) −419.761 −0.798024
\(527\) 195.087i 0.370183i
\(528\) 0 0
\(529\) −887.416 −1.67753
\(530\) − 1104.05i − 2.08311i
\(531\) 0 0
\(532\) −110.048 −0.206858
\(533\) − 7.20816i − 0.0135238i
\(534\) 0 0
\(535\) 1284.99 2.40185
\(536\) − 285.712i − 0.533044i
\(537\) 0 0
\(538\) 569.357 1.05829
\(539\) 100.525i 0.186503i
\(540\) 0 0
\(541\) −299.982 −0.554495 −0.277248 0.960798i \(-0.589422\pi\)
−0.277248 + 0.960798i \(0.589422\pi\)
\(542\) 683.662i 1.26137i
\(543\) 0 0
\(544\) −24.2110 −0.0445056
\(545\) − 826.185i − 1.51594i
\(546\) 0 0
\(547\) −456.382 −0.834337 −0.417169 0.908829i \(-0.636978\pi\)
−0.417169 + 0.908829i \(0.636978\pi\)
\(548\) − 473.548i − 0.864138i
\(549\) 0 0
\(550\) 992.513 1.80457
\(551\) − 902.586i − 1.63809i
\(552\) 0 0
\(553\) −129.164 −0.233570
\(554\) 242.851i 0.438359i
\(555\) 0 0
\(556\) 85.2328 0.153296
\(557\) 696.230i 1.24996i 0.780639 + 0.624982i \(0.214894\pi\)
−0.780639 + 0.624982i \(0.785106\pi\)
\(558\) 0 0
\(559\) 59.1134 0.105748
\(560\) − 90.9586i − 0.162426i
\(561\) 0 0
\(562\) −115.364 −0.205274
\(563\) 452.950i 0.804530i 0.915523 + 0.402265i \(0.131777\pi\)
−0.915523 + 0.402265i \(0.868223\pi\)
\(564\) 0 0
\(565\) −384.146 −0.679905
\(566\) 259.196i 0.457943i
\(567\) 0 0
\(568\) −359.344 −0.632648
\(569\) − 146.183i − 0.256912i −0.991715 0.128456i \(-0.958998\pi\)
0.991715 0.128456i \(-0.0410021\pi\)
\(570\) 0 0
\(571\) −642.563 −1.12533 −0.562665 0.826685i \(-0.690224\pi\)
−0.562665 + 0.826685i \(0.690224\pi\)
\(572\) − 69.4983i − 0.121500i
\(573\) 0 0
\(574\) 11.1461 0.0194183
\(575\) − 1839.24i − 3.19869i
\(576\) 0 0
\(577\) 221.339 0.383604 0.191802 0.981434i \(-0.438567\pi\)
0.191802 + 0.981434i \(0.438567\pi\)
\(578\) 382.802i 0.662288i
\(579\) 0 0
\(580\) 746.018 1.28624
\(581\) − 227.116i − 0.390904i
\(582\) 0 0
\(583\) 1304.42 2.23742
\(584\) 6.75571i 0.0115680i
\(585\) 0 0
\(586\) −534.816 −0.912654
\(587\) 72.2440i 0.123073i 0.998105 + 0.0615366i \(0.0196001\pi\)
−0.998105 + 0.0615366i \(0.980400\pi\)
\(588\) 0 0
\(589\) 947.966 1.60945
\(590\) − 208.375i − 0.353177i
\(591\) 0 0
\(592\) 19.1270 0.0323092
\(593\) − 232.191i − 0.391552i −0.980649 0.195776i \(-0.937277\pi\)
0.980649 0.195776i \(-0.0627226\pi\)
\(594\) 0 0
\(595\) 97.3245 0.163571
\(596\) 191.450i 0.321225i
\(597\) 0 0
\(598\) −128.788 −0.215365
\(599\) − 402.549i − 0.672035i −0.941856 0.336018i \(-0.890920\pi\)
0.941856 0.336018i \(-0.109080\pi\)
\(600\) 0 0
\(601\) −360.906 −0.600509 −0.300255 0.953859i \(-0.597072\pi\)
−0.300255 + 0.953859i \(0.597072\pi\)
\(602\) 91.4078i 0.151840i
\(603\) 0 0
\(604\) 199.142 0.329705
\(605\) 732.544i 1.21082i
\(606\) 0 0
\(607\) −1172.54 −1.93170 −0.965851 0.259098i \(-0.916575\pi\)
−0.965851 + 0.259098i \(0.916575\pi\)
\(608\) 117.647i 0.193498i
\(609\) 0 0
\(610\) 651.036 1.06727
\(611\) − 3.70947i − 0.00607114i
\(612\) 0 0
\(613\) 1042.01 1.69985 0.849926 0.526903i \(-0.176647\pi\)
0.849926 + 0.526903i \(0.176647\pi\)
\(614\) − 443.281i − 0.721955i
\(615\) 0 0
\(616\) 107.466 0.174458
\(617\) 261.914i 0.424495i 0.977216 + 0.212248i \(0.0680784\pi\)
−0.977216 + 0.212248i \(0.931922\pi\)
\(618\) 0 0
\(619\) 707.768 1.14340 0.571702 0.820461i \(-0.306283\pi\)
0.571702 + 0.820461i \(0.306283\pi\)
\(620\) 783.526i 1.26375i
\(621\) 0 0
\(622\) −501.260 −0.805884
\(623\) 36.5789i 0.0587141i
\(624\) 0 0
\(625\) 541.540 0.866464
\(626\) − 368.543i − 0.588726i
\(627\) 0 0
\(628\) 18.9856 0.0302318
\(629\) 20.4657i 0.0325368i
\(630\) 0 0
\(631\) −40.4979 −0.0641805 −0.0320902 0.999485i \(-0.510216\pi\)
−0.0320902 + 0.999485i \(0.510216\pi\)
\(632\) 138.082i 0.218485i
\(633\) 0 0
\(634\) −211.159 −0.333059
\(635\) 236.060i 0.371748i
\(636\) 0 0
\(637\) 16.9381 0.0265904
\(638\) 881.408i 1.38152i
\(639\) 0 0
\(640\) −97.2388 −0.151936
\(641\) − 570.913i − 0.890660i −0.895367 0.445330i \(-0.853086\pi\)
0.895367 0.445330i \(-0.146914\pi\)
\(642\) 0 0
\(643\) −176.883 −0.275090 −0.137545 0.990496i \(-0.543921\pi\)
−0.137545 + 0.990496i \(0.543921\pi\)
\(644\) − 199.147i − 0.309235i
\(645\) 0 0
\(646\) −125.880 −0.194861
\(647\) 506.340i 0.782597i 0.920264 + 0.391298i \(0.127974\pi\)
−0.920264 + 0.391298i \(0.872026\pi\)
\(648\) 0 0
\(649\) 246.191 0.379339
\(650\) − 167.234i − 0.257284i
\(651\) 0 0
\(652\) −154.266 −0.236604
\(653\) 85.6822i 0.131213i 0.997846 + 0.0656066i \(0.0208982\pi\)
−0.997846 + 0.0656066i \(0.979102\pi\)
\(654\) 0 0
\(655\) 1275.37 1.94713
\(656\) − 11.9157i − 0.0181641i
\(657\) 0 0
\(658\) 5.73600 0.00871732
\(659\) 1156.69i 1.75522i 0.479377 + 0.877609i \(0.340863\pi\)
−0.479377 + 0.877609i \(0.659137\pi\)
\(660\) 0 0
\(661\) −921.751 −1.39448 −0.697240 0.716838i \(-0.745589\pi\)
−0.697240 + 0.716838i \(0.745589\pi\)
\(662\) − 532.618i − 0.804559i
\(663\) 0 0
\(664\) −242.797 −0.365658
\(665\) − 472.920i − 0.711158i
\(666\) 0 0
\(667\) 1633.35 2.44880
\(668\) − 432.986i − 0.648183i
\(669\) 0 0
\(670\) 1227.81 1.83256
\(671\) 769.188i 1.14633i
\(672\) 0 0
\(673\) −839.808 −1.24786 −0.623929 0.781481i \(-0.714464\pi\)
−0.623929 + 0.781481i \(0.714464\pi\)
\(674\) − 86.1477i − 0.127816i
\(675\) 0 0
\(676\) 326.290 0.482677
\(677\) 1002.01i 1.48007i 0.672567 + 0.740036i \(0.265192\pi\)
−0.672567 + 0.740036i \(0.734808\pi\)
\(678\) 0 0
\(679\) −10.2700 −0.0151252
\(680\) − 104.044i − 0.153006i
\(681\) 0 0
\(682\) −925.723 −1.35736
\(683\) − 434.891i − 0.636737i −0.947967 0.318368i \(-0.896865\pi\)
0.947967 0.318368i \(-0.103135\pi\)
\(684\) 0 0
\(685\) 2035.02 2.97083
\(686\) 26.1916i 0.0381802i
\(687\) 0 0
\(688\) 97.7190 0.142033
\(689\) − 219.789i − 0.318997i
\(690\) 0 0
\(691\) −250.078 −0.361907 −0.180953 0.983492i \(-0.557918\pi\)
−0.180953 + 0.983492i \(0.557918\pi\)
\(692\) − 236.338i − 0.341529i
\(693\) 0 0
\(694\) 282.624 0.407240
\(695\) 366.279i 0.527020i
\(696\) 0 0
\(697\) 12.7496 0.0182921
\(698\) 835.310i 1.19672i
\(699\) 0 0
\(700\) 258.597 0.369424
\(701\) − 81.6624i − 0.116494i −0.998302 0.0582471i \(-0.981449\pi\)
0.998302 0.0582471i \(-0.0185511\pi\)
\(702\) 0 0
\(703\) 99.4470 0.141461
\(704\) − 114.886i − 0.163190i
\(705\) 0 0
\(706\) −237.551 −0.336474
\(707\) − 242.290i − 0.342701i
\(708\) 0 0
\(709\) −599.279 −0.845245 −0.422623 0.906306i \(-0.638890\pi\)
−0.422623 + 0.906306i \(0.638890\pi\)
\(710\) − 1544.24i − 2.17499i
\(711\) 0 0
\(712\) 39.1045 0.0549221
\(713\) 1715.47i 2.40599i
\(714\) 0 0
\(715\) 298.661 0.417708
\(716\) − 132.689i − 0.185319i
\(717\) 0 0
\(718\) 529.516 0.737487
\(719\) − 253.130i − 0.352058i −0.984385 0.176029i \(-0.943675\pi\)
0.984385 0.176029i \(-0.0563253\pi\)
\(720\) 0 0
\(721\) 108.831 0.150945
\(722\) 101.148i 0.140094i
\(723\) 0 0
\(724\) 258.442 0.356964
\(725\) 2120.94i 2.92543i
\(726\) 0 0
\(727\) −781.360 −1.07477 −0.537386 0.843336i \(-0.680588\pi\)
−0.537386 + 0.843336i \(0.680588\pi\)
\(728\) − 18.1076i − 0.0248731i
\(729\) 0 0
\(730\) −29.0319 −0.0397698
\(731\) 104.558i 0.143034i
\(732\) 0 0
\(733\) 351.718 0.479834 0.239917 0.970793i \(-0.422880\pi\)
0.239917 + 0.970793i \(0.422880\pi\)
\(734\) − 640.606i − 0.872760i
\(735\) 0 0
\(736\) −212.897 −0.289263
\(737\) 1450.64i 1.96831i
\(738\) 0 0
\(739\) 189.901 0.256971 0.128485 0.991711i \(-0.458988\pi\)
0.128485 + 0.991711i \(0.458988\pi\)
\(740\) 82.1962i 0.111076i
\(741\) 0 0
\(742\) 339.862 0.458035
\(743\) 924.808i 1.24470i 0.782741 + 0.622348i \(0.213821\pi\)
−0.782741 + 0.622348i \(0.786179\pi\)
\(744\) 0 0
\(745\) −822.736 −1.10434
\(746\) 147.377i 0.197557i
\(747\) 0 0
\(748\) 122.927 0.164340
\(749\) 395.562i 0.528120i
\(750\) 0 0
\(751\) −382.695 −0.509580 −0.254790 0.966996i \(-0.582006\pi\)
−0.254790 + 0.966996i \(0.582006\pi\)
\(752\) − 6.13204i − 0.00815431i
\(753\) 0 0
\(754\) 148.514 0.196968
\(755\) 855.789i 1.13349i
\(756\) 0 0
\(757\) 346.761 0.458072 0.229036 0.973418i \(-0.426443\pi\)
0.229036 + 0.973418i \(0.426443\pi\)
\(758\) 240.368i 0.317108i
\(759\) 0 0
\(760\) −505.573 −0.665228
\(761\) 351.644i 0.462082i 0.972944 + 0.231041i \(0.0742131\pi\)
−0.972944 + 0.231041i \(0.925787\pi\)
\(762\) 0 0
\(763\) 254.327 0.333325
\(764\) 34.4498i 0.0450913i
\(765\) 0 0
\(766\) 707.985 0.924262
\(767\) − 41.4822i − 0.0540837i
\(768\) 0 0
\(769\) 1477.86 1.92180 0.960899 0.276900i \(-0.0893070\pi\)
0.960899 + 0.276900i \(0.0893070\pi\)
\(770\) 461.823i 0.599771i
\(771\) 0 0
\(772\) −527.385 −0.683141
\(773\) 892.237i 1.15425i 0.816655 + 0.577126i \(0.195826\pi\)
−0.816655 + 0.577126i \(0.804174\pi\)
\(774\) 0 0
\(775\) −2227.58 −2.87429
\(776\) 10.9791i 0.0141483i
\(777\) 0 0
\(778\) 91.7383 0.117916
\(779\) − 61.9530i − 0.0795289i
\(780\) 0 0
\(781\) 1824.50 2.33610
\(782\) − 227.798i − 0.291301i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) 81.5883i 0.103934i
\(786\) 0 0
\(787\) 955.161 1.21367 0.606837 0.794826i \(-0.292438\pi\)
0.606837 + 0.794826i \(0.292438\pi\)
\(788\) 767.793i 0.974356i
\(789\) 0 0
\(790\) −593.393 −0.751131
\(791\) − 118.253i − 0.149498i
\(792\) 0 0
\(793\) 129.605 0.163436
\(794\) − 221.912i − 0.279487i
\(795\) 0 0
\(796\) −649.808 −0.816342
\(797\) − 1144.39i − 1.43587i −0.696110 0.717935i \(-0.745087\pi\)
0.696110 0.717935i \(-0.254913\pi\)
\(798\) 0 0
\(799\) 6.56121 0.00821177
\(800\) − 276.451i − 0.345564i
\(801\) 0 0
\(802\) −665.081 −0.829278
\(803\) − 34.3008i − 0.0427158i
\(804\) 0 0
\(805\) 855.813 1.06312
\(806\) 155.981i 0.193524i
\(807\) 0 0
\(808\) −259.019 −0.320568
\(809\) − 331.844i − 0.410190i −0.978742 0.205095i \(-0.934250\pi\)
0.978742 0.205095i \(-0.0657504\pi\)
\(810\) 0 0
\(811\) −1101.69 −1.35843 −0.679216 0.733938i \(-0.737680\pi\)
−0.679216 + 0.733938i \(0.737680\pi\)
\(812\) 229.648i 0.282818i
\(813\) 0 0
\(814\) −97.1135 −0.119304
\(815\) − 662.941i − 0.813425i
\(816\) 0 0
\(817\) 508.070 0.621872
\(818\) − 410.671i − 0.502043i
\(819\) 0 0
\(820\) 51.2062 0.0624466
\(821\) − 1494.95i − 1.82089i −0.413632 0.910444i \(-0.635740\pi\)
0.413632 0.910444i \(-0.364260\pi\)
\(822\) 0 0
\(823\) 935.165 1.13629 0.568144 0.822929i \(-0.307662\pi\)
0.568144 + 0.822929i \(0.307662\pi\)
\(824\) − 116.345i − 0.141196i
\(825\) 0 0
\(826\) 64.1445 0.0776568
\(827\) 62.4043i 0.0754586i 0.999288 + 0.0377293i \(0.0120125\pi\)
−0.999288 + 0.0377293i \(0.987988\pi\)
\(828\) 0 0
\(829\) −1447.62 −1.74622 −0.873110 0.487524i \(-0.837900\pi\)
−0.873110 + 0.487524i \(0.837900\pi\)
\(830\) − 1043.39i − 1.25710i
\(831\) 0 0
\(832\) −19.3578 −0.0232666
\(833\) 29.9596i 0.0359660i
\(834\) 0 0
\(835\) 1860.71 2.22839
\(836\) − 597.326i − 0.714505i
\(837\) 0 0
\(838\) 786.462 0.938499
\(839\) 118.138i 0.140808i 0.997519 + 0.0704038i \(0.0224288\pi\)
−0.997519 + 0.0704038i \(0.977571\pi\)
\(840\) 0 0
\(841\) −1042.51 −1.23961
\(842\) 338.998i 0.402610i
\(843\) 0 0
\(844\) 496.912 0.588759
\(845\) 1402.19i 1.65940i
\(846\) 0 0
\(847\) −225.501 −0.266235
\(848\) − 363.328i − 0.428453i
\(849\) 0 0
\(850\) 295.800 0.348000
\(851\) 179.963i 0.211472i
\(852\) 0 0
\(853\) 1507.43 1.76721 0.883606 0.468232i \(-0.155109\pi\)
0.883606 + 0.468232i \(0.155109\pi\)
\(854\) 200.410i 0.234672i
\(855\) 0 0
\(856\) 422.873 0.494011
\(857\) 1110.43i 1.29572i 0.761759 + 0.647860i \(0.224336\pi\)
−0.761759 + 0.647860i \(0.775664\pi\)
\(858\) 0 0
\(859\) −1120.66 −1.30461 −0.652303 0.757959i \(-0.726197\pi\)
−0.652303 + 0.757959i \(0.726197\pi\)
\(860\) 419.937i 0.488298i
\(861\) 0 0
\(862\) −283.036 −0.328348
\(863\) 307.811i 0.356676i 0.983969 + 0.178338i \(0.0570720\pi\)
−0.983969 + 0.178338i \(0.942928\pi\)
\(864\) 0 0
\(865\) 1015.64 1.17415
\(866\) − 379.325i − 0.438020i
\(867\) 0 0
\(868\) −241.195 −0.277874
\(869\) − 701.085i − 0.806772i
\(870\) 0 0
\(871\) 244.427 0.280628
\(872\) − 271.887i − 0.311797i
\(873\) 0 0
\(874\) −1106.92 −1.26649
\(875\) 542.799i 0.620342i
\(876\) 0 0
\(877\) 1448.16 1.65126 0.825630 0.564211i \(-0.190820\pi\)
0.825630 + 0.564211i \(0.190820\pi\)
\(878\) − 711.123i − 0.809936i
\(879\) 0 0
\(880\) 493.710 0.561034
\(881\) − 499.464i − 0.566928i −0.958983 0.283464i \(-0.908516\pi\)
0.958983 0.283464i \(-0.0914837\pi\)
\(882\) 0 0
\(883\) 1302.89 1.47553 0.737766 0.675057i \(-0.235881\pi\)
0.737766 + 0.675057i \(0.235881\pi\)
\(884\) − 20.7126i − 0.0234306i
\(885\) 0 0
\(886\) 63.8752 0.0720939
\(887\) − 1354.65i − 1.52722i −0.645675 0.763612i \(-0.723424\pi\)
0.645675 0.763612i \(-0.276576\pi\)
\(888\) 0 0
\(889\) −72.6669 −0.0817400
\(890\) 168.047i 0.188817i
\(891\) 0 0
\(892\) −171.027 −0.191735
\(893\) − 31.8823i − 0.0357024i
\(894\) 0 0
\(895\) 570.214 0.637111
\(896\) − 29.9333i − 0.0334077i
\(897\) 0 0
\(898\) −975.393 −1.08618
\(899\) − 1978.21i − 2.20046i
\(900\) 0 0
\(901\) 388.756 0.431472
\(902\) 60.4993i 0.0670724i
\(903\) 0 0
\(904\) −126.418 −0.139842
\(905\) 1110.62i 1.22721i
\(906\) 0 0
\(907\) 770.907 0.849953 0.424976 0.905204i \(-0.360282\pi\)
0.424976 + 0.905204i \(0.360282\pi\)
\(908\) 220.257i 0.242574i
\(909\) 0 0
\(910\) 77.8153 0.0855114
\(911\) − 1045.50i − 1.14764i −0.818980 0.573822i \(-0.805460\pi\)
0.818980 0.573822i \(-0.194540\pi\)
\(912\) 0 0
\(913\) 1232.75 1.35022
\(914\) 443.088i 0.484779i
\(915\) 0 0
\(916\) −603.155 −0.658467
\(917\) 392.601i 0.428136i
\(918\) 0 0
\(919\) 238.491 0.259512 0.129756 0.991546i \(-0.458581\pi\)
0.129756 + 0.991546i \(0.458581\pi\)
\(920\) − 914.903i − 0.994460i
\(921\) 0 0
\(922\) −584.276 −0.633705
\(923\) − 307.420i − 0.333066i
\(924\) 0 0
\(925\) −233.685 −0.252633
\(926\) 383.428i 0.414069i
\(927\) 0 0
\(928\) 245.505 0.264552
\(929\) − 1131.84i − 1.21834i −0.793039 0.609171i \(-0.791502\pi\)
0.793039 0.609171i \(-0.208498\pi\)
\(930\) 0 0
\(931\) 145.580 0.156370
\(932\) 351.155i 0.376775i
\(933\) 0 0
\(934\) 430.708 0.461143
\(935\) 528.263i 0.564988i
\(936\) 0 0
\(937\) 295.116 0.314958 0.157479 0.987522i \(-0.449663\pi\)
0.157479 + 0.987522i \(0.449663\pi\)
\(938\) 377.961i 0.402943i
\(939\) 0 0
\(940\) 26.3518 0.0280338
\(941\) − 1.75599i − 0.00186609i −1.00000 0.000933044i \(-0.999703\pi\)
1.00000 0.000933044i \(-0.000296997\pi\)
\(942\) 0 0
\(943\) 112.112 0.118889
\(944\) − 68.5734i − 0.0726413i
\(945\) 0 0
\(946\) −496.148 −0.524470
\(947\) 717.709i 0.757876i 0.925422 + 0.378938i \(0.123711\pi\)
−0.925422 + 0.378938i \(0.876289\pi\)
\(948\) 0 0
\(949\) −5.77954 −0.00609013
\(950\) − 1437.35i − 1.51300i
\(951\) 0 0
\(952\) 32.0282 0.0336431
\(953\) 299.394i 0.314160i 0.987586 + 0.157080i \(0.0502080\pi\)
−0.987586 + 0.157080i \(0.949792\pi\)
\(954\) 0 0
\(955\) −148.044 −0.155020
\(956\) − 45.4485i − 0.0475403i
\(957\) 0 0
\(958\) −206.925 −0.215996
\(959\) 626.445i 0.653227i
\(960\) 0 0
\(961\) 1116.67 1.16199
\(962\) 16.3632i 0.0170096i
\(963\) 0 0
\(964\) −135.215 −0.140265
\(965\) − 2266.38i − 2.34858i
\(966\) 0 0
\(967\) −222.369 −0.229958 −0.114979 0.993368i \(-0.536680\pi\)
−0.114979 + 0.993368i \(0.536680\pi\)
\(968\) 241.071i 0.249040i
\(969\) 0 0
\(970\) −47.1815 −0.0486407
\(971\) 1425.20i 1.46777i 0.679276 + 0.733883i \(0.262294\pi\)
−0.679276 + 0.733883i \(0.737706\pi\)
\(972\) 0 0
\(973\) −112.752 −0.115881
\(974\) − 596.846i − 0.612778i
\(975\) 0 0
\(976\) 214.247 0.219516
\(977\) − 1469.41i − 1.50400i −0.659165 0.751999i \(-0.729090\pi\)
0.659165 0.751999i \(-0.270910\pi\)
\(978\) 0 0
\(979\) −198.545 −0.202804
\(980\) 120.327i 0.122783i
\(981\) 0 0
\(982\) −603.156 −0.614212
\(983\) − 303.973i − 0.309230i −0.987975 0.154615i \(-0.950586\pi\)
0.987975 0.154615i \(-0.0494137\pi\)
\(984\) 0 0
\(985\) −3299.50 −3.34975
\(986\) 262.687i 0.266417i
\(987\) 0 0
\(988\) −100.647 −0.101869
\(989\) 919.421i 0.929647i
\(990\) 0 0
\(991\) −235.302 −0.237439 −0.118719 0.992928i \(-0.537879\pi\)
−0.118719 + 0.992928i \(0.537879\pi\)
\(992\) 257.848i 0.259927i
\(993\) 0 0
\(994\) 475.367 0.478237
\(995\) − 2792.48i − 2.80651i
\(996\) 0 0
\(997\) 131.171 0.131566 0.0657829 0.997834i \(-0.479046\pi\)
0.0657829 + 0.997834i \(0.479046\pi\)
\(998\) − 440.484i − 0.441367i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.3.b.c.323.14 24
3.2 odd 2 inner 1134.3.b.c.323.11 24
9.2 odd 6 378.3.q.a.71.2 24
9.4 even 3 378.3.q.a.197.2 24
9.5 odd 6 126.3.q.a.29.7 24
9.7 even 3 126.3.q.a.113.7 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.7 24 9.5 odd 6
126.3.q.a.113.7 yes 24 9.7 even 3
378.3.q.a.71.2 24 9.2 odd 6
378.3.q.a.197.2 24 9.4 even 3
1134.3.b.c.323.11 24 3.2 odd 2 inner
1134.3.b.c.323.14 24 1.1 even 1 trivial