Properties

Label 1134.3.b.c.323.1
Level $1134$
Weight $3$
Character 1134.323
Analytic conductor $30.899$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,3,Mod(323,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.323"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1134.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.8992619785\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.1
Character \(\chi\) \(=\) 1134.323
Dual form 1134.3.b.c.323.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} -7.74628i q^{5} -2.64575 q^{7} +2.82843i q^{8} -10.9549 q^{10} +11.5558i q^{11} +19.3170 q^{13} +3.74166i q^{14} +4.00000 q^{16} +18.8486i q^{17} -18.8740 q^{19} +15.4926i q^{20} +16.3424 q^{22} +30.2089i q^{23} -35.0049 q^{25} -27.3183i q^{26} +5.29150 q^{28} +57.1188i q^{29} -10.7982 q^{31} -5.65685i q^{32} +26.6559 q^{34} +20.4947i q^{35} +6.77073 q^{37} +26.6918i q^{38} +21.9098 q^{40} -60.7722i q^{41} +16.3205 q^{43} -23.1117i q^{44} +42.7218 q^{46} +19.3608i q^{47} +7.00000 q^{49} +49.5043i q^{50} -38.6340 q^{52} +35.4340i q^{53} +89.5147 q^{55} -7.48331i q^{56} +80.7782 q^{58} -9.68197i q^{59} +90.2805 q^{61} +15.2709i q^{62} -8.00000 q^{64} -149.635i q^{65} -58.9477 q^{67} -37.6972i q^{68} +28.9839 q^{70} +43.4041i q^{71} +36.4770 q^{73} -9.57526i q^{74} +37.7479 q^{76} -30.5739i q^{77} -45.1650 q^{79} -30.9851i q^{80} -85.9449 q^{82} +56.7235i q^{83} +146.007 q^{85} -23.0806i q^{86} -32.6848 q^{88} -52.3173i q^{89} -51.1079 q^{91} -60.4178i q^{92} +27.3803 q^{94} +146.203i q^{95} +14.1419 q^{97} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 48 q^{4} + 96 q^{16} + 24 q^{19} - 48 q^{22} - 144 q^{25} + 120 q^{31} + 96 q^{34} - 168 q^{37} - 120 q^{43} + 168 q^{49} + 264 q^{55} - 192 q^{64} - 144 q^{67} + 24 q^{73} - 48 q^{76} - 24 q^{79}+ \cdots - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) − 7.74628i − 1.54926i −0.632417 0.774628i \(-0.717937\pi\)
0.632417 0.774628i \(-0.282063\pi\)
\(6\) 0 0
\(7\) −2.64575 −0.377964
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −10.9549 −1.09549
\(11\) 11.5558i 1.05053i 0.850939 + 0.525265i \(0.176034\pi\)
−0.850939 + 0.525265i \(0.823966\pi\)
\(12\) 0 0
\(13\) 19.3170 1.48592 0.742961 0.669335i \(-0.233421\pi\)
0.742961 + 0.669335i \(0.233421\pi\)
\(14\) 3.74166i 0.267261i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 18.8486i 1.10874i 0.832270 + 0.554371i \(0.187041\pi\)
−0.832270 + 0.554371i \(0.812959\pi\)
\(18\) 0 0
\(19\) −18.8740 −0.993366 −0.496683 0.867932i \(-0.665449\pi\)
−0.496683 + 0.867932i \(0.665449\pi\)
\(20\) 15.4926i 0.774628i
\(21\) 0 0
\(22\) 16.3424 0.742837
\(23\) 30.2089i 1.31343i 0.754139 + 0.656715i \(0.228055\pi\)
−0.754139 + 0.656715i \(0.771945\pi\)
\(24\) 0 0
\(25\) −35.0049 −1.40019
\(26\) − 27.3183i − 1.05071i
\(27\) 0 0
\(28\) 5.29150 0.188982
\(29\) 57.1188i 1.96961i 0.173650 + 0.984807i \(0.444444\pi\)
−0.173650 + 0.984807i \(0.555556\pi\)
\(30\) 0 0
\(31\) −10.7982 −0.348328 −0.174164 0.984717i \(-0.555722\pi\)
−0.174164 + 0.984717i \(0.555722\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) 26.6559 0.783998
\(35\) 20.4947i 0.585564i
\(36\) 0 0
\(37\) 6.77073 0.182993 0.0914963 0.995805i \(-0.470835\pi\)
0.0914963 + 0.995805i \(0.470835\pi\)
\(38\) 26.6918i 0.702416i
\(39\) 0 0
\(40\) 21.9098 0.547745
\(41\) − 60.7722i − 1.48225i −0.671367 0.741125i \(-0.734293\pi\)
0.671367 0.741125i \(-0.265707\pi\)
\(42\) 0 0
\(43\) 16.3205 0.379546 0.189773 0.981828i \(-0.439225\pi\)
0.189773 + 0.981828i \(0.439225\pi\)
\(44\) − 23.1117i − 0.525265i
\(45\) 0 0
\(46\) 42.7218 0.928736
\(47\) 19.3608i 0.411932i 0.978559 + 0.205966i \(0.0660337\pi\)
−0.978559 + 0.205966i \(0.933966\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 49.5043i 0.990087i
\(51\) 0 0
\(52\) −38.6340 −0.742961
\(53\) 35.4340i 0.668567i 0.942473 + 0.334283i \(0.108494\pi\)
−0.942473 + 0.334283i \(0.891506\pi\)
\(54\) 0 0
\(55\) 89.5147 1.62754
\(56\) − 7.48331i − 0.133631i
\(57\) 0 0
\(58\) 80.7782 1.39273
\(59\) − 9.68197i − 0.164101i −0.996628 0.0820506i \(-0.973853\pi\)
0.996628 0.0820506i \(-0.0261469\pi\)
\(60\) 0 0
\(61\) 90.2805 1.48001 0.740004 0.672602i \(-0.234824\pi\)
0.740004 + 0.672602i \(0.234824\pi\)
\(62\) 15.2709i 0.246305i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) − 149.635i − 2.30207i
\(66\) 0 0
\(67\) −58.9477 −0.879817 −0.439908 0.898043i \(-0.644989\pi\)
−0.439908 + 0.898043i \(0.644989\pi\)
\(68\) − 37.6972i − 0.554371i
\(69\) 0 0
\(70\) 28.9839 0.414056
\(71\) 43.4041i 0.611325i 0.952140 + 0.305662i \(0.0988779\pi\)
−0.952140 + 0.305662i \(0.901122\pi\)
\(72\) 0 0
\(73\) 36.4770 0.499685 0.249842 0.968287i \(-0.419621\pi\)
0.249842 + 0.968287i \(0.419621\pi\)
\(74\) − 9.57526i − 0.129395i
\(75\) 0 0
\(76\) 37.7479 0.496683
\(77\) − 30.5739i − 0.397063i
\(78\) 0 0
\(79\) −45.1650 −0.571709 −0.285855 0.958273i \(-0.592277\pi\)
−0.285855 + 0.958273i \(0.592277\pi\)
\(80\) − 30.9851i − 0.387314i
\(81\) 0 0
\(82\) −85.9449 −1.04811
\(83\) 56.7235i 0.683416i 0.939806 + 0.341708i \(0.111005\pi\)
−0.939806 + 0.341708i \(0.888995\pi\)
\(84\) 0 0
\(85\) 146.007 1.71772
\(86\) − 23.0806i − 0.268380i
\(87\) 0 0
\(88\) −32.6848 −0.371418
\(89\) − 52.3173i − 0.587835i −0.955831 0.293917i \(-0.905041\pi\)
0.955831 0.293917i \(-0.0949591\pi\)
\(90\) 0 0
\(91\) −51.1079 −0.561626
\(92\) − 60.4178i − 0.656715i
\(93\) 0 0
\(94\) 27.3803 0.291280
\(95\) 146.203i 1.53898i
\(96\) 0 0
\(97\) 14.1419 0.145793 0.0728966 0.997340i \(-0.476776\pi\)
0.0728966 + 0.997340i \(0.476776\pi\)
\(98\) − 9.89949i − 0.101015i
\(99\) 0 0
\(100\) 70.0097 0.700097
\(101\) 12.6059i 0.124811i 0.998051 + 0.0624055i \(0.0198772\pi\)
−0.998051 + 0.0624055i \(0.980123\pi\)
\(102\) 0 0
\(103\) −133.299 −1.29416 −0.647080 0.762422i \(-0.724010\pi\)
−0.647080 + 0.762422i \(0.724010\pi\)
\(104\) 54.6367i 0.525353i
\(105\) 0 0
\(106\) 50.1113 0.472748
\(107\) − 8.07684i − 0.0754845i −0.999288 0.0377422i \(-0.987983\pi\)
0.999288 0.0377422i \(-0.0120166\pi\)
\(108\) 0 0
\(109\) 160.039 1.46825 0.734123 0.679016i \(-0.237593\pi\)
0.734123 + 0.679016i \(0.237593\pi\)
\(110\) − 126.593i − 1.15084i
\(111\) 0 0
\(112\) −10.5830 −0.0944911
\(113\) 64.7680i 0.573168i 0.958055 + 0.286584i \(0.0925198\pi\)
−0.958055 + 0.286584i \(0.907480\pi\)
\(114\) 0 0
\(115\) 234.007 2.03484
\(116\) − 114.238i − 0.984807i
\(117\) 0 0
\(118\) −13.6924 −0.116037
\(119\) − 49.8687i − 0.419065i
\(120\) 0 0
\(121\) −12.5372 −0.103613
\(122\) − 127.676i − 1.04652i
\(123\) 0 0
\(124\) 21.5963 0.174164
\(125\) 77.5004i 0.620003i
\(126\) 0 0
\(127\) −1.32557 −0.0104376 −0.00521879 0.999986i \(-0.501661\pi\)
−0.00521879 + 0.999986i \(0.501661\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) −211.615 −1.62781
\(131\) 4.49309i 0.0342984i 0.999853 + 0.0171492i \(0.00545902\pi\)
−0.999853 + 0.0171492i \(0.994541\pi\)
\(132\) 0 0
\(133\) 49.9358 0.375457
\(134\) 83.3646i 0.622124i
\(135\) 0 0
\(136\) −53.3119 −0.391999
\(137\) 218.770i 1.59686i 0.602086 + 0.798431i \(0.294336\pi\)
−0.602086 + 0.798431i \(0.705664\pi\)
\(138\) 0 0
\(139\) 87.4784 0.629341 0.314670 0.949201i \(-0.398106\pi\)
0.314670 + 0.949201i \(0.398106\pi\)
\(140\) − 40.9895i − 0.292782i
\(141\) 0 0
\(142\) 61.3826 0.432272
\(143\) 223.224i 1.56101i
\(144\) 0 0
\(145\) 442.458 3.05144
\(146\) − 51.5863i − 0.353331i
\(147\) 0 0
\(148\) −13.5415 −0.0914963
\(149\) 211.945i 1.42245i 0.702963 + 0.711226i \(0.251860\pi\)
−0.702963 + 0.711226i \(0.748140\pi\)
\(150\) 0 0
\(151\) 188.984 1.25155 0.625775 0.780004i \(-0.284783\pi\)
0.625775 + 0.780004i \(0.284783\pi\)
\(152\) − 53.3836i − 0.351208i
\(153\) 0 0
\(154\) −43.2380 −0.280766
\(155\) 83.6456i 0.539649i
\(156\) 0 0
\(157\) 1.31276 0.00836154 0.00418077 0.999991i \(-0.498669\pi\)
0.00418077 + 0.999991i \(0.498669\pi\)
\(158\) 63.8730i 0.404259i
\(159\) 0 0
\(160\) −43.8196 −0.273872
\(161\) − 79.9252i − 0.496430i
\(162\) 0 0
\(163\) −187.224 −1.14861 −0.574307 0.818640i \(-0.694728\pi\)
−0.574307 + 0.818640i \(0.694728\pi\)
\(164\) 121.544i 0.741125i
\(165\) 0 0
\(166\) 80.2192 0.483248
\(167\) − 106.521i − 0.637853i −0.947779 0.318926i \(-0.896678\pi\)
0.947779 0.318926i \(-0.103322\pi\)
\(168\) 0 0
\(169\) 204.146 1.20796
\(170\) − 206.484i − 1.21461i
\(171\) 0 0
\(172\) −32.6410 −0.189773
\(173\) − 259.950i − 1.50260i −0.659961 0.751300i \(-0.729427\pi\)
0.659961 0.751300i \(-0.270573\pi\)
\(174\) 0 0
\(175\) 92.6141 0.529224
\(176\) 46.2233i 0.262633i
\(177\) 0 0
\(178\) −73.9878 −0.415662
\(179\) − 27.0801i − 0.151285i −0.997135 0.0756426i \(-0.975899\pi\)
0.997135 0.0756426i \(-0.0241008\pi\)
\(180\) 0 0
\(181\) −164.901 −0.911058 −0.455529 0.890221i \(-0.650550\pi\)
−0.455529 + 0.890221i \(0.650550\pi\)
\(182\) 72.2775i 0.397129i
\(183\) 0 0
\(184\) −85.4437 −0.464368
\(185\) − 52.4480i − 0.283502i
\(186\) 0 0
\(187\) −217.811 −1.16477
\(188\) − 38.7217i − 0.205966i
\(189\) 0 0
\(190\) 206.762 1.08822
\(191\) − 6.54668i − 0.0342758i −0.999853 0.0171379i \(-0.994545\pi\)
0.999853 0.0171379i \(-0.00545543\pi\)
\(192\) 0 0
\(193\) 210.507 1.09071 0.545355 0.838205i \(-0.316395\pi\)
0.545355 + 0.838205i \(0.316395\pi\)
\(194\) − 19.9997i − 0.103091i
\(195\) 0 0
\(196\) −14.0000 −0.0714286
\(197\) 51.9722i 0.263818i 0.991262 + 0.131909i \(0.0421107\pi\)
−0.991262 + 0.131909i \(0.957889\pi\)
\(198\) 0 0
\(199\) −375.071 −1.88478 −0.942389 0.334518i \(-0.891427\pi\)
−0.942389 + 0.334518i \(0.891427\pi\)
\(200\) − 99.0087i − 0.495043i
\(201\) 0 0
\(202\) 17.8275 0.0882547
\(203\) − 151.122i − 0.744444i
\(204\) 0 0
\(205\) −470.759 −2.29638
\(206\) 188.513i 0.915109i
\(207\) 0 0
\(208\) 77.2679 0.371480
\(209\) − 218.104i − 1.04356i
\(210\) 0 0
\(211\) −35.3099 −0.167345 −0.0836726 0.996493i \(-0.526665\pi\)
−0.0836726 + 0.996493i \(0.526665\pi\)
\(212\) − 70.8681i − 0.334283i
\(213\) 0 0
\(214\) −11.4224 −0.0533756
\(215\) − 126.423i − 0.588014i
\(216\) 0 0
\(217\) 28.5693 0.131656
\(218\) − 226.329i − 1.03821i
\(219\) 0 0
\(220\) −179.029 −0.813770
\(221\) 364.098i 1.64750i
\(222\) 0 0
\(223\) 5.17718 0.0232161 0.0116080 0.999933i \(-0.496305\pi\)
0.0116080 + 0.999933i \(0.496305\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 0 0
\(226\) 91.5958 0.405291
\(227\) 434.624i 1.91464i 0.289027 + 0.957321i \(0.406668\pi\)
−0.289027 + 0.957321i \(0.593332\pi\)
\(228\) 0 0
\(229\) 184.642 0.806297 0.403148 0.915135i \(-0.367916\pi\)
0.403148 + 0.915135i \(0.367916\pi\)
\(230\) − 330.935i − 1.43885i
\(231\) 0 0
\(232\) −161.556 −0.696364
\(233\) − 258.706i − 1.11033i −0.831741 0.555164i \(-0.812656\pi\)
0.831741 0.555164i \(-0.187344\pi\)
\(234\) 0 0
\(235\) 149.974 0.638189
\(236\) 19.3639i 0.0820506i
\(237\) 0 0
\(238\) −70.5250 −0.296324
\(239\) − 317.321i − 1.32770i −0.747865 0.663851i \(-0.768921\pi\)
0.747865 0.663851i \(-0.231079\pi\)
\(240\) 0 0
\(241\) −275.479 −1.14307 −0.571533 0.820579i \(-0.693651\pi\)
−0.571533 + 0.820579i \(0.693651\pi\)
\(242\) 17.7303i 0.0732657i
\(243\) 0 0
\(244\) −180.561 −0.740004
\(245\) − 54.2240i − 0.221322i
\(246\) 0 0
\(247\) −364.588 −1.47606
\(248\) − 30.5418i − 0.123152i
\(249\) 0 0
\(250\) 109.602 0.438408
\(251\) 84.0847i 0.334999i 0.985872 + 0.167499i \(0.0535692\pi\)
−0.985872 + 0.167499i \(0.946431\pi\)
\(252\) 0 0
\(253\) −349.089 −1.37980
\(254\) 1.87464i 0.00738049i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) − 7.79301i − 0.0303230i −0.999885 0.0151615i \(-0.995174\pi\)
0.999885 0.0151615i \(-0.00482624\pi\)
\(258\) 0 0
\(259\) −17.9137 −0.0691647
\(260\) 299.270i 1.15104i
\(261\) 0 0
\(262\) 6.35418 0.0242526
\(263\) − 298.208i − 1.13387i −0.823763 0.566935i \(-0.808129\pi\)
0.823763 0.566935i \(-0.191871\pi\)
\(264\) 0 0
\(265\) 274.482 1.03578
\(266\) − 70.6199i − 0.265488i
\(267\) 0 0
\(268\) 117.895 0.439908
\(269\) 15.2957i 0.0568615i 0.999596 + 0.0284307i \(0.00905100\pi\)
−0.999596 + 0.0284307i \(0.990949\pi\)
\(270\) 0 0
\(271\) 401.934 1.48315 0.741575 0.670870i \(-0.234079\pi\)
0.741575 + 0.670870i \(0.234079\pi\)
\(272\) 75.3944i 0.277185i
\(273\) 0 0
\(274\) 309.388 1.12915
\(275\) − 404.510i − 1.47095i
\(276\) 0 0
\(277\) −335.563 −1.21142 −0.605709 0.795686i \(-0.707110\pi\)
−0.605709 + 0.795686i \(0.707110\pi\)
\(278\) − 123.713i − 0.445011i
\(279\) 0 0
\(280\) −57.9679 −0.207028
\(281\) 341.669i 1.21591i 0.793973 + 0.607953i \(0.208009\pi\)
−0.793973 + 0.607953i \(0.791991\pi\)
\(282\) 0 0
\(283\) 393.110 1.38908 0.694541 0.719453i \(-0.255607\pi\)
0.694541 + 0.719453i \(0.255607\pi\)
\(284\) − 86.8081i − 0.305662i
\(285\) 0 0
\(286\) 315.686 1.10380
\(287\) 160.788i 0.560238i
\(288\) 0 0
\(289\) −66.2697 −0.229307
\(290\) − 625.731i − 2.15769i
\(291\) 0 0
\(292\) −72.9540 −0.249842
\(293\) 461.623i 1.57550i 0.615993 + 0.787752i \(0.288755\pi\)
−0.615993 + 0.787752i \(0.711245\pi\)
\(294\) 0 0
\(295\) −74.9992 −0.254235
\(296\) 19.1505i 0.0646977i
\(297\) 0 0
\(298\) 299.736 1.00583
\(299\) 583.545i 1.95165i
\(300\) 0 0
\(301\) −43.1799 −0.143455
\(302\) − 267.264i − 0.884979i
\(303\) 0 0
\(304\) −75.4958 −0.248342
\(305\) − 699.338i − 2.29291i
\(306\) 0 0
\(307\) −401.560 −1.30801 −0.654007 0.756489i \(-0.726913\pi\)
−0.654007 + 0.756489i \(0.726913\pi\)
\(308\) 61.1477i 0.198532i
\(309\) 0 0
\(310\) 118.293 0.381589
\(311\) 304.361i 0.978654i 0.872100 + 0.489327i \(0.162758\pi\)
−0.872100 + 0.489327i \(0.837242\pi\)
\(312\) 0 0
\(313\) 588.646 1.88066 0.940329 0.340265i \(-0.110517\pi\)
0.940329 + 0.340265i \(0.110517\pi\)
\(314\) − 1.85653i − 0.00591250i
\(315\) 0 0
\(316\) 90.3301 0.285855
\(317\) 197.678i 0.623590i 0.950149 + 0.311795i \(0.100930\pi\)
−0.950149 + 0.311795i \(0.899070\pi\)
\(318\) 0 0
\(319\) −660.056 −2.06914
\(320\) 61.9702i 0.193657i
\(321\) 0 0
\(322\) −113.031 −0.351029
\(323\) − 355.748i − 1.10139i
\(324\) 0 0
\(325\) −676.188 −2.08058
\(326\) 264.775i 0.812193i
\(327\) 0 0
\(328\) 171.890 0.524054
\(329\) − 51.2239i − 0.155696i
\(330\) 0 0
\(331\) −149.384 −0.451312 −0.225656 0.974207i \(-0.572453\pi\)
−0.225656 + 0.974207i \(0.572453\pi\)
\(332\) − 113.447i − 0.341708i
\(333\) 0 0
\(334\) −150.644 −0.451030
\(335\) 456.625i 1.36306i
\(336\) 0 0
\(337\) −287.008 −0.851654 −0.425827 0.904805i \(-0.640017\pi\)
−0.425827 + 0.904805i \(0.640017\pi\)
\(338\) − 288.706i − 0.854159i
\(339\) 0 0
\(340\) −292.013 −0.858862
\(341\) − 124.782i − 0.365929i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) 46.1613i 0.134190i
\(345\) 0 0
\(346\) −367.624 −1.06250
\(347\) 143.660i 0.414005i 0.978340 + 0.207002i \(0.0663708\pi\)
−0.978340 + 0.207002i \(0.933629\pi\)
\(348\) 0 0
\(349\) −254.201 −0.728370 −0.364185 0.931327i \(-0.618652\pi\)
−0.364185 + 0.931327i \(0.618652\pi\)
\(350\) − 130.976i − 0.374218i
\(351\) 0 0
\(352\) 65.3696 0.185709
\(353\) 64.2134i 0.181908i 0.995855 + 0.0909539i \(0.0289916\pi\)
−0.995855 + 0.0909539i \(0.971008\pi\)
\(354\) 0 0
\(355\) 336.220 0.947099
\(356\) 104.635i 0.293917i
\(357\) 0 0
\(358\) −38.2970 −0.106975
\(359\) 452.646i 1.26085i 0.776250 + 0.630426i \(0.217120\pi\)
−0.776250 + 0.630426i \(0.782880\pi\)
\(360\) 0 0
\(361\) −4.77384 −0.0132239
\(362\) 233.206i 0.644215i
\(363\) 0 0
\(364\) 102.216 0.280813
\(365\) − 282.561i − 0.774140i
\(366\) 0 0
\(367\) 252.250 0.687330 0.343665 0.939092i \(-0.388332\pi\)
0.343665 + 0.939092i \(0.388332\pi\)
\(368\) 120.836i 0.328358i
\(369\) 0 0
\(370\) −74.1726 −0.200467
\(371\) − 93.7497i − 0.252695i
\(372\) 0 0
\(373\) −209.064 −0.560494 −0.280247 0.959928i \(-0.590416\pi\)
−0.280247 + 0.959928i \(0.590416\pi\)
\(374\) 308.032i 0.823614i
\(375\) 0 0
\(376\) −54.7607 −0.145640
\(377\) 1103.36i 2.92669i
\(378\) 0 0
\(379\) −259.675 −0.685158 −0.342579 0.939489i \(-0.611301\pi\)
−0.342579 + 0.939489i \(0.611301\pi\)
\(380\) − 292.406i − 0.769489i
\(381\) 0 0
\(382\) −9.25841 −0.0242367
\(383\) 424.127i 1.10738i 0.832723 + 0.553690i \(0.186781\pi\)
−0.832723 + 0.553690i \(0.813219\pi\)
\(384\) 0 0
\(385\) −236.834 −0.615152
\(386\) − 297.702i − 0.771248i
\(387\) 0 0
\(388\) −28.2839 −0.0728966
\(389\) − 667.457i − 1.71583i −0.513794 0.857913i \(-0.671761\pi\)
0.513794 0.857913i \(-0.328239\pi\)
\(390\) 0 0
\(391\) −569.395 −1.45625
\(392\) 19.7990i 0.0505076i
\(393\) 0 0
\(394\) 73.4998 0.186548
\(395\) 349.861i 0.885724i
\(396\) 0 0
\(397\) −146.230 −0.368339 −0.184169 0.982895i \(-0.558959\pi\)
−0.184169 + 0.982895i \(0.558959\pi\)
\(398\) 530.431i 1.33274i
\(399\) 0 0
\(400\) −140.019 −0.350049
\(401\) 266.900i 0.665585i 0.943000 + 0.332793i \(0.107991\pi\)
−0.943000 + 0.332793i \(0.892009\pi\)
\(402\) 0 0
\(403\) −208.588 −0.517588
\(404\) − 25.2118i − 0.0624055i
\(405\) 0 0
\(406\) −213.719 −0.526402
\(407\) 78.2414i 0.192239i
\(408\) 0 0
\(409\) −97.1741 −0.237589 −0.118795 0.992919i \(-0.537903\pi\)
−0.118795 + 0.992919i \(0.537903\pi\)
\(410\) 665.753i 1.62379i
\(411\) 0 0
\(412\) 266.597 0.647080
\(413\) 25.6161i 0.0620244i
\(414\) 0 0
\(415\) 439.396 1.05879
\(416\) − 109.273i − 0.262676i
\(417\) 0 0
\(418\) −308.446 −0.737909
\(419\) 372.552i 0.889146i 0.895743 + 0.444573i \(0.146645\pi\)
−0.895743 + 0.444573i \(0.853355\pi\)
\(420\) 0 0
\(421\) 380.449 0.903679 0.451840 0.892099i \(-0.350768\pi\)
0.451840 + 0.892099i \(0.350768\pi\)
\(422\) 49.9357i 0.118331i
\(423\) 0 0
\(424\) −100.223 −0.236374
\(425\) − 659.792i − 1.55245i
\(426\) 0 0
\(427\) −238.860 −0.559390
\(428\) 16.1537i 0.0377422i
\(429\) 0 0
\(430\) −178.789 −0.415789
\(431\) 588.231i 1.36480i 0.730977 + 0.682402i \(0.239065\pi\)
−0.730977 + 0.682402i \(0.760935\pi\)
\(432\) 0 0
\(433\) 263.825 0.609295 0.304647 0.952465i \(-0.401461\pi\)
0.304647 + 0.952465i \(0.401461\pi\)
\(434\) − 40.4030i − 0.0930945i
\(435\) 0 0
\(436\) −320.078 −0.734123
\(437\) − 570.161i − 1.30472i
\(438\) 0 0
\(439\) −438.976 −0.999945 −0.499973 0.866041i \(-0.666657\pi\)
−0.499973 + 0.866041i \(0.666657\pi\)
\(440\) 253.186i 0.575422i
\(441\) 0 0
\(442\) 514.912 1.16496
\(443\) − 371.016i − 0.837509i −0.908100 0.418754i \(-0.862467\pi\)
0.908100 0.418754i \(-0.137533\pi\)
\(444\) 0 0
\(445\) −405.265 −0.910707
\(446\) − 7.32164i − 0.0164162i
\(447\) 0 0
\(448\) 21.1660 0.0472456
\(449\) − 134.719i − 0.300043i −0.988683 0.150021i \(-0.952066\pi\)
0.988683 0.150021i \(-0.0479342\pi\)
\(450\) 0 0
\(451\) 702.273 1.55715
\(452\) − 129.536i − 0.286584i
\(453\) 0 0
\(454\) 614.651 1.35386
\(455\) 395.896i 0.870102i
\(456\) 0 0
\(457\) 258.543 0.565739 0.282870 0.959158i \(-0.408714\pi\)
0.282870 + 0.959158i \(0.408714\pi\)
\(458\) − 261.123i − 0.570138i
\(459\) 0 0
\(460\) −468.013 −1.01742
\(461\) − 20.0571i − 0.0435078i −0.999763 0.0217539i \(-0.993075\pi\)
0.999763 0.0217539i \(-0.00692503\pi\)
\(462\) 0 0
\(463\) 622.238 1.34393 0.671963 0.740585i \(-0.265451\pi\)
0.671963 + 0.740585i \(0.265451\pi\)
\(464\) 228.475i 0.492404i
\(465\) 0 0
\(466\) −365.866 −0.785120
\(467\) 433.794i 0.928895i 0.885601 + 0.464448i \(0.153747\pi\)
−0.885601 + 0.464448i \(0.846253\pi\)
\(468\) 0 0
\(469\) 155.961 0.332539
\(470\) − 212.096i − 0.451268i
\(471\) 0 0
\(472\) 27.3847 0.0580185
\(473\) 188.597i 0.398725i
\(474\) 0 0
\(475\) 660.680 1.39091
\(476\) 99.7374i 0.209532i
\(477\) 0 0
\(478\) −448.759 −0.938827
\(479\) 80.0446i 0.167108i 0.996503 + 0.0835539i \(0.0266271\pi\)
−0.996503 + 0.0835539i \(0.973373\pi\)
\(480\) 0 0
\(481\) 130.790 0.271913
\(482\) 389.586i 0.808270i
\(483\) 0 0
\(484\) 25.0744 0.0518067
\(485\) − 109.547i − 0.225871i
\(486\) 0 0
\(487\) −658.966 −1.35311 −0.676556 0.736391i \(-0.736529\pi\)
−0.676556 + 0.736391i \(0.736529\pi\)
\(488\) 255.352i 0.523262i
\(489\) 0 0
\(490\) −76.6843 −0.156498
\(491\) − 284.769i − 0.579977i −0.957030 0.289988i \(-0.906349\pi\)
0.957030 0.289988i \(-0.0936514\pi\)
\(492\) 0 0
\(493\) −1076.61 −2.18379
\(494\) 515.605i 1.04373i
\(495\) 0 0
\(496\) −43.1927 −0.0870820
\(497\) − 114.836i − 0.231059i
\(498\) 0 0
\(499\) −638.811 −1.28018 −0.640091 0.768299i \(-0.721103\pi\)
−0.640091 + 0.768299i \(0.721103\pi\)
\(500\) − 155.001i − 0.310002i
\(501\) 0 0
\(502\) 118.914 0.236880
\(503\) − 202.125i − 0.401838i −0.979608 0.200919i \(-0.935607\pi\)
0.979608 0.200919i \(-0.0643929\pi\)
\(504\) 0 0
\(505\) 97.6489 0.193364
\(506\) 493.686i 0.975665i
\(507\) 0 0
\(508\) 2.65115 0.00521879
\(509\) 311.286i 0.611564i 0.952102 + 0.305782i \(0.0989179\pi\)
−0.952102 + 0.305782i \(0.901082\pi\)
\(510\) 0 0
\(511\) −96.5091 −0.188863
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) −11.0210 −0.0214416
\(515\) 1032.57i 2.00499i
\(516\) 0 0
\(517\) −223.730 −0.432747
\(518\) 25.3337i 0.0489068i
\(519\) 0 0
\(520\) 423.231 0.813906
\(521\) − 723.521i − 1.38872i −0.719629 0.694358i \(-0.755688\pi\)
0.719629 0.694358i \(-0.244312\pi\)
\(522\) 0 0
\(523\) 995.501 1.90344 0.951722 0.306961i \(-0.0993121\pi\)
0.951722 + 0.306961i \(0.0993121\pi\)
\(524\) − 8.98617i − 0.0171492i
\(525\) 0 0
\(526\) −421.729 −0.801767
\(527\) − 203.530i − 0.386205i
\(528\) 0 0
\(529\) −383.578 −0.725100
\(530\) − 388.176i − 0.732408i
\(531\) 0 0
\(532\) −99.8716 −0.187729
\(533\) − 1173.94i − 2.20251i
\(534\) 0 0
\(535\) −62.5655 −0.116945
\(536\) − 166.729i − 0.311062i
\(537\) 0 0
\(538\) 21.6314 0.0402071
\(539\) 80.8908i 0.150076i
\(540\) 0 0
\(541\) −447.086 −0.826407 −0.413204 0.910639i \(-0.635590\pi\)
−0.413204 + 0.910639i \(0.635590\pi\)
\(542\) − 568.420i − 1.04875i
\(543\) 0 0
\(544\) 106.624 0.196000
\(545\) − 1239.71i − 2.27469i
\(546\) 0 0
\(547\) 1029.23 1.88159 0.940795 0.338977i \(-0.110081\pi\)
0.940795 + 0.338977i \(0.110081\pi\)
\(548\) − 437.540i − 0.798431i
\(549\) 0 0
\(550\) −572.064 −1.04012
\(551\) − 1078.06i − 1.95655i
\(552\) 0 0
\(553\) 119.495 0.216086
\(554\) 474.557i 0.856602i
\(555\) 0 0
\(556\) −174.957 −0.314670
\(557\) − 618.337i − 1.11012i −0.831810 0.555061i \(-0.812695\pi\)
0.831810 0.555061i \(-0.187305\pi\)
\(558\) 0 0
\(559\) 315.262 0.563976
\(560\) 81.9789i 0.146391i
\(561\) 0 0
\(562\) 483.194 0.859775
\(563\) 6.89457i 0.0122461i 0.999981 + 0.00612306i \(0.00194904\pi\)
−0.999981 + 0.00612306i \(0.998051\pi\)
\(564\) 0 0
\(565\) 501.711 0.887984
\(566\) − 555.942i − 0.982230i
\(567\) 0 0
\(568\) −122.765 −0.216136
\(569\) 627.136i 1.10217i 0.834448 + 0.551086i \(0.185786\pi\)
−0.834448 + 0.551086i \(0.814214\pi\)
\(570\) 0 0
\(571\) −584.524 −1.02368 −0.511842 0.859080i \(-0.671037\pi\)
−0.511842 + 0.859080i \(0.671037\pi\)
\(572\) − 446.448i − 0.780503i
\(573\) 0 0
\(574\) 227.389 0.396148
\(575\) − 1057.46i − 1.83906i
\(576\) 0 0
\(577\) 113.503 0.196713 0.0983563 0.995151i \(-0.468642\pi\)
0.0983563 + 0.995151i \(0.468642\pi\)
\(578\) 93.7195i 0.162144i
\(579\) 0 0
\(580\) −884.917 −1.52572
\(581\) − 150.076i − 0.258307i
\(582\) 0 0
\(583\) −409.470 −0.702350
\(584\) 103.173i 0.176665i
\(585\) 0 0
\(586\) 652.833 1.11405
\(587\) − 131.018i − 0.223199i −0.993753 0.111600i \(-0.964403\pi\)
0.993753 0.111600i \(-0.0355974\pi\)
\(588\) 0 0
\(589\) 203.804 0.346017
\(590\) 106.065i 0.179771i
\(591\) 0 0
\(592\) 27.0829 0.0457482
\(593\) 718.635i 1.21186i 0.795517 + 0.605931i \(0.207199\pi\)
−0.795517 + 0.605931i \(0.792801\pi\)
\(594\) 0 0
\(595\) −386.297 −0.649239
\(596\) − 423.891i − 0.711226i
\(597\) 0 0
\(598\) 825.257 1.38003
\(599\) − 1056.67i − 1.76405i −0.471200 0.882027i \(-0.656179\pi\)
0.471200 0.882027i \(-0.343821\pi\)
\(600\) 0 0
\(601\) −588.233 −0.978757 −0.489379 0.872071i \(-0.662776\pi\)
−0.489379 + 0.872071i \(0.662776\pi\)
\(602\) 61.0657i 0.101438i
\(603\) 0 0
\(604\) −377.968 −0.625775
\(605\) 97.1168i 0.160524i
\(606\) 0 0
\(607\) 996.317 1.64138 0.820690 0.571374i \(-0.193589\pi\)
0.820690 + 0.571374i \(0.193589\pi\)
\(608\) 106.767i 0.175604i
\(609\) 0 0
\(610\) −989.013 −1.62133
\(611\) 373.993i 0.612099i
\(612\) 0 0
\(613\) −334.457 −0.545607 −0.272803 0.962070i \(-0.587951\pi\)
−0.272803 + 0.962070i \(0.587951\pi\)
\(614\) 567.892i 0.924905i
\(615\) 0 0
\(616\) 86.4759 0.140383
\(617\) − 191.882i − 0.310991i −0.987837 0.155496i \(-0.950303\pi\)
0.987837 0.155496i \(-0.0496975\pi\)
\(618\) 0 0
\(619\) 874.358 1.41253 0.706267 0.707946i \(-0.250378\pi\)
0.706267 + 0.707946i \(0.250378\pi\)
\(620\) − 167.291i − 0.269824i
\(621\) 0 0
\(622\) 430.432 0.692013
\(623\) 138.419i 0.222181i
\(624\) 0 0
\(625\) −274.782 −0.439651
\(626\) − 832.471i − 1.32983i
\(627\) 0 0
\(628\) −2.62552 −0.00418077
\(629\) 127.619i 0.202891i
\(630\) 0 0
\(631\) 515.900 0.817592 0.408796 0.912626i \(-0.365949\pi\)
0.408796 + 0.912626i \(0.365949\pi\)
\(632\) − 127.746i − 0.202130i
\(633\) 0 0
\(634\) 279.559 0.440944
\(635\) 10.2683i 0.0161705i
\(636\) 0 0
\(637\) 135.219 0.212275
\(638\) 933.459i 1.46310i
\(639\) 0 0
\(640\) 87.6392 0.136936
\(641\) 605.857i 0.945175i 0.881284 + 0.472588i \(0.156680\pi\)
−0.881284 + 0.472588i \(0.843320\pi\)
\(642\) 0 0
\(643\) 218.570 0.339922 0.169961 0.985451i \(-0.445636\pi\)
0.169961 + 0.985451i \(0.445636\pi\)
\(644\) 159.850i 0.248215i
\(645\) 0 0
\(646\) −503.103 −0.778797
\(647\) − 500.886i − 0.774167i −0.922045 0.387084i \(-0.873482\pi\)
0.922045 0.387084i \(-0.126518\pi\)
\(648\) 0 0
\(649\) 111.883 0.172393
\(650\) 956.274i 1.47119i
\(651\) 0 0
\(652\) 374.448 0.574307
\(653\) − 848.574i − 1.29950i −0.760148 0.649750i \(-0.774873\pi\)
0.760148 0.649750i \(-0.225127\pi\)
\(654\) 0 0
\(655\) 34.8047 0.0531369
\(656\) − 243.089i − 0.370562i
\(657\) 0 0
\(658\) −72.4416 −0.110094
\(659\) 270.621i 0.410654i 0.978693 + 0.205327i \(0.0658258\pi\)
−0.978693 + 0.205327i \(0.934174\pi\)
\(660\) 0 0
\(661\) −952.799 −1.44145 −0.720726 0.693221i \(-0.756191\pi\)
−0.720726 + 0.693221i \(0.756191\pi\)
\(662\) 211.261i 0.319126i
\(663\) 0 0
\(664\) −160.438 −0.241624
\(665\) − 386.817i − 0.581679i
\(666\) 0 0
\(667\) −1725.50 −2.58695
\(668\) 213.043i 0.318926i
\(669\) 0 0
\(670\) 645.766 0.963830
\(671\) 1043.27i 1.55479i
\(672\) 0 0
\(673\) 69.8556 0.103797 0.0518987 0.998652i \(-0.483473\pi\)
0.0518987 + 0.998652i \(0.483473\pi\)
\(674\) 405.890i 0.602211i
\(675\) 0 0
\(676\) −408.292 −0.603982
\(677\) 150.717i 0.222625i 0.993785 + 0.111312i \(0.0355054\pi\)
−0.993785 + 0.111312i \(0.964495\pi\)
\(678\) 0 0
\(679\) −37.4160 −0.0551046
\(680\) 412.969i 0.607307i
\(681\) 0 0
\(682\) −176.468 −0.258751
\(683\) − 87.2405i − 0.127731i −0.997959 0.0638656i \(-0.979657\pi\)
0.997959 0.0638656i \(-0.0203429\pi\)
\(684\) 0 0
\(685\) 1694.65 2.47395
\(686\) 26.1916i 0.0381802i
\(687\) 0 0
\(688\) 65.2819 0.0948865
\(689\) 684.479i 0.993438i
\(690\) 0 0
\(691\) 699.912 1.01290 0.506449 0.862270i \(-0.330958\pi\)
0.506449 + 0.862270i \(0.330958\pi\)
\(692\) 519.899i 0.751300i
\(693\) 0 0
\(694\) 203.165 0.292746
\(695\) − 677.632i − 0.975010i
\(696\) 0 0
\(697\) 1145.47 1.64343
\(698\) 359.495i 0.515035i
\(699\) 0 0
\(700\) −185.228 −0.264612
\(701\) − 760.013i − 1.08418i −0.840319 0.542092i \(-0.817632\pi\)
0.840319 0.542092i \(-0.182368\pi\)
\(702\) 0 0
\(703\) −127.790 −0.181779
\(704\) − 92.4466i − 0.131316i
\(705\) 0 0
\(706\) 90.8115 0.128628
\(707\) − 33.3521i − 0.0471741i
\(708\) 0 0
\(709\) 494.571 0.697561 0.348780 0.937204i \(-0.386596\pi\)
0.348780 + 0.937204i \(0.386596\pi\)
\(710\) − 475.487i − 0.669700i
\(711\) 0 0
\(712\) 147.976 0.207831
\(713\) − 326.201i − 0.457504i
\(714\) 0 0
\(715\) 1729.15 2.41840
\(716\) 54.1601i 0.0756426i
\(717\) 0 0
\(718\) 640.137 0.891556
\(719\) 1035.58i 1.44031i 0.693812 + 0.720156i \(0.255930\pi\)
−0.693812 + 0.720156i \(0.744070\pi\)
\(720\) 0 0
\(721\) 352.675 0.489147
\(722\) 6.75123i 0.00935074i
\(723\) 0 0
\(724\) 329.803 0.455529
\(725\) − 1999.44i − 2.75784i
\(726\) 0 0
\(727\) −1144.96 −1.57491 −0.787455 0.616372i \(-0.788602\pi\)
−0.787455 + 0.616372i \(0.788602\pi\)
\(728\) − 144.555i − 0.198565i
\(729\) 0 0
\(730\) −399.602 −0.547399
\(731\) 307.618i 0.420818i
\(732\) 0 0
\(733\) 1251.72 1.70767 0.853834 0.520545i \(-0.174271\pi\)
0.853834 + 0.520545i \(0.174271\pi\)
\(734\) − 356.735i − 0.486016i
\(735\) 0 0
\(736\) 170.887 0.232184
\(737\) − 681.190i − 0.924274i
\(738\) 0 0
\(739\) −490.046 −0.663121 −0.331560 0.943434i \(-0.607575\pi\)
−0.331560 + 0.943434i \(0.607575\pi\)
\(740\) 104.896i 0.141751i
\(741\) 0 0
\(742\) −132.582 −0.178682
\(743\) − 760.621i − 1.02372i −0.859070 0.511858i \(-0.828957\pi\)
0.859070 0.511858i \(-0.171043\pi\)
\(744\) 0 0
\(745\) 1641.79 2.20374
\(746\) 295.662i 0.396329i
\(747\) 0 0
\(748\) 435.622 0.582383
\(749\) 21.3693i 0.0285305i
\(750\) 0 0
\(751\) 1321.81 1.76007 0.880037 0.474906i \(-0.157518\pi\)
0.880037 + 0.474906i \(0.157518\pi\)
\(752\) 77.4433i 0.102983i
\(753\) 0 0
\(754\) 1560.39 2.06948
\(755\) − 1463.92i − 1.93897i
\(756\) 0 0
\(757\) −465.423 −0.614825 −0.307413 0.951576i \(-0.599463\pi\)
−0.307413 + 0.951576i \(0.599463\pi\)
\(758\) 367.236i 0.484480i
\(759\) 0 0
\(760\) −413.524 −0.544111
\(761\) − 255.654i − 0.335945i −0.985792 0.167972i \(-0.946278\pi\)
0.985792 0.167972i \(-0.0537219\pi\)
\(762\) 0 0
\(763\) −423.423 −0.554945
\(764\) 13.0934i 0.0171379i
\(765\) 0 0
\(766\) 599.806 0.783036
\(767\) − 187.026i − 0.243842i
\(768\) 0 0
\(769\) 721.799 0.938621 0.469310 0.883033i \(-0.344503\pi\)
0.469310 + 0.883033i \(0.344503\pi\)
\(770\) 334.933i 0.434978i
\(771\) 0 0
\(772\) −421.014 −0.545355
\(773\) 910.437i 1.17780i 0.808207 + 0.588898i \(0.200438\pi\)
−0.808207 + 0.588898i \(0.799562\pi\)
\(774\) 0 0
\(775\) 377.988 0.487727
\(776\) 39.9994i 0.0515456i
\(777\) 0 0
\(778\) −943.926 −1.21327
\(779\) 1147.01i 1.47242i
\(780\) 0 0
\(781\) −501.570 −0.642215
\(782\) 805.247i 1.02973i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) − 10.1690i − 0.0129542i
\(786\) 0 0
\(787\) 69.0850 0.0877827 0.0438914 0.999036i \(-0.486024\pi\)
0.0438914 + 0.999036i \(0.486024\pi\)
\(788\) − 103.944i − 0.131909i
\(789\) 0 0
\(790\) 494.778 0.626301
\(791\) − 171.360i − 0.216637i
\(792\) 0 0
\(793\) 1743.95 2.19918
\(794\) 206.801i 0.260455i
\(795\) 0 0
\(796\) 750.142 0.942389
\(797\) 146.955i 0.184385i 0.995741 + 0.0921926i \(0.0293875\pi\)
−0.995741 + 0.0921926i \(0.970612\pi\)
\(798\) 0 0
\(799\) −364.924 −0.456726
\(800\) 198.017i 0.247522i
\(801\) 0 0
\(802\) 377.453 0.470640
\(803\) 421.522i 0.524934i
\(804\) 0 0
\(805\) −619.123 −0.769097
\(806\) 294.988i 0.365990i
\(807\) 0 0
\(808\) −35.6549 −0.0441274
\(809\) 814.298i 1.00655i 0.864127 + 0.503274i \(0.167872\pi\)
−0.864127 + 0.503274i \(0.832128\pi\)
\(810\) 0 0
\(811\) 296.389 0.365461 0.182731 0.983163i \(-0.441506\pi\)
0.182731 + 0.983163i \(0.441506\pi\)
\(812\) 302.244i 0.372222i
\(813\) 0 0
\(814\) 110.650 0.135934
\(815\) 1450.29i 1.77950i
\(816\) 0 0
\(817\) −308.032 −0.377028
\(818\) 137.425i 0.168001i
\(819\) 0 0
\(820\) 941.517 1.14819
\(821\) − 220.314i − 0.268348i −0.990958 0.134174i \(-0.957162\pi\)
0.990958 0.134174i \(-0.0428381\pi\)
\(822\) 0 0
\(823\) 121.059 0.147095 0.0735476 0.997292i \(-0.476568\pi\)
0.0735476 + 0.997292i \(0.476568\pi\)
\(824\) − 377.025i − 0.457555i
\(825\) 0 0
\(826\) 36.2266 0.0438579
\(827\) 792.775i 0.958615i 0.877647 + 0.479308i \(0.159112\pi\)
−0.877647 + 0.479308i \(0.840888\pi\)
\(828\) 0 0
\(829\) 361.158 0.435655 0.217828 0.975987i \(-0.430103\pi\)
0.217828 + 0.975987i \(0.430103\pi\)
\(830\) − 621.400i − 0.748675i
\(831\) 0 0
\(832\) −154.536 −0.185740
\(833\) 131.940i 0.158392i
\(834\) 0 0
\(835\) −825.145 −0.988197
\(836\) 436.208i 0.521780i
\(837\) 0 0
\(838\) 526.869 0.628721
\(839\) 74.4834i 0.0887764i 0.999014 + 0.0443882i \(0.0141339\pi\)
−0.999014 + 0.0443882i \(0.985866\pi\)
\(840\) 0 0
\(841\) −2421.56 −2.87938
\(842\) − 538.036i − 0.638998i
\(843\) 0 0
\(844\) 70.6197 0.0836726
\(845\) − 1581.37i − 1.87144i
\(846\) 0 0
\(847\) 33.1704 0.0391622
\(848\) 141.736i 0.167142i
\(849\) 0 0
\(850\) −933.087 −1.09775
\(851\) 204.536i 0.240348i
\(852\) 0 0
\(853\) 547.490 0.641840 0.320920 0.947106i \(-0.396008\pi\)
0.320920 + 0.947106i \(0.396008\pi\)
\(854\) 337.799i 0.395549i
\(855\) 0 0
\(856\) 22.8448 0.0266878
\(857\) − 199.118i − 0.232343i −0.993229 0.116172i \(-0.962938\pi\)
0.993229 0.116172i \(-0.0370623\pi\)
\(858\) 0 0
\(859\) −772.474 −0.899272 −0.449636 0.893212i \(-0.648446\pi\)
−0.449636 + 0.893212i \(0.648446\pi\)
\(860\) 252.846i 0.294007i
\(861\) 0 0
\(862\) 831.884 0.965063
\(863\) 731.096i 0.847157i 0.905859 + 0.423578i \(0.139226\pi\)
−0.905859 + 0.423578i \(0.860774\pi\)
\(864\) 0 0
\(865\) −2013.64 −2.32791
\(866\) − 373.104i − 0.430836i
\(867\) 0 0
\(868\) −57.1385 −0.0658278
\(869\) − 521.919i − 0.600598i
\(870\) 0 0
\(871\) −1138.69 −1.30734
\(872\) 452.658i 0.519103i
\(873\) 0 0
\(874\) −806.330 −0.922574
\(875\) − 205.047i − 0.234339i
\(876\) 0 0
\(877\) −520.430 −0.593421 −0.296710 0.954968i \(-0.595890\pi\)
−0.296710 + 0.954968i \(0.595890\pi\)
\(878\) 620.806i 0.707068i
\(879\) 0 0
\(880\) 358.059 0.406885
\(881\) − 667.717i − 0.757908i −0.925415 0.378954i \(-0.876284\pi\)
0.925415 0.378954i \(-0.123716\pi\)
\(882\) 0 0
\(883\) −133.934 −0.151680 −0.0758402 0.997120i \(-0.524164\pi\)
−0.0758402 + 0.997120i \(0.524164\pi\)
\(884\) − 728.196i − 0.823751i
\(885\) 0 0
\(886\) −524.696 −0.592208
\(887\) − 822.425i − 0.927198i −0.886045 0.463599i \(-0.846558\pi\)
0.886045 0.463599i \(-0.153442\pi\)
\(888\) 0 0
\(889\) 3.50714 0.00394504
\(890\) 573.131i 0.643967i
\(891\) 0 0
\(892\) −10.3544 −0.0116080
\(893\) − 365.415i − 0.409200i
\(894\) 0 0
\(895\) −209.770 −0.234380
\(896\) − 29.9333i − 0.0334077i
\(897\) 0 0
\(898\) −190.522 −0.212162
\(899\) − 616.778i − 0.686072i
\(900\) 0 0
\(901\) −667.882 −0.741268
\(902\) − 993.165i − 1.10107i
\(903\) 0 0
\(904\) −183.192 −0.202646
\(905\) 1277.37i 1.41146i
\(906\) 0 0
\(907\) 1082.24 1.19321 0.596606 0.802534i \(-0.296516\pi\)
0.596606 + 0.802534i \(0.296516\pi\)
\(908\) − 869.247i − 0.957321i
\(909\) 0 0
\(910\) 559.882 0.615255
\(911\) − 711.803i − 0.781342i −0.920530 0.390671i \(-0.872243\pi\)
0.920530 0.390671i \(-0.127757\pi\)
\(912\) 0 0
\(913\) −655.487 −0.717949
\(914\) − 365.635i − 0.400038i
\(915\) 0 0
\(916\) −369.284 −0.403148
\(917\) − 11.8876i − 0.0129636i
\(918\) 0 0
\(919\) 1577.09 1.71609 0.858045 0.513575i \(-0.171679\pi\)
0.858045 + 0.513575i \(0.171679\pi\)
\(920\) 661.871i 0.719425i
\(921\) 0 0
\(922\) −28.3650 −0.0307647
\(923\) 838.436i 0.908381i
\(924\) 0 0
\(925\) −237.008 −0.256225
\(926\) − 879.977i − 0.950299i
\(927\) 0 0
\(928\) 323.113 0.348182
\(929\) 801.283i 0.862522i 0.902227 + 0.431261i \(0.141931\pi\)
−0.902227 + 0.431261i \(0.858069\pi\)
\(930\) 0 0
\(931\) −132.118 −0.141909
\(932\) 517.413i 0.555164i
\(933\) 0 0
\(934\) 613.478 0.656828
\(935\) 1687.23i 1.80452i
\(936\) 0 0
\(937\) −776.731 −0.828955 −0.414478 0.910060i \(-0.636036\pi\)
−0.414478 + 0.910060i \(0.636036\pi\)
\(938\) − 220.562i − 0.235141i
\(939\) 0 0
\(940\) −299.949 −0.319094
\(941\) 246.742i 0.262212i 0.991368 + 0.131106i \(0.0418529\pi\)
−0.991368 + 0.131106i \(0.958147\pi\)
\(942\) 0 0
\(943\) 1835.86 1.94683
\(944\) − 38.7279i − 0.0410253i
\(945\) 0 0
\(946\) 266.716 0.281941
\(947\) 120.513i 0.127258i 0.997974 + 0.0636288i \(0.0202674\pi\)
−0.997974 + 0.0636288i \(0.979733\pi\)
\(948\) 0 0
\(949\) 704.625 0.742493
\(950\) − 934.343i − 0.983518i
\(951\) 0 0
\(952\) 141.050 0.148162
\(953\) − 1774.27i − 1.86177i −0.365306 0.930887i \(-0.619036\pi\)
0.365306 0.930887i \(-0.380964\pi\)
\(954\) 0 0
\(955\) −50.7124 −0.0531020
\(956\) 634.641i 0.663851i
\(957\) 0 0
\(958\) 113.200 0.118163
\(959\) − 578.811i − 0.603557i
\(960\) 0 0
\(961\) −844.400 −0.878668
\(962\) − 184.965i − 0.192271i
\(963\) 0 0
\(964\) 550.958 0.571533
\(965\) − 1630.65i − 1.68979i
\(966\) 0 0
\(967\) 1359.41 1.40580 0.702899 0.711289i \(-0.251888\pi\)
0.702899 + 0.711289i \(0.251888\pi\)
\(968\) − 35.4606i − 0.0366329i
\(969\) 0 0
\(970\) −154.923 −0.159715
\(971\) − 535.351i − 0.551340i −0.961252 0.275670i \(-0.911100\pi\)
0.961252 0.275670i \(-0.0888997\pi\)
\(972\) 0 0
\(973\) −231.446 −0.237869
\(974\) 931.919i 0.956795i
\(975\) 0 0
\(976\) 361.122 0.370002
\(977\) − 940.284i − 0.962420i −0.876605 0.481210i \(-0.840197\pi\)
0.876605 0.481210i \(-0.159803\pi\)
\(978\) 0 0
\(979\) 604.570 0.617538
\(980\) 108.448i 0.110661i
\(981\) 0 0
\(982\) −402.724 −0.410106
\(983\) 443.512i 0.451182i 0.974222 + 0.225591i \(0.0724313\pi\)
−0.974222 + 0.225591i \(0.927569\pi\)
\(984\) 0 0
\(985\) 402.591 0.408722
\(986\) 1522.56i 1.54417i
\(987\) 0 0
\(988\) 729.176 0.738032
\(989\) 493.024i 0.498507i
\(990\) 0 0
\(991\) 1030.06 1.03941 0.519707 0.854344i \(-0.326041\pi\)
0.519707 + 0.854344i \(0.326041\pi\)
\(992\) 61.0836i 0.0615762i
\(993\) 0 0
\(994\) −162.403 −0.163383
\(995\) 2905.40i 2.92000i
\(996\) 0 0
\(997\) −1041.76 −1.04489 −0.522446 0.852672i \(-0.674980\pi\)
−0.522446 + 0.852672i \(0.674980\pi\)
\(998\) 903.415i 0.905225i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.3.b.c.323.1 24
3.2 odd 2 inner 1134.3.b.c.323.24 24
9.2 odd 6 378.3.q.a.71.7 24
9.4 even 3 378.3.q.a.197.7 24
9.5 odd 6 126.3.q.a.29.3 24
9.7 even 3 126.3.q.a.113.3 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.3 24 9.5 odd 6
126.3.q.a.113.3 yes 24 9.7 even 3
378.3.q.a.71.7 24 9.2 odd 6
378.3.q.a.197.7 24 9.4 even 3
1134.3.b.c.323.1 24 1.1 even 1 trivial
1134.3.b.c.323.24 24 3.2 odd 2 inner