Properties

Label 1127.4.a.m.1.6
Level $1127$
Weight $4$
Character 1127.1
Self dual yes
Analytic conductor $66.495$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1127,4,Mod(1,1127)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1127.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1127, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4951525765\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Character \(\chi\) \(=\) 1127.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.93780 q^{2} -3.29133 q^{3} +0.630669 q^{4} +19.2434 q^{5} +9.66926 q^{6} +21.6496 q^{8} -16.1672 q^{9} -56.5334 q^{10} -50.0729 q^{11} -2.07574 q^{12} +35.7919 q^{13} -63.3364 q^{15} -68.6476 q^{16} -114.078 q^{17} +47.4959 q^{18} -137.489 q^{19} +12.1362 q^{20} +147.104 q^{22} +23.0000 q^{23} -71.2560 q^{24} +245.310 q^{25} -105.150 q^{26} +142.077 q^{27} +182.527 q^{29} +186.070 q^{30} +39.8629 q^{31} +28.4760 q^{32} +164.806 q^{33} +335.138 q^{34} -10.1961 q^{36} +177.627 q^{37} +403.916 q^{38} -117.803 q^{39} +416.613 q^{40} -10.3871 q^{41} -258.445 q^{43} -31.5794 q^{44} -311.112 q^{45} -67.5694 q^{46} -434.979 q^{47} +225.942 q^{48} -720.671 q^{50} +375.467 q^{51} +22.5729 q^{52} -209.452 q^{53} -417.395 q^{54} -963.574 q^{55} +452.522 q^{57} -536.227 q^{58} +71.1467 q^{59} -39.9443 q^{60} +594.367 q^{61} -117.109 q^{62} +465.524 q^{64} +688.760 q^{65} -484.167 q^{66} +256.024 q^{67} -71.9453 q^{68} -75.7005 q^{69} +341.011 q^{71} -350.013 q^{72} +397.070 q^{73} -521.832 q^{74} -807.394 q^{75} -86.7102 q^{76} +346.082 q^{78} -560.541 q^{79} -1321.02 q^{80} -31.1091 q^{81} +30.5151 q^{82} -285.389 q^{83} -2195.25 q^{85} +759.261 q^{86} -600.755 q^{87} -1084.06 q^{88} +958.424 q^{89} +913.984 q^{90} +14.5054 q^{92} -131.202 q^{93} +1277.88 q^{94} -2645.76 q^{95} -93.7238 q^{96} +325.599 q^{97} +809.536 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 18 q^{3} + 88 q^{4} + 20 q^{5} + 36 q^{6} + 21 q^{8} + 126 q^{9} + 200 q^{10} + 20 q^{11} + 161 q^{12} + 196 q^{13} + 20 q^{15} + 324 q^{16} + 242 q^{17} + 85 q^{18} + 128 q^{19} + 46 q^{20} + 14 q^{22}+ \cdots + 3570 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.93780 −1.03867 −0.519335 0.854571i \(-0.673820\pi\)
−0.519335 + 0.854571i \(0.673820\pi\)
\(3\) −3.29133 −0.633416 −0.316708 0.948523i \(-0.602578\pi\)
−0.316708 + 0.948523i \(0.602578\pi\)
\(4\) 0.630669 0.0788337
\(5\) 19.2434 1.72118 0.860592 0.509294i \(-0.170094\pi\)
0.860592 + 0.509294i \(0.170094\pi\)
\(6\) 9.66926 0.657910
\(7\) 0 0
\(8\) 21.6496 0.956787
\(9\) −16.1672 −0.598784
\(10\) −56.5334 −1.78774
\(11\) −50.0729 −1.37250 −0.686252 0.727364i \(-0.740745\pi\)
−0.686252 + 0.727364i \(0.740745\pi\)
\(12\) −2.07574 −0.0499345
\(13\) 35.7919 0.763607 0.381804 0.924243i \(-0.375303\pi\)
0.381804 + 0.924243i \(0.375303\pi\)
\(14\) 0 0
\(15\) −63.3364 −1.09023
\(16\) −68.6476 −1.07262
\(17\) −114.078 −1.62752 −0.813762 0.581198i \(-0.802584\pi\)
−0.813762 + 0.581198i \(0.802584\pi\)
\(18\) 47.4959 0.621939
\(19\) −137.489 −1.66011 −0.830057 0.557678i \(-0.811692\pi\)
−0.830057 + 0.557678i \(0.811692\pi\)
\(20\) 12.1362 0.135687
\(21\) 0 0
\(22\) 147.104 1.42558
\(23\) 23.0000 0.208514
\(24\) −71.2560 −0.606044
\(25\) 245.310 1.96248
\(26\) −105.150 −0.793136
\(27\) 142.077 1.01270
\(28\) 0 0
\(29\) 182.527 1.16877 0.584385 0.811476i \(-0.301336\pi\)
0.584385 + 0.811476i \(0.301336\pi\)
\(30\) 186.070 1.13238
\(31\) 39.8629 0.230954 0.115477 0.993310i \(-0.463160\pi\)
0.115477 + 0.993310i \(0.463160\pi\)
\(32\) 28.4760 0.157309
\(33\) 164.806 0.869366
\(34\) 335.138 1.69046
\(35\) 0 0
\(36\) −10.1961 −0.0472043
\(37\) 177.627 0.789235 0.394617 0.918846i \(-0.370877\pi\)
0.394617 + 0.918846i \(0.370877\pi\)
\(38\) 403.916 1.72431
\(39\) −117.803 −0.483681
\(40\) 416.613 1.64681
\(41\) −10.3871 −0.0395655 −0.0197827 0.999804i \(-0.506297\pi\)
−0.0197827 + 0.999804i \(0.506297\pi\)
\(42\) 0 0
\(43\) −258.445 −0.916571 −0.458285 0.888805i \(-0.651536\pi\)
−0.458285 + 0.888805i \(0.651536\pi\)
\(44\) −31.5794 −0.108199
\(45\) −311.112 −1.03062
\(46\) −67.5694 −0.216577
\(47\) −434.979 −1.34996 −0.674981 0.737835i \(-0.735848\pi\)
−0.674981 + 0.737835i \(0.735848\pi\)
\(48\) 225.942 0.679414
\(49\) 0 0
\(50\) −720.671 −2.03836
\(51\) 375.467 1.03090
\(52\) 22.5729 0.0601980
\(53\) −209.452 −0.542839 −0.271419 0.962461i \(-0.587493\pi\)
−0.271419 + 0.962461i \(0.587493\pi\)
\(54\) −417.395 −1.05186
\(55\) −963.574 −2.36233
\(56\) 0 0
\(57\) 452.522 1.05154
\(58\) −536.227 −1.21397
\(59\) 71.1467 0.156992 0.0784958 0.996914i \(-0.474988\pi\)
0.0784958 + 0.996914i \(0.474988\pi\)
\(60\) −39.9443 −0.0859465
\(61\) 594.367 1.24756 0.623778 0.781601i \(-0.285597\pi\)
0.623778 + 0.781601i \(0.285597\pi\)
\(62\) −117.109 −0.239885
\(63\) 0 0
\(64\) 465.524 0.909227
\(65\) 688.760 1.31431
\(66\) −484.167 −0.902983
\(67\) 256.024 0.466841 0.233420 0.972376i \(-0.425008\pi\)
0.233420 + 0.972376i \(0.425008\pi\)
\(68\) −71.9453 −0.128304
\(69\) −75.7005 −0.132076
\(70\) 0 0
\(71\) 341.011 0.570007 0.285004 0.958526i \(-0.408005\pi\)
0.285004 + 0.958526i \(0.408005\pi\)
\(72\) −350.013 −0.572909
\(73\) 397.070 0.636623 0.318312 0.947986i \(-0.396884\pi\)
0.318312 + 0.947986i \(0.396884\pi\)
\(74\) −521.832 −0.819754
\(75\) −807.394 −1.24306
\(76\) −86.7102 −0.130873
\(77\) 0 0
\(78\) 346.082 0.502385
\(79\) −560.541 −0.798301 −0.399151 0.916885i \(-0.630695\pi\)
−0.399151 + 0.916885i \(0.630695\pi\)
\(80\) −1321.02 −1.84618
\(81\) −31.1091 −0.0426736
\(82\) 30.5151 0.0410954
\(83\) −285.389 −0.377416 −0.188708 0.982033i \(-0.560430\pi\)
−0.188708 + 0.982033i \(0.560430\pi\)
\(84\) 0 0
\(85\) −2195.25 −2.80127
\(86\) 759.261 0.952014
\(87\) −600.755 −0.740318
\(88\) −1084.06 −1.31319
\(89\) 958.424 1.14149 0.570746 0.821127i \(-0.306654\pi\)
0.570746 + 0.821127i \(0.306654\pi\)
\(90\) 913.984 1.07047
\(91\) 0 0
\(92\) 14.5054 0.0164380
\(93\) −131.202 −0.146290
\(94\) 1277.88 1.40216
\(95\) −2645.76 −2.85736
\(96\) −93.7238 −0.0996421
\(97\) 325.599 0.340821 0.170410 0.985373i \(-0.445491\pi\)
0.170410 + 0.985373i \(0.445491\pi\)
\(98\) 0 0
\(99\) 809.536 0.821833
\(100\) 154.709 0.154709
\(101\) −604.882 −0.595920 −0.297960 0.954578i \(-0.596306\pi\)
−0.297960 + 0.954578i \(0.596306\pi\)
\(102\) −1103.05 −1.07076
\(103\) −1176.39 −1.12537 −0.562684 0.826672i \(-0.690231\pi\)
−0.562684 + 0.826672i \(0.690231\pi\)
\(104\) 774.882 0.730610
\(105\) 0 0
\(106\) 615.328 0.563830
\(107\) 2003.72 1.81035 0.905173 0.425044i \(-0.139741\pi\)
0.905173 + 0.425044i \(0.139741\pi\)
\(108\) 89.6038 0.0798345
\(109\) −585.876 −0.514833 −0.257416 0.966301i \(-0.582871\pi\)
−0.257416 + 0.966301i \(0.582871\pi\)
\(110\) 2830.79 2.45368
\(111\) −584.628 −0.499914
\(112\) 0 0
\(113\) −391.508 −0.325929 −0.162964 0.986632i \(-0.552106\pi\)
−0.162964 + 0.986632i \(0.552106\pi\)
\(114\) −1329.42 −1.09221
\(115\) 442.599 0.358892
\(116\) 115.114 0.0921385
\(117\) −578.654 −0.457236
\(118\) −209.015 −0.163062
\(119\) 0 0
\(120\) −1371.21 −1.04311
\(121\) 1176.29 0.883765
\(122\) −1746.13 −1.29580
\(123\) 34.1872 0.0250614
\(124\) 25.1403 0.0182070
\(125\) 2315.17 1.65660
\(126\) 0 0
\(127\) −868.409 −0.606762 −0.303381 0.952869i \(-0.598116\pi\)
−0.303381 + 0.952869i \(0.598116\pi\)
\(128\) −1595.42 −1.10169
\(129\) 850.628 0.580571
\(130\) −2023.44 −1.36513
\(131\) 2586.18 1.72485 0.862427 0.506182i \(-0.168944\pi\)
0.862427 + 0.506182i \(0.168944\pi\)
\(132\) 103.938 0.0685353
\(133\) 0 0
\(134\) −752.148 −0.484893
\(135\) 2734.05 1.74304
\(136\) −2469.74 −1.55719
\(137\) 105.139 0.0655665 0.0327833 0.999462i \(-0.489563\pi\)
0.0327833 + 0.999462i \(0.489563\pi\)
\(138\) 222.393 0.137184
\(139\) −218.658 −0.133427 −0.0667133 0.997772i \(-0.521251\pi\)
−0.0667133 + 0.997772i \(0.521251\pi\)
\(140\) 0 0
\(141\) 1431.66 0.855088
\(142\) −1001.82 −0.592049
\(143\) −1792.20 −1.04805
\(144\) 1109.84 0.642267
\(145\) 3512.44 2.01167
\(146\) −1166.51 −0.661241
\(147\) 0 0
\(148\) 112.024 0.0622183
\(149\) 1832.68 1.00764 0.503822 0.863807i \(-0.331927\pi\)
0.503822 + 0.863807i \(0.331927\pi\)
\(150\) 2371.96 1.29113
\(151\) 912.028 0.491522 0.245761 0.969331i \(-0.420962\pi\)
0.245761 + 0.969331i \(0.420962\pi\)
\(152\) −2976.59 −1.58838
\(153\) 1844.31 0.974536
\(154\) 0 0
\(155\) 767.099 0.397515
\(156\) −74.2947 −0.0381304
\(157\) 1467.44 0.745950 0.372975 0.927841i \(-0.378338\pi\)
0.372975 + 0.927841i \(0.378338\pi\)
\(158\) 1646.76 0.829171
\(159\) 689.375 0.343843
\(160\) 547.976 0.270758
\(161\) 0 0
\(162\) 91.3923 0.0443238
\(163\) −1259.62 −0.605284 −0.302642 0.953104i \(-0.597869\pi\)
−0.302642 + 0.953104i \(0.597869\pi\)
\(164\) −6.55079 −0.00311909
\(165\) 3171.44 1.49634
\(166\) 838.417 0.392011
\(167\) 1324.26 0.613621 0.306810 0.951771i \(-0.400738\pi\)
0.306810 + 0.951771i \(0.400738\pi\)
\(168\) 0 0
\(169\) −915.937 −0.416904
\(170\) 6449.20 2.90959
\(171\) 2222.81 0.994050
\(172\) −162.994 −0.0722566
\(173\) −965.076 −0.424123 −0.212062 0.977256i \(-0.568018\pi\)
−0.212062 + 0.977256i \(0.568018\pi\)
\(174\) 1764.90 0.768946
\(175\) 0 0
\(176\) 3437.38 1.47217
\(177\) −234.167 −0.0994410
\(178\) −2815.66 −1.18563
\(179\) 2489.30 1.03944 0.519719 0.854338i \(-0.326037\pi\)
0.519719 + 0.854338i \(0.326037\pi\)
\(180\) −196.209 −0.0812474
\(181\) −3035.25 −1.24645 −0.623227 0.782041i \(-0.714179\pi\)
−0.623227 + 0.782041i \(0.714179\pi\)
\(182\) 0 0
\(183\) −1956.26 −0.790222
\(184\) 497.941 0.199504
\(185\) 3418.15 1.35842
\(186\) 385.445 0.151947
\(187\) 5712.20 2.23378
\(188\) −274.328 −0.106423
\(189\) 0 0
\(190\) 7772.72 2.96786
\(191\) −1501.58 −0.568852 −0.284426 0.958698i \(-0.591803\pi\)
−0.284426 + 0.958698i \(0.591803\pi\)
\(192\) −1532.19 −0.575919
\(193\) −1039.47 −0.387684 −0.193842 0.981033i \(-0.562095\pi\)
−0.193842 + 0.981033i \(0.562095\pi\)
\(194\) −956.546 −0.354000
\(195\) −2266.93 −0.832505
\(196\) 0 0
\(197\) 4871.01 1.76165 0.880825 0.473441i \(-0.156988\pi\)
0.880825 + 0.473441i \(0.156988\pi\)
\(198\) −2378.26 −0.853613
\(199\) 5038.67 1.79489 0.897443 0.441131i \(-0.145423\pi\)
0.897443 + 0.441131i \(0.145423\pi\)
\(200\) 5310.86 1.87767
\(201\) −842.659 −0.295704
\(202\) 1777.02 0.618964
\(203\) 0 0
\(204\) 236.796 0.0812696
\(205\) −199.883 −0.0680995
\(206\) 3455.99 1.16889
\(207\) −371.845 −0.124855
\(208\) −2457.03 −0.819060
\(209\) 6884.48 2.27851
\(210\) 0 0
\(211\) 1105.56 0.360711 0.180356 0.983601i \(-0.442275\pi\)
0.180356 + 0.983601i \(0.442275\pi\)
\(212\) −132.095 −0.0427940
\(213\) −1122.38 −0.361052
\(214\) −5886.53 −1.88035
\(215\) −4973.38 −1.57759
\(216\) 3075.92 0.968934
\(217\) 0 0
\(218\) 1721.19 0.534741
\(219\) −1306.89 −0.403247
\(220\) −607.696 −0.186231
\(221\) −4083.06 −1.24279
\(222\) 1717.52 0.519245
\(223\) 1988.19 0.597035 0.298518 0.954404i \(-0.403508\pi\)
0.298518 + 0.954404i \(0.403508\pi\)
\(224\) 0 0
\(225\) −3965.96 −1.17510
\(226\) 1150.17 0.338532
\(227\) −905.777 −0.264839 −0.132420 0.991194i \(-0.542275\pi\)
−0.132420 + 0.991194i \(0.542275\pi\)
\(228\) 285.392 0.0828970
\(229\) −1373.72 −0.396410 −0.198205 0.980161i \(-0.563511\pi\)
−0.198205 + 0.980161i \(0.563511\pi\)
\(230\) −1300.27 −0.372770
\(231\) 0 0
\(232\) 3951.63 1.11826
\(233\) −636.385 −0.178931 −0.0894656 0.995990i \(-0.528516\pi\)
−0.0894656 + 0.995990i \(0.528516\pi\)
\(234\) 1699.97 0.474917
\(235\) −8370.49 −2.32354
\(236\) 44.8700 0.0123762
\(237\) 1844.92 0.505657
\(238\) 0 0
\(239\) −6820.45 −1.84594 −0.922968 0.384878i \(-0.874244\pi\)
−0.922968 + 0.384878i \(0.874244\pi\)
\(240\) 4347.89 1.16940
\(241\) 5804.83 1.55154 0.775772 0.631013i \(-0.217361\pi\)
0.775772 + 0.631013i \(0.217361\pi\)
\(242\) −3455.71 −0.917939
\(243\) −3733.70 −0.985665
\(244\) 374.849 0.0983494
\(245\) 0 0
\(246\) −100.435 −0.0260305
\(247\) −4921.00 −1.26768
\(248\) 863.016 0.220974
\(249\) 939.310 0.239062
\(250\) −6801.51 −1.72066
\(251\) 2339.95 0.588433 0.294216 0.955739i \(-0.404941\pi\)
0.294216 + 0.955739i \(0.404941\pi\)
\(252\) 0 0
\(253\) −1151.68 −0.286187
\(254\) 2551.21 0.630225
\(255\) 7225.27 1.77437
\(256\) 962.846 0.235070
\(257\) 1767.81 0.429079 0.214539 0.976715i \(-0.431175\pi\)
0.214539 + 0.976715i \(0.431175\pi\)
\(258\) −2498.98 −0.603021
\(259\) 0 0
\(260\) 434.380 0.103612
\(261\) −2950.94 −0.699841
\(262\) −7597.69 −1.79155
\(263\) 6089.12 1.42765 0.713824 0.700325i \(-0.246962\pi\)
0.713824 + 0.700325i \(0.246962\pi\)
\(264\) 3567.99 0.831798
\(265\) −4030.58 −0.934326
\(266\) 0 0
\(267\) −3154.49 −0.723039
\(268\) 161.467 0.0368028
\(269\) 4370.73 0.990662 0.495331 0.868704i \(-0.335047\pi\)
0.495331 + 0.868704i \(0.335047\pi\)
\(270\) −8032.10 −1.81044
\(271\) 6874.28 1.54090 0.770448 0.637503i \(-0.220033\pi\)
0.770448 + 0.637503i \(0.220033\pi\)
\(272\) 7831.16 1.74571
\(273\) 0 0
\(274\) −308.877 −0.0681019
\(275\) −12283.4 −2.69351
\(276\) −47.7420 −0.0104121
\(277\) 7858.50 1.70459 0.852295 0.523062i \(-0.175210\pi\)
0.852295 + 0.523062i \(0.175210\pi\)
\(278\) 642.373 0.138586
\(279\) −644.470 −0.138292
\(280\) 0 0
\(281\) −4197.59 −0.891128 −0.445564 0.895250i \(-0.646997\pi\)
−0.445564 + 0.895250i \(0.646997\pi\)
\(282\) −4205.93 −0.888154
\(283\) −1656.03 −0.347848 −0.173924 0.984759i \(-0.555645\pi\)
−0.173924 + 0.984759i \(0.555645\pi\)
\(284\) 215.065 0.0449357
\(285\) 8708.07 1.80990
\(286\) 5265.14 1.08858
\(287\) 0 0
\(288\) −460.376 −0.0941942
\(289\) 8100.73 1.64884
\(290\) −10318.8 −2.08946
\(291\) −1071.65 −0.215881
\(292\) 250.420 0.0501873
\(293\) −4194.47 −0.836327 −0.418163 0.908372i \(-0.637326\pi\)
−0.418163 + 0.908372i \(0.637326\pi\)
\(294\) 0 0
\(295\) 1369.11 0.270212
\(296\) 3845.55 0.755130
\(297\) −7114.21 −1.38993
\(298\) −5384.05 −1.04661
\(299\) 823.215 0.159223
\(300\) −509.199 −0.0979953
\(301\) 0 0
\(302\) −2679.35 −0.510528
\(303\) 1990.86 0.377466
\(304\) 9438.30 1.78067
\(305\) 11437.7 2.14727
\(306\) −5418.23 −1.01222
\(307\) 3773.47 0.701510 0.350755 0.936467i \(-0.385925\pi\)
0.350755 + 0.936467i \(0.385925\pi\)
\(308\) 0 0
\(309\) 3871.88 0.712827
\(310\) −2253.58 −0.412887
\(311\) 5313.38 0.968791 0.484395 0.874849i \(-0.339040\pi\)
0.484395 + 0.874849i \(0.339040\pi\)
\(312\) −2550.39 −0.462780
\(313\) 6019.17 1.08698 0.543488 0.839417i \(-0.317103\pi\)
0.543488 + 0.839417i \(0.317103\pi\)
\(314\) −4311.03 −0.774795
\(315\) 0 0
\(316\) −353.516 −0.0629330
\(317\) −1729.55 −0.306440 −0.153220 0.988192i \(-0.548964\pi\)
−0.153220 + 0.988192i \(0.548964\pi\)
\(318\) −2025.25 −0.357139
\(319\) −9139.63 −1.60414
\(320\) 8958.28 1.56495
\(321\) −6594.90 −1.14670
\(322\) 0 0
\(323\) 15684.5 2.70188
\(324\) −19.6195 −0.00336412
\(325\) 8780.11 1.49856
\(326\) 3700.52 0.628690
\(327\) 1928.31 0.326103
\(328\) −224.876 −0.0378557
\(329\) 0 0
\(330\) −9317.04 −1.55420
\(331\) −9507.72 −1.57883 −0.789414 0.613862i \(-0.789615\pi\)
−0.789414 + 0.613862i \(0.789615\pi\)
\(332\) −179.986 −0.0297531
\(333\) −2871.72 −0.472581
\(334\) −3890.42 −0.637349
\(335\) 4926.78 0.803519
\(336\) 0 0
\(337\) −1620.67 −0.261970 −0.130985 0.991384i \(-0.541814\pi\)
−0.130985 + 0.991384i \(0.541814\pi\)
\(338\) 2690.84 0.433025
\(339\) 1288.58 0.206449
\(340\) −1384.47 −0.220834
\(341\) −1996.05 −0.316986
\(342\) −6530.17 −1.03249
\(343\) 0 0
\(344\) −5595.24 −0.876963
\(345\) −1456.74 −0.227328
\(346\) 2835.20 0.440524
\(347\) 4832.63 0.747635 0.373817 0.927502i \(-0.378049\pi\)
0.373817 + 0.927502i \(0.378049\pi\)
\(348\) −378.878 −0.0583620
\(349\) 11217.7 1.72054 0.860269 0.509840i \(-0.170296\pi\)
0.860269 + 0.509840i \(0.170296\pi\)
\(350\) 0 0
\(351\) 5085.22 0.773302
\(352\) −1425.87 −0.215907
\(353\) −10532.5 −1.58807 −0.794036 0.607871i \(-0.792024\pi\)
−0.794036 + 0.607871i \(0.792024\pi\)
\(354\) 687.936 0.103286
\(355\) 6562.21 0.981088
\(356\) 604.449 0.0899880
\(357\) 0 0
\(358\) −7313.07 −1.07963
\(359\) 4113.88 0.604798 0.302399 0.953181i \(-0.402212\pi\)
0.302399 + 0.953181i \(0.402212\pi\)
\(360\) −6735.45 −0.986082
\(361\) 12044.3 1.75598
\(362\) 8916.95 1.29465
\(363\) −3871.56 −0.559791
\(364\) 0 0
\(365\) 7640.98 1.09575
\(366\) 5747.09 0.820779
\(367\) 2208.81 0.314166 0.157083 0.987585i \(-0.449791\pi\)
0.157083 + 0.987585i \(0.449791\pi\)
\(368\) −1578.90 −0.223657
\(369\) 167.929 0.0236912
\(370\) −10041.8 −1.41095
\(371\) 0 0
\(372\) −82.7449 −0.0115326
\(373\) −753.446 −0.104590 −0.0522948 0.998632i \(-0.516654\pi\)
−0.0522948 + 0.998632i \(0.516654\pi\)
\(374\) −16781.3 −2.32016
\(375\) −7619.98 −1.04932
\(376\) −9417.14 −1.29163
\(377\) 6532.98 0.892482
\(378\) 0 0
\(379\) 373.749 0.0506548 0.0253274 0.999679i \(-0.491937\pi\)
0.0253274 + 0.999679i \(0.491937\pi\)
\(380\) −1668.60 −0.225256
\(381\) 2858.22 0.384333
\(382\) 4411.35 0.590849
\(383\) −9325.20 −1.24411 −0.622057 0.782972i \(-0.713703\pi\)
−0.622057 + 0.782972i \(0.713703\pi\)
\(384\) 5251.06 0.697831
\(385\) 0 0
\(386\) 3053.77 0.402675
\(387\) 4178.33 0.548828
\(388\) 205.346 0.0268681
\(389\) −12888.7 −1.67990 −0.839952 0.542661i \(-0.817417\pi\)
−0.839952 + 0.542661i \(0.817417\pi\)
\(390\) 6659.80 0.864697
\(391\) −2623.79 −0.339362
\(392\) 0 0
\(393\) −8511.97 −1.09255
\(394\) −14310.1 −1.82977
\(395\) −10786.7 −1.37402
\(396\) 510.550 0.0647881
\(397\) −321.656 −0.0406636 −0.0203318 0.999793i \(-0.506472\pi\)
−0.0203318 + 0.999793i \(0.506472\pi\)
\(398\) −14802.6 −1.86429
\(399\) 0 0
\(400\) −16839.9 −2.10499
\(401\) −13843.9 −1.72402 −0.862009 0.506893i \(-0.830794\pi\)
−0.862009 + 0.506893i \(0.830794\pi\)
\(402\) 2475.56 0.307139
\(403\) 1426.77 0.176358
\(404\) −381.480 −0.0469786
\(405\) −598.646 −0.0734492
\(406\) 0 0
\(407\) −8894.29 −1.08323
\(408\) 8128.72 0.986352
\(409\) −13475.9 −1.62919 −0.814595 0.580031i \(-0.803041\pi\)
−0.814595 + 0.580031i \(0.803041\pi\)
\(410\) 587.215 0.0707329
\(411\) −346.046 −0.0415309
\(412\) −741.912 −0.0887169
\(413\) 0 0
\(414\) 1092.41 0.129683
\(415\) −5491.87 −0.649603
\(416\) 1019.21 0.120122
\(417\) 719.674 0.0845146
\(418\) −20225.2 −2.36662
\(419\) 4710.03 0.549165 0.274582 0.961564i \(-0.411460\pi\)
0.274582 + 0.961564i \(0.411460\pi\)
\(420\) 0 0
\(421\) 17209.4 1.99225 0.996124 0.0879655i \(-0.0280365\pi\)
0.996124 + 0.0879655i \(0.0280365\pi\)
\(422\) −3247.92 −0.374660
\(423\) 7032.38 0.808336
\(424\) −4534.56 −0.519381
\(425\) −27984.4 −3.19398
\(426\) 3297.32 0.375013
\(427\) 0 0
\(428\) 1263.68 0.142716
\(429\) 5898.73 0.663854
\(430\) 14610.8 1.63859
\(431\) 12400.8 1.38591 0.692953 0.720982i \(-0.256309\pi\)
0.692953 + 0.720982i \(0.256309\pi\)
\(432\) −9753.26 −1.08624
\(433\) 17265.4 1.91622 0.958111 0.286399i \(-0.0924582\pi\)
0.958111 + 0.286399i \(0.0924582\pi\)
\(434\) 0 0
\(435\) −11560.6 −1.27422
\(436\) −369.494 −0.0405862
\(437\) −3162.25 −0.346158
\(438\) 3839.37 0.418841
\(439\) −5740.65 −0.624115 −0.312057 0.950063i \(-0.601018\pi\)
−0.312057 + 0.950063i \(0.601018\pi\)
\(440\) −20861.0 −2.26025
\(441\) 0 0
\(442\) 11995.2 1.29085
\(443\) 12144.9 1.30254 0.651268 0.758848i \(-0.274237\pi\)
0.651268 + 0.758848i \(0.274237\pi\)
\(444\) −368.707 −0.0394100
\(445\) 18443.4 1.96472
\(446\) −5840.90 −0.620122
\(447\) −6031.95 −0.638258
\(448\) 0 0
\(449\) −176.722 −0.0185747 −0.00928733 0.999957i \(-0.502956\pi\)
−0.00928733 + 0.999957i \(0.502956\pi\)
\(450\) 11651.2 1.22054
\(451\) 520.109 0.0543038
\(452\) −246.912 −0.0256942
\(453\) −3001.78 −0.311338
\(454\) 2660.99 0.275080
\(455\) 0 0
\(456\) 9796.93 1.00610
\(457\) −263.872 −0.0270097 −0.0135048 0.999909i \(-0.504299\pi\)
−0.0135048 + 0.999909i \(0.504299\pi\)
\(458\) 4035.72 0.411739
\(459\) −16207.9 −1.64819
\(460\) 279.134 0.0282928
\(461\) −2205.17 −0.222787 −0.111394 0.993776i \(-0.535531\pi\)
−0.111394 + 0.993776i \(0.535531\pi\)
\(462\) 0 0
\(463\) −14654.4 −1.47095 −0.735474 0.677553i \(-0.763040\pi\)
−0.735474 + 0.677553i \(0.763040\pi\)
\(464\) −12530.0 −1.25365
\(465\) −2524.77 −0.251792
\(466\) 1869.57 0.185850
\(467\) −364.352 −0.0361032 −0.0180516 0.999837i \(-0.505746\pi\)
−0.0180516 + 0.999837i \(0.505746\pi\)
\(468\) −364.939 −0.0360456
\(469\) 0 0
\(470\) 24590.8 2.41338
\(471\) −4829.81 −0.472497
\(472\) 1540.30 0.150208
\(473\) 12941.1 1.25800
\(474\) −5420.02 −0.525210
\(475\) −33727.4 −3.25794
\(476\) 0 0
\(477\) 3386.25 0.325043
\(478\) 20037.1 1.91732
\(479\) −8804.97 −0.839894 −0.419947 0.907549i \(-0.637951\pi\)
−0.419947 + 0.907549i \(0.637951\pi\)
\(480\) −1803.57 −0.171503
\(481\) 6357.61 0.602666
\(482\) −17053.4 −1.61154
\(483\) 0 0
\(484\) 741.851 0.0696704
\(485\) 6265.65 0.586615
\(486\) 10968.9 1.02378
\(487\) 5284.47 0.491709 0.245854 0.969307i \(-0.420931\pi\)
0.245854 + 0.969307i \(0.420931\pi\)
\(488\) 12867.8 1.19365
\(489\) 4145.83 0.383397
\(490\) 0 0
\(491\) −9709.26 −0.892409 −0.446204 0.894931i \(-0.647225\pi\)
−0.446204 + 0.894931i \(0.647225\pi\)
\(492\) 21.5608 0.00197568
\(493\) −20822.2 −1.90220
\(494\) 14456.9 1.31670
\(495\) 15578.3 1.41453
\(496\) −2736.49 −0.247726
\(497\) 0 0
\(498\) −2759.50 −0.248306
\(499\) 4450.25 0.399240 0.199620 0.979873i \(-0.436029\pi\)
0.199620 + 0.979873i \(0.436029\pi\)
\(500\) 1460.11 0.130596
\(501\) −4358.59 −0.388677
\(502\) −6874.32 −0.611187
\(503\) −1315.14 −0.116579 −0.0582896 0.998300i \(-0.518565\pi\)
−0.0582896 + 0.998300i \(0.518565\pi\)
\(504\) 0 0
\(505\) −11640.0 −1.02569
\(506\) 3383.39 0.297253
\(507\) 3014.65 0.264073
\(508\) −547.679 −0.0478333
\(509\) 10670.6 0.929207 0.464603 0.885519i \(-0.346197\pi\)
0.464603 + 0.885519i \(0.346197\pi\)
\(510\) −21226.4 −1.84298
\(511\) 0 0
\(512\) 9934.75 0.857535
\(513\) −19534.1 −1.68119
\(514\) −5193.48 −0.445671
\(515\) −22637.7 −1.93697
\(516\) 536.465 0.0457685
\(517\) 21780.7 1.85283
\(518\) 0 0
\(519\) 3176.38 0.268647
\(520\) 14911.4 1.25751
\(521\) 11134.9 0.936333 0.468166 0.883640i \(-0.344915\pi\)
0.468166 + 0.883640i \(0.344915\pi\)
\(522\) 8669.27 0.726903
\(523\) 6797.83 0.568352 0.284176 0.958772i \(-0.408280\pi\)
0.284176 + 0.958772i \(0.408280\pi\)
\(524\) 1631.03 0.135977
\(525\) 0 0
\(526\) −17888.6 −1.48285
\(527\) −4547.47 −0.375884
\(528\) −11313.5 −0.932498
\(529\) 529.000 0.0434783
\(530\) 11841.0 0.970455
\(531\) −1150.24 −0.0940041
\(532\) 0 0
\(533\) −371.773 −0.0302125
\(534\) 9267.25 0.750999
\(535\) 38558.4 3.11594
\(536\) 5542.83 0.446667
\(537\) −8193.11 −0.658396
\(538\) −12840.3 −1.02897
\(539\) 0 0
\(540\) 1724.28 0.137410
\(541\) 20092.9 1.59679 0.798395 0.602134i \(-0.205683\pi\)
0.798395 + 0.602134i \(0.205683\pi\)
\(542\) −20195.3 −1.60048
\(543\) 9989.99 0.789524
\(544\) −3248.48 −0.256024
\(545\) −11274.3 −0.886122
\(546\) 0 0
\(547\) 8570.64 0.669934 0.334967 0.942230i \(-0.391275\pi\)
0.334967 + 0.942230i \(0.391275\pi\)
\(548\) 66.3078 0.00516885
\(549\) −9609.24 −0.747017
\(550\) 36086.0 2.79766
\(551\) −25095.4 −1.94029
\(552\) −1638.89 −0.126369
\(553\) 0 0
\(554\) −23086.7 −1.77050
\(555\) −11250.3 −0.860444
\(556\) −137.901 −0.0105185
\(557\) 16242.7 1.23560 0.617798 0.786337i \(-0.288025\pi\)
0.617798 + 0.786337i \(0.288025\pi\)
\(558\) 1893.32 0.143639
\(559\) −9250.26 −0.699900
\(560\) 0 0
\(561\) −18800.7 −1.41491
\(562\) 12331.7 0.925588
\(563\) 18479.9 1.38337 0.691684 0.722201i \(-0.256869\pi\)
0.691684 + 0.722201i \(0.256869\pi\)
\(564\) 902.903 0.0674097
\(565\) −7533.95 −0.560984
\(566\) 4865.09 0.361299
\(567\) 0 0
\(568\) 7382.75 0.545375
\(569\) 15586.9 1.14840 0.574198 0.818717i \(-0.305314\pi\)
0.574198 + 0.818717i \(0.305314\pi\)
\(570\) −25582.6 −1.87989
\(571\) 516.215 0.0378335 0.0189167 0.999821i \(-0.493978\pi\)
0.0189167 + 0.999821i \(0.493978\pi\)
\(572\) −1130.29 −0.0826219
\(573\) 4942.20 0.360320
\(574\) 0 0
\(575\) 5642.12 0.409205
\(576\) −7526.21 −0.544430
\(577\) 16474.2 1.18861 0.594306 0.804239i \(-0.297427\pi\)
0.594306 + 0.804239i \(0.297427\pi\)
\(578\) −23798.3 −1.71259
\(579\) 3421.25 0.245565
\(580\) 2215.19 0.158587
\(581\) 0 0
\(582\) 3148.31 0.224229
\(583\) 10487.9 0.745048
\(584\) 8596.41 0.609113
\(585\) −11135.3 −0.786988
\(586\) 12322.5 0.868667
\(587\) −2484.61 −0.174703 −0.0873517 0.996178i \(-0.527840\pi\)
−0.0873517 + 0.996178i \(0.527840\pi\)
\(588\) 0 0
\(589\) −5480.72 −0.383411
\(590\) −4022.16 −0.280660
\(591\) −16032.1 −1.11586
\(592\) −12193.7 −0.846548
\(593\) −5566.23 −0.385460 −0.192730 0.981252i \(-0.561734\pi\)
−0.192730 + 0.981252i \(0.561734\pi\)
\(594\) 20900.1 1.44368
\(595\) 0 0
\(596\) 1155.82 0.0794363
\(597\) −16583.9 −1.13691
\(598\) −2418.44 −0.165380
\(599\) −6457.01 −0.440444 −0.220222 0.975450i \(-0.570678\pi\)
−0.220222 + 0.975450i \(0.570678\pi\)
\(600\) −17479.8 −1.18935
\(601\) 21689.8 1.47212 0.736061 0.676915i \(-0.236683\pi\)
0.736061 + 0.676915i \(0.236683\pi\)
\(602\) 0 0
\(603\) −4139.19 −0.279537
\(604\) 575.188 0.0387484
\(605\) 22635.9 1.52112
\(606\) −5848.76 −0.392062
\(607\) 14277.1 0.954680 0.477340 0.878719i \(-0.341601\pi\)
0.477340 + 0.878719i \(0.341601\pi\)
\(608\) −3915.14 −0.261151
\(609\) 0 0
\(610\) −33601.6 −2.23031
\(611\) −15568.8 −1.03084
\(612\) 1163.15 0.0768262
\(613\) 10965.4 0.722496 0.361248 0.932470i \(-0.382351\pi\)
0.361248 + 0.932470i \(0.382351\pi\)
\(614\) −11085.7 −0.728637
\(615\) 657.879 0.0431353
\(616\) 0 0
\(617\) 3291.68 0.214778 0.107389 0.994217i \(-0.465751\pi\)
0.107389 + 0.994217i \(0.465751\pi\)
\(618\) −11374.8 −0.740391
\(619\) −22424.5 −1.45608 −0.728042 0.685533i \(-0.759569\pi\)
−0.728042 + 0.685533i \(0.759569\pi\)
\(620\) 483.786 0.0313376
\(621\) 3267.78 0.211162
\(622\) −15609.6 −1.00625
\(623\) 0 0
\(624\) 8086.89 0.518806
\(625\) 13888.1 0.888839
\(626\) −17683.1 −1.12901
\(627\) −22659.1 −1.44325
\(628\) 925.467 0.0588060
\(629\) −20263.3 −1.28450
\(630\) 0 0
\(631\) −14811.1 −0.934423 −0.467211 0.884146i \(-0.654741\pi\)
−0.467211 + 0.884146i \(0.654741\pi\)
\(632\) −12135.5 −0.763804
\(633\) −3638.77 −0.228480
\(634\) 5081.08 0.318290
\(635\) −16711.2 −1.04435
\(636\) 434.768 0.0271064
\(637\) 0 0
\(638\) 26850.4 1.66617
\(639\) −5513.18 −0.341311
\(640\) −30701.4 −1.89622
\(641\) −20724.2 −1.27700 −0.638501 0.769621i \(-0.720445\pi\)
−0.638501 + 0.769621i \(0.720445\pi\)
\(642\) 19374.5 1.19104
\(643\) 8785.36 0.538819 0.269409 0.963026i \(-0.413171\pi\)
0.269409 + 0.963026i \(0.413171\pi\)
\(644\) 0 0
\(645\) 16369.0 0.999270
\(646\) −46077.8 −2.80636
\(647\) 7715.71 0.468834 0.234417 0.972136i \(-0.424682\pi\)
0.234417 + 0.972136i \(0.424682\pi\)
\(648\) −673.500 −0.0408296
\(649\) −3562.52 −0.215472
\(650\) −25794.2 −1.55651
\(651\) 0 0
\(652\) −794.405 −0.0477167
\(653\) −9535.26 −0.571430 −0.285715 0.958315i \(-0.592231\pi\)
−0.285715 + 0.958315i \(0.592231\pi\)
\(654\) −5664.99 −0.338714
\(655\) 49767.0 2.96879
\(656\) 713.046 0.0424387
\(657\) −6419.49 −0.381200
\(658\) 0 0
\(659\) 18803.7 1.11151 0.555756 0.831345i \(-0.312429\pi\)
0.555756 + 0.831345i \(0.312429\pi\)
\(660\) 2000.13 0.117962
\(661\) −22332.3 −1.31411 −0.657055 0.753843i \(-0.728198\pi\)
−0.657055 + 0.753843i \(0.728198\pi\)
\(662\) 27931.8 1.63988
\(663\) 13438.7 0.787203
\(664\) −6178.57 −0.361107
\(665\) 0 0
\(666\) 8436.55 0.490855
\(667\) 4198.11 0.243706
\(668\) 835.173 0.0483740
\(669\) −6543.78 −0.378172
\(670\) −14473.9 −0.834591
\(671\) −29761.7 −1.71227
\(672\) 0 0
\(673\) 12526.2 0.717460 0.358730 0.933441i \(-0.383210\pi\)
0.358730 + 0.933441i \(0.383210\pi\)
\(674\) 4761.22 0.272100
\(675\) 34852.9 1.98739
\(676\) −577.653 −0.0328660
\(677\) −6314.26 −0.358459 −0.179229 0.983807i \(-0.557360\pi\)
−0.179229 + 0.983807i \(0.557360\pi\)
\(678\) −3785.59 −0.214432
\(679\) 0 0
\(680\) −47526.3 −2.68022
\(681\) 2981.21 0.167754
\(682\) 5863.99 0.329243
\(683\) −27524.1 −1.54199 −0.770995 0.636841i \(-0.780241\pi\)
−0.770995 + 0.636841i \(0.780241\pi\)
\(684\) 1401.86 0.0783646
\(685\) 2023.23 0.112852
\(686\) 0 0
\(687\) 4521.36 0.251093
\(688\) 17741.7 0.983131
\(689\) −7496.70 −0.414516
\(690\) 4279.60 0.236118
\(691\) 24378.6 1.34212 0.671060 0.741403i \(-0.265839\pi\)
0.671060 + 0.741403i \(0.265839\pi\)
\(692\) −608.643 −0.0334352
\(693\) 0 0
\(694\) −14197.3 −0.776545
\(695\) −4207.73 −0.229652
\(696\) −13006.1 −0.708327
\(697\) 1184.93 0.0643938
\(698\) −32955.3 −1.78707
\(699\) 2094.55 0.113338
\(700\) 0 0
\(701\) 9933.10 0.535190 0.267595 0.963532i \(-0.413771\pi\)
0.267595 + 0.963532i \(0.413771\pi\)
\(702\) −14939.4 −0.803205
\(703\) −24421.8 −1.31022
\(704\) −23310.1 −1.24792
\(705\) 27550.0 1.47176
\(706\) 30942.4 1.64948
\(707\) 0 0
\(708\) −147.682 −0.00783930
\(709\) 18595.5 0.985006 0.492503 0.870311i \(-0.336082\pi\)
0.492503 + 0.870311i \(0.336082\pi\)
\(710\) −19278.5 −1.01903
\(711\) 9062.36 0.478010
\(712\) 20749.5 1.09216
\(713\) 916.846 0.0481573
\(714\) 0 0
\(715\) −34488.2 −1.80389
\(716\) 1569.93 0.0819426
\(717\) 22448.3 1.16924
\(718\) −12085.8 −0.628185
\(719\) 12236.0 0.634668 0.317334 0.948314i \(-0.397212\pi\)
0.317334 + 0.948314i \(0.397212\pi\)
\(720\) 21357.1 1.10546
\(721\) 0 0
\(722\) −35383.7 −1.82388
\(723\) −19105.6 −0.982773
\(724\) −1914.24 −0.0982625
\(725\) 44775.5 2.29369
\(726\) 11373.9 0.581438
\(727\) 3562.48 0.181740 0.0908700 0.995863i \(-0.471035\pi\)
0.0908700 + 0.995863i \(0.471035\pi\)
\(728\) 0 0
\(729\) 13128.8 0.667010
\(730\) −22447.7 −1.13812
\(731\) 29482.9 1.49174
\(732\) −1233.75 −0.0622961
\(733\) 9839.38 0.495806 0.247903 0.968785i \(-0.420259\pi\)
0.247903 + 0.968785i \(0.420259\pi\)
\(734\) −6489.05 −0.326315
\(735\) 0 0
\(736\) 654.948 0.0328012
\(737\) −12819.9 −0.640740
\(738\) −493.342 −0.0246073
\(739\) −8927.22 −0.444375 −0.222187 0.975004i \(-0.571320\pi\)
−0.222187 + 0.975004i \(0.571320\pi\)
\(740\) 2155.72 0.107089
\(741\) 16196.6 0.802967
\(742\) 0 0
\(743\) −21791.5 −1.07598 −0.537990 0.842951i \(-0.680816\pi\)
−0.537990 + 0.842951i \(0.680816\pi\)
\(744\) −2840.47 −0.139969
\(745\) 35267.1 1.73434
\(746\) 2213.47 0.108634
\(747\) 4613.94 0.225991
\(748\) 3602.51 0.176097
\(749\) 0 0
\(750\) 22386.0 1.08989
\(751\) −37433.0 −1.81884 −0.909421 0.415876i \(-0.863475\pi\)
−0.909421 + 0.415876i \(0.863475\pi\)
\(752\) 29860.3 1.44800
\(753\) −7701.55 −0.372723
\(754\) −19192.6 −0.926994
\(755\) 17550.5 0.845999
\(756\) 0 0
\(757\) 32140.5 1.54315 0.771576 0.636137i \(-0.219469\pi\)
0.771576 + 0.636137i \(0.219469\pi\)
\(758\) −1098.00 −0.0526136
\(759\) 3790.54 0.181275
\(760\) −57279.8 −2.73389
\(761\) 2408.34 0.114721 0.0573603 0.998354i \(-0.481732\pi\)
0.0573603 + 0.998354i \(0.481732\pi\)
\(762\) −8396.87 −0.399195
\(763\) 0 0
\(764\) −947.002 −0.0448447
\(765\) 35490.9 1.67736
\(766\) 27395.6 1.29222
\(767\) 2546.48 0.119880
\(768\) −3169.04 −0.148897
\(769\) −8562.35 −0.401517 −0.200758 0.979641i \(-0.564341\pi\)
−0.200758 + 0.979641i \(0.564341\pi\)
\(770\) 0 0
\(771\) −5818.45 −0.271785
\(772\) −655.564 −0.0305625
\(773\) 3198.92 0.148845 0.0744226 0.997227i \(-0.476289\pi\)
0.0744226 + 0.997227i \(0.476289\pi\)
\(774\) −12275.1 −0.570051
\(775\) 9778.75 0.453243
\(776\) 7049.10 0.326093
\(777\) 0 0
\(778\) 37864.4 1.74486
\(779\) 1428.11 0.0656833
\(780\) −1429.68 −0.0656294
\(781\) −17075.4 −0.782337
\(782\) 7708.16 0.352485
\(783\) 25932.9 1.18361
\(784\) 0 0
\(785\) 28238.5 1.28392
\(786\) 25006.5 1.13480
\(787\) 4162.29 0.188525 0.0942627 0.995547i \(-0.469951\pi\)
0.0942627 + 0.995547i \(0.469951\pi\)
\(788\) 3072.00 0.138877
\(789\) −20041.3 −0.904295
\(790\) 31689.3 1.42716
\(791\) 0 0
\(792\) 17526.2 0.786319
\(793\) 21273.6 0.952643
\(794\) 944.960 0.0422360
\(795\) 13265.9 0.591817
\(796\) 3177.74 0.141497
\(797\) −25456.6 −1.13139 −0.565696 0.824614i \(-0.691393\pi\)
−0.565696 + 0.824614i \(0.691393\pi\)
\(798\) 0 0
\(799\) 49621.5 2.19710
\(800\) 6985.44 0.308716
\(801\) −15495.0 −0.683507
\(802\) 40670.6 1.79068
\(803\) −19882.4 −0.873767
\(804\) −531.439 −0.0233115
\(805\) 0 0
\(806\) −4191.56 −0.183178
\(807\) −14385.5 −0.627501
\(808\) −13095.5 −0.570169
\(809\) −17884.8 −0.777252 −0.388626 0.921396i \(-0.627050\pi\)
−0.388626 + 0.921396i \(0.627050\pi\)
\(810\) 1758.70 0.0762894
\(811\) 33047.0 1.43087 0.715435 0.698679i \(-0.246229\pi\)
0.715435 + 0.698679i \(0.246229\pi\)
\(812\) 0 0
\(813\) −22625.5 −0.976028
\(814\) 26129.6 1.12511
\(815\) −24239.5 −1.04181
\(816\) −25774.9 −1.10576
\(817\) 35533.4 1.52161
\(818\) 39589.4 1.69219
\(819\) 0 0
\(820\) −126.060 −0.00536853
\(821\) −1766.15 −0.0750780 −0.0375390 0.999295i \(-0.511952\pi\)
−0.0375390 + 0.999295i \(0.511952\pi\)
\(822\) 1016.61 0.0431369
\(823\) 18488.3 0.783062 0.391531 0.920165i \(-0.371946\pi\)
0.391531 + 0.920165i \(0.371946\pi\)
\(824\) −25468.4 −1.07674
\(825\) 40428.5 1.70611
\(826\) 0 0
\(827\) 6221.29 0.261590 0.130795 0.991409i \(-0.458247\pi\)
0.130795 + 0.991409i \(0.458247\pi\)
\(828\) −234.511 −0.00984278
\(829\) 8360.35 0.350262 0.175131 0.984545i \(-0.443965\pi\)
0.175131 + 0.984545i \(0.443965\pi\)
\(830\) 16134.0 0.674723
\(831\) −25864.9 −1.07971
\(832\) 16662.0 0.694292
\(833\) 0 0
\(834\) −2114.26 −0.0877827
\(835\) 25483.4 1.05615
\(836\) 4341.83 0.179624
\(837\) 5663.61 0.233886
\(838\) −13837.1 −0.570400
\(839\) −7505.00 −0.308822 −0.154411 0.988007i \(-0.549348\pi\)
−0.154411 + 0.988007i \(0.549348\pi\)
\(840\) 0 0
\(841\) 8926.98 0.366025
\(842\) −50557.8 −2.06929
\(843\) 13815.6 0.564455
\(844\) 697.244 0.0284362
\(845\) −17625.8 −0.717568
\(846\) −20659.7 −0.839594
\(847\) 0 0
\(848\) 14378.4 0.582259
\(849\) 5450.54 0.220332
\(850\) 82212.5 3.31749
\(851\) 4085.42 0.164567
\(852\) −707.849 −0.0284630
\(853\) −4208.20 −0.168917 −0.0844583 0.996427i \(-0.526916\pi\)
−0.0844583 + 0.996427i \(0.526916\pi\)
\(854\) 0 0
\(855\) 42774.5 1.71094
\(856\) 43379.8 1.73211
\(857\) −28478.9 −1.13515 −0.567573 0.823323i \(-0.692118\pi\)
−0.567573 + 0.823323i \(0.692118\pi\)
\(858\) −17329.3 −0.689525
\(859\) 4323.06 0.171712 0.0858561 0.996308i \(-0.472637\pi\)
0.0858561 + 0.996308i \(0.472637\pi\)
\(860\) −3136.55 −0.124367
\(861\) 0 0
\(862\) −36431.1 −1.43950
\(863\) 23135.4 0.912558 0.456279 0.889837i \(-0.349182\pi\)
0.456279 + 0.889837i \(0.349182\pi\)
\(864\) 4045.79 0.159306
\(865\) −18571.4 −0.729995
\(866\) −50722.4 −1.99032
\(867\) −26662.1 −1.04440
\(868\) 0 0
\(869\) 28067.9 1.09567
\(870\) 33962.7 1.32350
\(871\) 9163.60 0.356483
\(872\) −12684.0 −0.492585
\(873\) −5264.02 −0.204078
\(874\) 9290.06 0.359544
\(875\) 0 0
\(876\) −824.213 −0.0317895
\(877\) −10974.5 −0.422557 −0.211279 0.977426i \(-0.567763\pi\)
−0.211279 + 0.977426i \(0.567763\pi\)
\(878\) 16864.9 0.648249
\(879\) 13805.4 0.529743
\(880\) 66147.0 2.53388
\(881\) −37410.7 −1.43064 −0.715322 0.698795i \(-0.753720\pi\)
−0.715322 + 0.698795i \(0.753720\pi\)
\(882\) 0 0
\(883\) 5633.68 0.214710 0.107355 0.994221i \(-0.465762\pi\)
0.107355 + 0.994221i \(0.465762\pi\)
\(884\) −2575.06 −0.0979737
\(885\) −4506.17 −0.171156
\(886\) −35679.4 −1.35290
\(887\) −16676.6 −0.631280 −0.315640 0.948879i \(-0.602219\pi\)
−0.315640 + 0.948879i \(0.602219\pi\)
\(888\) −12657.0 −0.478311
\(889\) 0 0
\(890\) −54182.9 −2.04069
\(891\) 1557.72 0.0585697
\(892\) 1253.89 0.0470665
\(893\) 59805.0 2.24109
\(894\) 17720.7 0.662939
\(895\) 47902.7 1.78906
\(896\) 0 0
\(897\) −2709.47 −0.100855
\(898\) 519.173 0.0192929
\(899\) 7276.04 0.269933
\(900\) −2501.21 −0.0926374
\(901\) 23893.8 0.883483
\(902\) −1527.98 −0.0564036
\(903\) 0 0
\(904\) −8475.99 −0.311844
\(905\) −58408.5 −2.14538
\(906\) 8818.63 0.323377
\(907\) −32588.8 −1.19305 −0.596523 0.802596i \(-0.703451\pi\)
−0.596523 + 0.802596i \(0.703451\pi\)
\(908\) −571.246 −0.0208783
\(909\) 9779.22 0.356828
\(910\) 0 0
\(911\) −36129.9 −1.31398 −0.656990 0.753899i \(-0.728171\pi\)
−0.656990 + 0.753899i \(0.728171\pi\)
\(912\) −31064.5 −1.12791
\(913\) 14290.3 0.518005
\(914\) 775.204 0.0280541
\(915\) −37645.1 −1.36012
\(916\) −866.363 −0.0312505
\(917\) 0 0
\(918\) 47615.4 1.71192
\(919\) −42821.3 −1.53704 −0.768522 0.639824i \(-0.779007\pi\)
−0.768522 + 0.639824i \(0.779007\pi\)
\(920\) 9582.10 0.343383
\(921\) −12419.7 −0.444348
\(922\) 6478.34 0.231402
\(923\) 12205.4 0.435262
\(924\) 0 0
\(925\) 43573.6 1.54885
\(926\) 43051.8 1.52783
\(927\) 19018.9 0.673853
\(928\) 5197.63 0.183858
\(929\) −42222.5 −1.49115 −0.745574 0.666423i \(-0.767825\pi\)
−0.745574 + 0.666423i \(0.767825\pi\)
\(930\) 7417.28 0.261529
\(931\) 0 0
\(932\) −401.349 −0.0141058
\(933\) −17488.1 −0.613648
\(934\) 1070.39 0.0374993
\(935\) 109922. 3.84475
\(936\) −12527.6 −0.437477
\(937\) 30715.6 1.07090 0.535452 0.844566i \(-0.320141\pi\)
0.535452 + 0.844566i \(0.320141\pi\)
\(938\) 0 0
\(939\) −19811.0 −0.688508
\(940\) −5279.01 −0.183173
\(941\) 11106.6 0.384766 0.192383 0.981320i \(-0.438378\pi\)
0.192383 + 0.981320i \(0.438378\pi\)
\(942\) 14189.0 0.490768
\(943\) −238.902 −0.00824997
\(944\) −4884.05 −0.168392
\(945\) 0 0
\(946\) −38018.4 −1.30664
\(947\) −46397.3 −1.59209 −0.796045 0.605237i \(-0.793078\pi\)
−0.796045 + 0.605237i \(0.793078\pi\)
\(948\) 1163.54 0.0398628
\(949\) 14211.9 0.486130
\(950\) 99084.4 3.38392
\(951\) 5692.53 0.194104
\(952\) 0 0
\(953\) 17041.2 0.579242 0.289621 0.957141i \(-0.406471\pi\)
0.289621 + 0.957141i \(0.406471\pi\)
\(954\) −9948.12 −0.337612
\(955\) −28895.6 −0.979099
\(956\) −4301.45 −0.145522
\(957\) 30081.5 1.01609
\(958\) 25867.2 0.872372
\(959\) 0 0
\(960\) −29484.6 −0.991263
\(961\) −28202.0 −0.946660
\(962\) −18677.4 −0.625970
\(963\) −32394.5 −1.08401
\(964\) 3660.93 0.122314
\(965\) −20003.0 −0.667276
\(966\) 0 0
\(967\) −21441.0 −0.713026 −0.356513 0.934290i \(-0.616034\pi\)
−0.356513 + 0.934290i \(0.616034\pi\)
\(968\) 25466.3 0.845575
\(969\) −51622.7 −1.71141
\(970\) −18407.2 −0.609299
\(971\) −31927.2 −1.05519 −0.527597 0.849495i \(-0.676907\pi\)
−0.527597 + 0.849495i \(0.676907\pi\)
\(972\) −2354.73 −0.0777036
\(973\) 0 0
\(974\) −15524.7 −0.510723
\(975\) −28898.2 −0.949213
\(976\) −40801.9 −1.33815
\(977\) −51368.2 −1.68210 −0.841051 0.540956i \(-0.818062\pi\)
−0.841051 + 0.540956i \(0.818062\pi\)
\(978\) −12179.6 −0.398222
\(979\) −47991.0 −1.56670
\(980\) 0 0
\(981\) 9471.96 0.308274
\(982\) 28523.9 0.926917
\(983\) 38166.8 1.23839 0.619193 0.785239i \(-0.287460\pi\)
0.619193 + 0.785239i \(0.287460\pi\)
\(984\) 740.139 0.0239784
\(985\) 93735.0 3.03213
\(986\) 61171.5 1.97576
\(987\) 0 0
\(988\) −3103.53 −0.0999355
\(989\) −5944.24 −0.191118
\(990\) −45765.8 −1.46923
\(991\) −5430.45 −0.174071 −0.0870353 0.996205i \(-0.527739\pi\)
−0.0870353 + 0.996205i \(0.527739\pi\)
\(992\) 1135.14 0.0363312
\(993\) 31293.0 1.00005
\(994\) 0 0
\(995\) 96961.4 3.08933
\(996\) 592.394 0.0188461
\(997\) 8739.64 0.277620 0.138810 0.990319i \(-0.455672\pi\)
0.138810 + 0.990319i \(0.455672\pi\)
\(998\) −13074.0 −0.414678
\(999\) 25236.7 0.799254
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.4.a.m.1.6 22
7.3 odd 6 161.4.e.b.93.17 44
7.5 odd 6 161.4.e.b.116.17 yes 44
7.6 odd 2 1127.4.a.j.1.6 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.e.b.93.17 44 7.3 odd 6
161.4.e.b.116.17 yes 44 7.5 odd 6
1127.4.a.j.1.6 22 7.6 odd 2
1127.4.a.m.1.6 22 1.1 even 1 trivial