gp: [N,k,chi] = [1127,4,Mod(1,1127)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1127.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [22,0,18]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(7\)
\( -1 \)
\(23\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1127))\):
\( T_{2}^{22} - 132 T_{2}^{20} - 7 T_{2}^{19} + 7399 T_{2}^{18} + 887 T_{2}^{17} - 230614 T_{2}^{16} + \cdots + 971629440 \)
T2^22 - 132*T2^20 - 7*T2^19 + 7399*T2^18 + 887*T2^17 - 230614*T2^16 - 45967*T2^15 + 4396795*T2^14 + 1269450*T2^13 - 53164504*T2^12 - 20373977*T2^11 + 409090481*T2^10 + 194913263*T2^9 - 1954856302*T2^8 - 1104070265*T2^7 + 5455025036*T2^6 + 3575984872*T2^5 - 7713330048*T2^4 - 6062555184*T2^3 + 3482708864*T2^2 + 4185690880*T2 + 971629440
\( T_{3}^{22} - 18 T_{3}^{21} - 198 T_{3}^{20} + 5058 T_{3}^{19} + 8510 T_{3}^{18} - 577480 T_{3}^{17} + \cdots + 340543829847 \)
T3^22 - 18*T3^21 - 198*T3^20 + 5058*T3^19 + 8510*T3^18 - 577480*T3^17 + 815759*T3^16 + 34581854*T3^15 - 104045767*T3^14 - 1161625828*T3^13 + 4774426823*T3^12 + 21325042682*T3^11 - 111583155844*T3^10 - 179247635752*T3^9 + 1345753474457*T3^8 + 89451459854*T3^7 - 7316771013514*T3^6 + 6140344347122*T3^5 + 11559482312374*T3^4 - 15974090952874*T3^3 + 1249221181079*T3^2 + 2693133794480*T3 + 340543829847