Properties

Label 1127.4.a
Level $1127$
Weight $4$
Character orbit 1127.a
Rep. character $\chi_{1127}(1,\cdot)$
Character field $\Q$
Dimension $225$
Newform subspaces $15$
Sturm bound $448$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 15 \)
Sturm bound: \(448\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1127))\).

Total New Old
Modular forms 344 225 119
Cusp forms 328 225 103
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(23\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(92\)\(60\)\(32\)\(88\)\(60\)\(28\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(80\)\(48\)\(32\)\(76\)\(48\)\(28\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(80\)\(54\)\(26\)\(76\)\(54\)\(22\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(92\)\(63\)\(29\)\(88\)\(63\)\(25\)\(4\)\(0\)\(4\)
Plus space\(+\)\(184\)\(123\)\(61\)\(176\)\(123\)\(53\)\(8\)\(0\)\(8\)
Minus space\(-\)\(160\)\(102\)\(58\)\(152\)\(102\)\(50\)\(8\)\(0\)\(8\)

Trace form

\( 225 q + 2 q^{3} + 896 q^{4} + 8 q^{5} + 17 q^{6} + 45 q^{8} + 2009 q^{9} - 94 q^{10} + 58 q^{11} + 125 q^{12} + 114 q^{13} - 40 q^{15} + 3680 q^{16} + 122 q^{17} - 87 q^{18} - 206 q^{19} - 264 q^{20} + 208 q^{22}+ \cdots - 7310 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1127))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 23
1127.4.a.a 1127.a 1.a $1$ $66.495$ \(\Q\) None 23.4.a.a \(-2\) \(5\) \(6\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+5q^{3}-4q^{4}+6q^{5}-10q^{6}+\cdots\)
1127.4.a.b 1127.a 1.a $2$ $66.495$ \(\Q(\sqrt{23}) \) None 1127.4.a.b \(4\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta q^{3}-4q^{4}+4\beta q^{5}+2\beta q^{6}+\cdots\)
1127.4.a.c 1127.a 1.a $4$ $66.495$ 4.4.334189.1 None 23.4.a.b \(2\) \(-7\) \(-14\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{3})q^{2}+(-1-\beta _{1}-\beta _{2})q^{3}+\cdots\)
1127.4.a.d 1127.a 1.a $5$ $66.495$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 161.4.a.a \(-4\) \(11\) \(4\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(2+\beta _{4})q^{3}+\beta _{2}q^{4}+\cdots\)
1127.4.a.e 1127.a 1.a $8$ $66.495$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 161.4.a.b \(0\) \(3\) \(24\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{4}q^{3}+(3+\beta _{1}+\beta _{3}-\beta _{4}+\cdots)q^{4}+\cdots\)
1127.4.a.f 1127.a 1.a $9$ $66.495$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 161.4.a.c \(0\) \(-9\) \(4\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1+\beta _{4})q^{3}+(5+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1127.4.a.g 1127.a 1.a $12$ $66.495$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1127.4.a.g \(-4\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}-\beta _{9}q^{3}+(4-\beta _{2}-\beta _{4})q^{4}+\cdots\)
1127.4.a.h 1127.a 1.a $12$ $66.495$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 161.4.a.d \(4\) \(-1\) \(-16\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(6+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
1127.4.a.i 1127.a 1.a $20$ $66.495$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 1127.4.a.i \(8\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{2}-\beta _{1}q^{3}+(4-\beta _{3}-\beta _{4})q^{4}+\cdots\)
1127.4.a.j 1127.a 1.a $22$ $66.495$ None 161.4.e.b \(0\) \(-18\) \(-20\) \(0\) $+$ $-$ $\mathrm{SU}(2)$
1127.4.a.k 1127.a 1.a $22$ $66.495$ None 161.4.e.a \(0\) \(-6\) \(-20\) \(0\) $-$ $+$ $\mathrm{SU}(2)$
1127.4.a.l 1127.a 1.a $22$ $66.495$ None 161.4.e.a \(0\) \(6\) \(20\) \(0\) $+$ $+$ $\mathrm{SU}(2)$
1127.4.a.m 1127.a 1.a $22$ $66.495$ None 161.4.e.b \(0\) \(18\) \(20\) \(0\) $-$ $-$ $\mathrm{SU}(2)$
1127.4.a.n 1127.a 1.a $26$ $66.495$ None 1127.4.a.n \(-12\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$
1127.4.a.o 1127.a 1.a $38$ $66.495$ None 1127.4.a.o \(4\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1127))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1127)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 2}\)