Defining parameters
| Level: | \( N \) | \(=\) | \( 1127 = 7^{2} \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1127.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 15 \) | ||
| Sturm bound: | \(448\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1127))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 344 | 225 | 119 |
| Cusp forms | 328 | 225 | 103 |
| Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(7\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(92\) | \(60\) | \(32\) | \(88\) | \(60\) | \(28\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(80\) | \(48\) | \(32\) | \(76\) | \(48\) | \(28\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(80\) | \(54\) | \(26\) | \(76\) | \(54\) | \(22\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(92\) | \(63\) | \(29\) | \(88\) | \(63\) | \(25\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(184\) | \(123\) | \(61\) | \(176\) | \(123\) | \(53\) | \(8\) | \(0\) | \(8\) | ||||
| Minus space | \(-\) | \(160\) | \(102\) | \(58\) | \(152\) | \(102\) | \(50\) | \(8\) | \(0\) | \(8\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1127))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1127))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1127)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 2}\)