Properties

Label 1127.4.a.e.1.5
Level $1127$
Weight $4$
Character 1127.1
Self dual yes
Analytic conductor $66.495$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1127,4,Mod(1,1127)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1127.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1127, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4951525765\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 44x^{6} - 23x^{5} + 587x^{4} + 594x^{3} - 2430x^{2} - 3403x + 110 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.07589\) of defining polynomial
Character \(\chi\) \(=\) 1127.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.07589 q^{2} -3.18430 q^{3} -3.69068 q^{4} +8.32072 q^{5} -6.61027 q^{6} -24.2686 q^{8} -16.8602 q^{9} +17.2729 q^{10} -61.6700 q^{11} +11.7522 q^{12} -62.4385 q^{13} -26.4957 q^{15} -20.8535 q^{16} -82.6471 q^{17} -34.9999 q^{18} +129.351 q^{19} -30.7091 q^{20} -128.020 q^{22} +23.0000 q^{23} +77.2785 q^{24} -55.7657 q^{25} -129.615 q^{26} +139.664 q^{27} +219.702 q^{29} -55.0022 q^{30} -4.07623 q^{31} +150.859 q^{32} +196.376 q^{33} -171.566 q^{34} +62.2256 q^{36} +68.0277 q^{37} +268.518 q^{38} +198.823 q^{39} -201.932 q^{40} +110.320 q^{41} -461.171 q^{43} +227.604 q^{44} -140.289 q^{45} +47.7455 q^{46} +288.004 q^{47} +66.4038 q^{48} -115.763 q^{50} +263.173 q^{51} +230.440 q^{52} -351.353 q^{53} +289.928 q^{54} -513.139 q^{55} -411.893 q^{57} +456.078 q^{58} +169.163 q^{59} +97.7871 q^{60} -342.218 q^{61} -8.46182 q^{62} +479.995 q^{64} -519.533 q^{65} +407.655 q^{66} +709.425 q^{67} +305.024 q^{68} -73.2390 q^{69} +372.456 q^{71} +409.173 q^{72} +361.462 q^{73} +141.218 q^{74} +177.575 q^{75} -477.392 q^{76} +412.735 q^{78} -574.150 q^{79} -173.516 q^{80} +10.4919 q^{81} +229.013 q^{82} -1129.75 q^{83} -687.683 q^{85} -957.341 q^{86} -699.600 q^{87} +1496.64 q^{88} +16.9865 q^{89} -291.225 q^{90} -84.8856 q^{92} +12.9800 q^{93} +597.865 q^{94} +1076.29 q^{95} -480.381 q^{96} +1743.62 q^{97} +1039.77 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{3} + 24 q^{4} + 24 q^{5} + 41 q^{6} - 69 q^{8} + 95 q^{9} + 30 q^{10} - 98 q^{11} + 131 q^{12} + 145 q^{13} - 232 q^{15} - 76 q^{16} + 96 q^{17} - 69 q^{18} + 226 q^{19} + 22 q^{20} - 98 q^{22}+ \cdots - 1676 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.07589 0.733938 0.366969 0.930233i \(-0.380395\pi\)
0.366969 + 0.930233i \(0.380395\pi\)
\(3\) −3.18430 −0.612820 −0.306410 0.951900i \(-0.599128\pi\)
−0.306410 + 0.951900i \(0.599128\pi\)
\(4\) −3.69068 −0.461335
\(5\) 8.32072 0.744227 0.372114 0.928187i \(-0.378633\pi\)
0.372114 + 0.928187i \(0.378633\pi\)
\(6\) −6.61027 −0.449772
\(7\) 0 0
\(8\) −24.2686 −1.07253
\(9\) −16.8602 −0.624452
\(10\) 17.2729 0.546217
\(11\) −61.6700 −1.69038 −0.845191 0.534464i \(-0.820513\pi\)
−0.845191 + 0.534464i \(0.820513\pi\)
\(12\) 11.7522 0.282715
\(13\) −62.4385 −1.33210 −0.666051 0.745907i \(-0.732017\pi\)
−0.666051 + 0.745907i \(0.732017\pi\)
\(14\) 0 0
\(15\) −26.4957 −0.456077
\(16\) −20.8535 −0.325836
\(17\) −82.6471 −1.17911 −0.589555 0.807728i \(-0.700697\pi\)
−0.589555 + 0.807728i \(0.700697\pi\)
\(18\) −34.9999 −0.458309
\(19\) 129.351 1.56185 0.780924 0.624626i \(-0.214748\pi\)
0.780924 + 0.624626i \(0.214748\pi\)
\(20\) −30.7091 −0.343338
\(21\) 0 0
\(22\) −128.020 −1.24064
\(23\) 23.0000 0.208514
\(24\) 77.2785 0.657267
\(25\) −55.7657 −0.446125
\(26\) −129.615 −0.977680
\(27\) 139.664 0.995496
\(28\) 0 0
\(29\) 219.702 1.40682 0.703409 0.710785i \(-0.251660\pi\)
0.703409 + 0.710785i \(0.251660\pi\)
\(30\) −55.0022 −0.334733
\(31\) −4.07623 −0.0236166 −0.0118083 0.999930i \(-0.503759\pi\)
−0.0118083 + 0.999930i \(0.503759\pi\)
\(32\) 150.859 0.833386
\(33\) 196.376 1.03590
\(34\) −171.566 −0.865394
\(35\) 0 0
\(36\) 62.2256 0.288081
\(37\) 68.0277 0.302262 0.151131 0.988514i \(-0.451709\pi\)
0.151131 + 0.988514i \(0.451709\pi\)
\(38\) 268.518 1.14630
\(39\) 198.823 0.816338
\(40\) −201.932 −0.798206
\(41\) 110.320 0.420222 0.210111 0.977678i \(-0.432617\pi\)
0.210111 + 0.977678i \(0.432617\pi\)
\(42\) 0 0
\(43\) −461.171 −1.63553 −0.817767 0.575550i \(-0.804788\pi\)
−0.817767 + 0.575550i \(0.804788\pi\)
\(44\) 227.604 0.779832
\(45\) −140.289 −0.464734
\(46\) 47.7455 0.153037
\(47\) 288.004 0.893824 0.446912 0.894578i \(-0.352524\pi\)
0.446912 + 0.894578i \(0.352524\pi\)
\(48\) 66.4038 0.199679
\(49\) 0 0
\(50\) −115.763 −0.327429
\(51\) 263.173 0.722582
\(52\) 230.440 0.614545
\(53\) −351.353 −0.910606 −0.455303 0.890337i \(-0.650469\pi\)
−0.455303 + 0.890337i \(0.650469\pi\)
\(54\) 289.928 0.730633
\(55\) −513.139 −1.25803
\(56\) 0 0
\(57\) −411.893 −0.957132
\(58\) 456.078 1.03252
\(59\) 169.163 0.373274 0.186637 0.982429i \(-0.440241\pi\)
0.186637 + 0.982429i \(0.440241\pi\)
\(60\) 97.7871 0.210404
\(61\) −342.218 −0.718304 −0.359152 0.933279i \(-0.616934\pi\)
−0.359152 + 0.933279i \(0.616934\pi\)
\(62\) −8.46182 −0.0173331
\(63\) 0 0
\(64\) 479.995 0.937490
\(65\) −519.533 −0.991386
\(66\) 407.655 0.760286
\(67\) 709.425 1.29358 0.646792 0.762667i \(-0.276110\pi\)
0.646792 + 0.762667i \(0.276110\pi\)
\(68\) 305.024 0.543964
\(69\) −73.2390 −0.127782
\(70\) 0 0
\(71\) 372.456 0.622569 0.311285 0.950317i \(-0.399241\pi\)
0.311285 + 0.950317i \(0.399241\pi\)
\(72\) 409.173 0.669743
\(73\) 361.462 0.579533 0.289766 0.957097i \(-0.406422\pi\)
0.289766 + 0.957097i \(0.406422\pi\)
\(74\) 141.218 0.221841
\(75\) 177.575 0.273394
\(76\) −477.392 −0.720535
\(77\) 0 0
\(78\) 412.735 0.599142
\(79\) −574.150 −0.817683 −0.408841 0.912605i \(-0.634067\pi\)
−0.408841 + 0.912605i \(0.634067\pi\)
\(80\) −173.516 −0.242496
\(81\) 10.4919 0.0143922
\(82\) 229.013 0.308417
\(83\) −1129.75 −1.49405 −0.747026 0.664795i \(-0.768519\pi\)
−0.747026 + 0.664795i \(0.768519\pi\)
\(84\) 0 0
\(85\) −687.683 −0.877526
\(86\) −957.341 −1.20038
\(87\) −699.600 −0.862126
\(88\) 1496.64 1.81298
\(89\) 16.9865 0.0202310 0.0101155 0.999949i \(-0.496780\pi\)
0.0101155 + 0.999949i \(0.496780\pi\)
\(90\) −291.225 −0.341086
\(91\) 0 0
\(92\) −84.8856 −0.0961949
\(93\) 12.9800 0.0144727
\(94\) 597.865 0.656012
\(95\) 1076.29 1.16237
\(96\) −480.381 −0.510715
\(97\) 1743.62 1.82514 0.912568 0.408925i \(-0.134096\pi\)
0.912568 + 0.408925i \(0.134096\pi\)
\(98\) 0 0
\(99\) 1039.77 1.05556
\(100\) 205.813 0.205813
\(101\) −175.263 −0.172667 −0.0863333 0.996266i \(-0.527515\pi\)
−0.0863333 + 0.996266i \(0.527515\pi\)
\(102\) 546.319 0.530330
\(103\) 1409.19 1.34807 0.674035 0.738699i \(-0.264560\pi\)
0.674035 + 0.738699i \(0.264560\pi\)
\(104\) 1515.29 1.42872
\(105\) 0 0
\(106\) −729.371 −0.668328
\(107\) −1233.58 −1.11453 −0.557267 0.830333i \(-0.688150\pi\)
−0.557267 + 0.830333i \(0.688150\pi\)
\(108\) −515.456 −0.459257
\(109\) −470.461 −0.413413 −0.206706 0.978403i \(-0.566274\pi\)
−0.206706 + 0.978403i \(0.566274\pi\)
\(110\) −1065.22 −0.923315
\(111\) −216.621 −0.185232
\(112\) 0 0
\(113\) −441.191 −0.367290 −0.183645 0.982993i \(-0.558790\pi\)
−0.183645 + 0.982993i \(0.558790\pi\)
\(114\) −855.044 −0.702475
\(115\) 191.376 0.155182
\(116\) −810.851 −0.649014
\(117\) 1052.73 0.831833
\(118\) 351.165 0.273960
\(119\) 0 0
\(120\) 643.013 0.489156
\(121\) 2472.19 1.85739
\(122\) −710.407 −0.527190
\(123\) −351.293 −0.257520
\(124\) 15.0441 0.0108951
\(125\) −1504.10 −1.07625
\(126\) 0 0
\(127\) 1195.34 0.835191 0.417596 0.908633i \(-0.362873\pi\)
0.417596 + 0.908633i \(0.362873\pi\)
\(128\) −210.456 −0.145327
\(129\) 1468.51 1.00229
\(130\) −1078.49 −0.727616
\(131\) 218.106 0.145466 0.0727330 0.997351i \(-0.476828\pi\)
0.0727330 + 0.997351i \(0.476828\pi\)
\(132\) −724.761 −0.477896
\(133\) 0 0
\(134\) 1472.69 0.949410
\(135\) 1162.11 0.740876
\(136\) 2005.73 1.26463
\(137\) 2259.86 1.40929 0.704645 0.709560i \(-0.251106\pi\)
0.704645 + 0.709560i \(0.251106\pi\)
\(138\) −152.036 −0.0937839
\(139\) 1332.93 0.813365 0.406682 0.913570i \(-0.366686\pi\)
0.406682 + 0.913570i \(0.366686\pi\)
\(140\) 0 0
\(141\) −917.093 −0.547753
\(142\) 773.178 0.456927
\(143\) 3850.58 2.25176
\(144\) 351.594 0.203469
\(145\) 1828.08 1.04699
\(146\) 750.355 0.425341
\(147\) 0 0
\(148\) −251.068 −0.139444
\(149\) −2302.18 −1.26578 −0.632892 0.774240i \(-0.718132\pi\)
−0.632892 + 0.774240i \(0.718132\pi\)
\(150\) 368.626 0.200655
\(151\) −2259.46 −1.21769 −0.608847 0.793287i \(-0.708368\pi\)
−0.608847 + 0.793287i \(0.708368\pi\)
\(152\) −3139.16 −1.67513
\(153\) 1393.45 0.736297
\(154\) 0 0
\(155\) −33.9172 −0.0175761
\(156\) −733.792 −0.376605
\(157\) 698.918 0.355285 0.177642 0.984095i \(-0.443153\pi\)
0.177642 + 0.984095i \(0.443153\pi\)
\(158\) −1191.87 −0.600129
\(159\) 1118.82 0.558037
\(160\) 1255.26 0.620229
\(161\) 0 0
\(162\) 21.7801 0.0105630
\(163\) −1586.37 −0.762293 −0.381147 0.924515i \(-0.624471\pi\)
−0.381147 + 0.924515i \(0.624471\pi\)
\(164\) −407.156 −0.193863
\(165\) 1633.99 0.770945
\(166\) −2345.24 −1.09654
\(167\) 634.994 0.294235 0.147118 0.989119i \(-0.453000\pi\)
0.147118 + 0.989119i \(0.453000\pi\)
\(168\) 0 0
\(169\) 1701.56 0.774494
\(170\) −1427.55 −0.644050
\(171\) −2180.88 −0.975299
\(172\) 1702.03 0.754528
\(173\) 3551.23 1.56066 0.780331 0.625366i \(-0.215050\pi\)
0.780331 + 0.625366i \(0.215050\pi\)
\(174\) −1452.29 −0.632747
\(175\) 0 0
\(176\) 1286.03 0.550787
\(177\) −538.668 −0.228750
\(178\) 35.2621 0.0148483
\(179\) 2087.76 0.871769 0.435885 0.900003i \(-0.356436\pi\)
0.435885 + 0.900003i \(0.356436\pi\)
\(180\) 517.761 0.214398
\(181\) −2020.11 −0.829580 −0.414790 0.909917i \(-0.636145\pi\)
−0.414790 + 0.909917i \(0.636145\pi\)
\(182\) 0 0
\(183\) 1089.73 0.440191
\(184\) −558.177 −0.223638
\(185\) 566.039 0.224952
\(186\) 26.9450 0.0106221
\(187\) 5096.85 1.99315
\(188\) −1062.93 −0.412352
\(189\) 0 0
\(190\) 2234.26 0.853108
\(191\) −2291.62 −0.868145 −0.434072 0.900878i \(-0.642924\pi\)
−0.434072 + 0.900878i \(0.642924\pi\)
\(192\) −1528.45 −0.574512
\(193\) −4627.40 −1.72584 −0.862921 0.505339i \(-0.831367\pi\)
−0.862921 + 0.505339i \(0.831367\pi\)
\(194\) 3619.57 1.33954
\(195\) 1654.35 0.607541
\(196\) 0 0
\(197\) 3333.27 1.20551 0.602755 0.797926i \(-0.294070\pi\)
0.602755 + 0.797926i \(0.294070\pi\)
\(198\) 2158.45 0.774718
\(199\) 4201.92 1.49681 0.748407 0.663240i \(-0.230819\pi\)
0.748407 + 0.663240i \(0.230819\pi\)
\(200\) 1353.35 0.478483
\(201\) −2259.03 −0.792734
\(202\) −363.827 −0.126727
\(203\) 0 0
\(204\) −971.288 −0.333352
\(205\) 917.942 0.312741
\(206\) 2925.32 0.989401
\(207\) −387.785 −0.130207
\(208\) 1302.06 0.434046
\(209\) −7977.07 −2.64012
\(210\) 0 0
\(211\) 5157.06 1.68259 0.841296 0.540575i \(-0.181793\pi\)
0.841296 + 0.540575i \(0.181793\pi\)
\(212\) 1296.73 0.420094
\(213\) −1186.01 −0.381523
\(214\) −2560.79 −0.817999
\(215\) −3837.28 −1.21721
\(216\) −3389.45 −1.06770
\(217\) 0 0
\(218\) −976.625 −0.303419
\(219\) −1151.00 −0.355149
\(220\) 1893.83 0.580372
\(221\) 5160.36 1.57069
\(222\) −449.681 −0.135949
\(223\) −4084.70 −1.22660 −0.613301 0.789850i \(-0.710159\pi\)
−0.613301 + 0.789850i \(0.710159\pi\)
\(224\) 0 0
\(225\) 940.221 0.278584
\(226\) −915.864 −0.269568
\(227\) 4912.15 1.43626 0.718130 0.695909i \(-0.244998\pi\)
0.718130 + 0.695909i \(0.244998\pi\)
\(228\) 1520.16 0.441558
\(229\) 2228.04 0.642938 0.321469 0.946920i \(-0.395823\pi\)
0.321469 + 0.946920i \(0.395823\pi\)
\(230\) 397.277 0.113894
\(231\) 0 0
\(232\) −5331.87 −1.50885
\(233\) 2691.78 0.756842 0.378421 0.925634i \(-0.376467\pi\)
0.378421 + 0.925634i \(0.376467\pi\)
\(234\) 2185.34 0.610514
\(235\) 2396.40 0.665208
\(236\) −624.327 −0.172204
\(237\) 1828.27 0.501092
\(238\) 0 0
\(239\) 6025.81 1.63087 0.815433 0.578851i \(-0.196499\pi\)
0.815433 + 0.578851i \(0.196499\pi\)
\(240\) 552.528 0.148606
\(241\) −2852.32 −0.762381 −0.381191 0.924496i \(-0.624486\pi\)
−0.381191 + 0.924496i \(0.624486\pi\)
\(242\) 5131.99 1.36321
\(243\) −3804.34 −1.00432
\(244\) 1263.02 0.331378
\(245\) 0 0
\(246\) −729.246 −0.189004
\(247\) −8076.47 −2.08054
\(248\) 98.9244 0.0253295
\(249\) 3597.47 0.915585
\(250\) −3122.35 −0.789898
\(251\) −4810.04 −1.20959 −0.604794 0.796382i \(-0.706745\pi\)
−0.604794 + 0.796382i \(0.706745\pi\)
\(252\) 0 0
\(253\) −1418.41 −0.352469
\(254\) 2481.40 0.612979
\(255\) 2189.79 0.537765
\(256\) −4276.84 −1.04415
\(257\) −3084.01 −0.748541 −0.374271 0.927320i \(-0.622107\pi\)
−0.374271 + 0.927320i \(0.622107\pi\)
\(258\) 3048.47 0.735617
\(259\) 0 0
\(260\) 1917.43 0.457361
\(261\) −3704.23 −0.878490
\(262\) 452.765 0.106763
\(263\) 1049.01 0.245951 0.122975 0.992410i \(-0.460756\pi\)
0.122975 + 0.992410i \(0.460756\pi\)
\(264\) −4765.77 −1.11103
\(265\) −2923.51 −0.677698
\(266\) 0 0
\(267\) −54.0901 −0.0123980
\(268\) −2618.26 −0.596775
\(269\) −1379.71 −0.312722 −0.156361 0.987700i \(-0.549976\pi\)
−0.156361 + 0.987700i \(0.549976\pi\)
\(270\) 2412.41 0.543757
\(271\) −4912.15 −1.10108 −0.550538 0.834810i \(-0.685577\pi\)
−0.550538 + 0.834810i \(0.685577\pi\)
\(272\) 1723.48 0.384196
\(273\) 0 0
\(274\) 4691.22 1.03433
\(275\) 3439.07 0.754122
\(276\) 270.302 0.0589502
\(277\) 1755.35 0.380754 0.190377 0.981711i \(-0.439029\pi\)
0.190377 + 0.981711i \(0.439029\pi\)
\(278\) 2767.02 0.596960
\(279\) 68.7261 0.0147474
\(280\) 0 0
\(281\) −5879.83 −1.24826 −0.624130 0.781321i \(-0.714546\pi\)
−0.624130 + 0.781321i \(0.714546\pi\)
\(282\) −1903.79 −0.402017
\(283\) 270.228 0.0567611 0.0283805 0.999597i \(-0.490965\pi\)
0.0283805 + 0.999597i \(0.490965\pi\)
\(284\) −1374.62 −0.287213
\(285\) −3427.24 −0.712324
\(286\) 7993.38 1.65265
\(287\) 0 0
\(288\) −2543.51 −0.520410
\(289\) 1917.54 0.390299
\(290\) 3794.90 0.768428
\(291\) −5552.23 −1.11848
\(292\) −1334.04 −0.267359
\(293\) 1311.50 0.261498 0.130749 0.991416i \(-0.458262\pi\)
0.130749 + 0.991416i \(0.458262\pi\)
\(294\) 0 0
\(295\) 1407.56 0.277801
\(296\) −1650.94 −0.324185
\(297\) −8613.09 −1.68277
\(298\) −4779.07 −0.929007
\(299\) −1436.08 −0.277762
\(300\) −655.372 −0.126126
\(301\) 0 0
\(302\) −4690.38 −0.893713
\(303\) 558.091 0.105814
\(304\) −2697.42 −0.508906
\(305\) −2847.50 −0.534581
\(306\) 2892.64 0.540397
\(307\) 4267.18 0.793292 0.396646 0.917972i \(-0.370174\pi\)
0.396646 + 0.917972i \(0.370174\pi\)
\(308\) 0 0
\(309\) −4487.28 −0.826124
\(310\) −70.4084 −0.0128998
\(311\) −6964.77 −1.26989 −0.634945 0.772557i \(-0.718977\pi\)
−0.634945 + 0.772557i \(0.718977\pi\)
\(312\) −4825.15 −0.875546
\(313\) −3102.54 −0.560274 −0.280137 0.959960i \(-0.590380\pi\)
−0.280137 + 0.959960i \(0.590380\pi\)
\(314\) 1450.88 0.260757
\(315\) 0 0
\(316\) 2119.00 0.377225
\(317\) 4078.25 0.722579 0.361289 0.932454i \(-0.382337\pi\)
0.361289 + 0.932454i \(0.382337\pi\)
\(318\) 2322.54 0.409565
\(319\) −13549.1 −2.37806
\(320\) 3993.90 0.697706
\(321\) 3928.11 0.683008
\(322\) 0 0
\(323\) −10690.5 −1.84159
\(324\) −38.7223 −0.00663963
\(325\) 3481.92 0.594284
\(326\) −3293.12 −0.559476
\(327\) 1498.09 0.253347
\(328\) −2677.31 −0.450701
\(329\) 0 0
\(330\) 3391.98 0.565826
\(331\) −3138.25 −0.521129 −0.260565 0.965456i \(-0.583909\pi\)
−0.260565 + 0.965456i \(0.583909\pi\)
\(332\) 4169.55 0.689258
\(333\) −1146.96 −0.188748
\(334\) 1318.18 0.215951
\(335\) 5902.93 0.962721
\(336\) 0 0
\(337\) −2545.47 −0.411455 −0.205728 0.978609i \(-0.565956\pi\)
−0.205728 + 0.978609i \(0.565956\pi\)
\(338\) 3532.26 0.568431
\(339\) 1404.89 0.225082
\(340\) 2538.02 0.404833
\(341\) 251.381 0.0399210
\(342\) −4527.27 −0.715809
\(343\) 0 0
\(344\) 11192.0 1.75416
\(345\) −609.401 −0.0950987
\(346\) 7371.96 1.14543
\(347\) 6093.52 0.942702 0.471351 0.881946i \(-0.343767\pi\)
0.471351 + 0.881946i \(0.343767\pi\)
\(348\) 2582.00 0.397729
\(349\) 1519.06 0.232990 0.116495 0.993191i \(-0.462834\pi\)
0.116495 + 0.993191i \(0.462834\pi\)
\(350\) 0 0
\(351\) −8720.42 −1.32610
\(352\) −9303.47 −1.40874
\(353\) −7226.42 −1.08959 −0.544793 0.838571i \(-0.683392\pi\)
−0.544793 + 0.838571i \(0.683392\pi\)
\(354\) −1118.22 −0.167888
\(355\) 3099.10 0.463333
\(356\) −62.6916 −0.00933328
\(357\) 0 0
\(358\) 4333.97 0.639825
\(359\) −8031.14 −1.18069 −0.590344 0.807151i \(-0.701008\pi\)
−0.590344 + 0.807151i \(0.701008\pi\)
\(360\) 3404.61 0.498441
\(361\) 9872.64 1.43937
\(362\) −4193.54 −0.608860
\(363\) −7872.20 −1.13825
\(364\) 0 0
\(365\) 3007.62 0.431304
\(366\) 2262.15 0.323073
\(367\) −5319.27 −0.756576 −0.378288 0.925688i \(-0.623487\pi\)
−0.378288 + 0.925688i \(0.623487\pi\)
\(368\) −479.630 −0.0679414
\(369\) −1860.02 −0.262409
\(370\) 1175.04 0.165101
\(371\) 0 0
\(372\) −47.9049 −0.00667675
\(373\) 9009.21 1.25061 0.625307 0.780379i \(-0.284974\pi\)
0.625307 + 0.780379i \(0.284974\pi\)
\(374\) 10580.5 1.46285
\(375\) 4789.51 0.659545
\(376\) −6989.45 −0.958653
\(377\) −13717.9 −1.87402
\(378\) 0 0
\(379\) −8651.75 −1.17259 −0.586293 0.810099i \(-0.699413\pi\)
−0.586293 + 0.810099i \(0.699413\pi\)
\(380\) −3972.25 −0.536242
\(381\) −3806.33 −0.511822
\(382\) −4757.15 −0.637165
\(383\) 12220.3 1.63036 0.815182 0.579205i \(-0.196637\pi\)
0.815182 + 0.579205i \(0.196637\pi\)
\(384\) 670.155 0.0890591
\(385\) 0 0
\(386\) −9605.97 −1.26666
\(387\) 7775.44 1.02131
\(388\) −6435.15 −0.841999
\(389\) 4707.72 0.613601 0.306801 0.951774i \(-0.400742\pi\)
0.306801 + 0.951774i \(0.400742\pi\)
\(390\) 3434.25 0.445898
\(391\) −1900.88 −0.245861
\(392\) 0 0
\(393\) −694.517 −0.0891445
\(394\) 6919.50 0.884770
\(395\) −4777.34 −0.608542
\(396\) −3837.45 −0.486968
\(397\) 7998.65 1.01119 0.505593 0.862772i \(-0.331274\pi\)
0.505593 + 0.862772i \(0.331274\pi\)
\(398\) 8722.72 1.09857
\(399\) 0 0
\(400\) 1162.91 0.145364
\(401\) 14770.0 1.83935 0.919673 0.392685i \(-0.128454\pi\)
0.919673 + 0.392685i \(0.128454\pi\)
\(402\) −4689.49 −0.581817
\(403\) 254.514 0.0314596
\(404\) 646.840 0.0796571
\(405\) 87.3004 0.0107111
\(406\) 0 0
\(407\) −4195.27 −0.510938
\(408\) −6386.84 −0.774990
\(409\) 7284.57 0.880682 0.440341 0.897831i \(-0.354858\pi\)
0.440341 + 0.897831i \(0.354858\pi\)
\(410\) 1905.55 0.229533
\(411\) −7196.08 −0.863641
\(412\) −5200.85 −0.621912
\(413\) 0 0
\(414\) −804.999 −0.0955641
\(415\) −9400.34 −1.11191
\(416\) −9419.41 −1.11015
\(417\) −4244.46 −0.498446
\(418\) −16559.5 −1.93769
\(419\) −14446.4 −1.68438 −0.842189 0.539183i \(-0.818733\pi\)
−0.842189 + 0.539183i \(0.818733\pi\)
\(420\) 0 0
\(421\) 3858.77 0.446710 0.223355 0.974737i \(-0.428299\pi\)
0.223355 + 0.974737i \(0.428299\pi\)
\(422\) 10705.5 1.23492
\(423\) −4855.81 −0.558150
\(424\) 8526.84 0.976651
\(425\) 4608.87 0.526031
\(426\) −2462.03 −0.280014
\(427\) 0 0
\(428\) 4552.76 0.514173
\(429\) −12261.4 −1.37992
\(430\) −7965.76 −0.893356
\(431\) −5718.65 −0.639113 −0.319556 0.947567i \(-0.603534\pi\)
−0.319556 + 0.947567i \(0.603534\pi\)
\(432\) −2912.49 −0.324368
\(433\) 16875.8 1.87297 0.936486 0.350704i \(-0.114058\pi\)
0.936486 + 0.350704i \(0.114058\pi\)
\(434\) 0 0
\(435\) −5821.17 −0.641618
\(436\) 1736.32 0.190722
\(437\) 2975.07 0.325668
\(438\) −2389.36 −0.260658
\(439\) 11618.0 1.26310 0.631548 0.775337i \(-0.282420\pi\)
0.631548 + 0.775337i \(0.282420\pi\)
\(440\) 12453.1 1.34927
\(441\) 0 0
\(442\) 10712.3 1.15279
\(443\) 792.562 0.0850017 0.0425008 0.999096i \(-0.486467\pi\)
0.0425008 + 0.999096i \(0.486467\pi\)
\(444\) 799.478 0.0854539
\(445\) 141.340 0.0150565
\(446\) −8479.40 −0.900250
\(447\) 7330.83 0.775697
\(448\) 0 0
\(449\) −12469.3 −1.31061 −0.655303 0.755366i \(-0.727459\pi\)
−0.655303 + 0.755366i \(0.727459\pi\)
\(450\) 1951.80 0.204463
\(451\) −6803.44 −0.710336
\(452\) 1628.29 0.169444
\(453\) 7194.80 0.746227
\(454\) 10197.1 1.05413
\(455\) 0 0
\(456\) 9996.04 1.02655
\(457\) 15603.8 1.59719 0.798596 0.601867i \(-0.205576\pi\)
0.798596 + 0.601867i \(0.205576\pi\)
\(458\) 4625.16 0.471877
\(459\) −11542.8 −1.17380
\(460\) −706.309 −0.0715909
\(461\) 13552.3 1.36919 0.684594 0.728925i \(-0.259980\pi\)
0.684594 + 0.728925i \(0.259980\pi\)
\(462\) 0 0
\(463\) −3954.05 −0.396890 −0.198445 0.980112i \(-0.563589\pi\)
−0.198445 + 0.980112i \(0.563589\pi\)
\(464\) −4581.56 −0.458391
\(465\) 108.003 0.0107710
\(466\) 5587.84 0.555475
\(467\) −7116.40 −0.705155 −0.352578 0.935783i \(-0.614695\pi\)
−0.352578 + 0.935783i \(0.614695\pi\)
\(468\) −3885.27 −0.383754
\(469\) 0 0
\(470\) 4974.67 0.488222
\(471\) −2225.57 −0.217725
\(472\) −4105.35 −0.400348
\(473\) 28440.4 2.76468
\(474\) 3795.29 0.367771
\(475\) −7213.34 −0.696780
\(476\) 0 0
\(477\) 5923.89 0.568629
\(478\) 12508.9 1.19695
\(479\) −2061.91 −0.196683 −0.0983416 0.995153i \(-0.531354\pi\)
−0.0983416 + 0.995153i \(0.531354\pi\)
\(480\) −3997.11 −0.380089
\(481\) −4247.55 −0.402643
\(482\) −5921.10 −0.559541
\(483\) 0 0
\(484\) −9124.05 −0.856879
\(485\) 14508.2 1.35832
\(486\) −7897.40 −0.737106
\(487\) −20011.5 −1.86203 −0.931014 0.364984i \(-0.881075\pi\)
−0.931014 + 0.364984i \(0.881075\pi\)
\(488\) 8305.14 0.770402
\(489\) 5051.47 0.467148
\(490\) 0 0
\(491\) 10813.2 0.993877 0.496939 0.867786i \(-0.334457\pi\)
0.496939 + 0.867786i \(0.334457\pi\)
\(492\) 1296.51 0.118803
\(493\) −18157.8 −1.65879
\(494\) −16765.9 −1.52699
\(495\) 8651.62 0.785579
\(496\) 85.0037 0.00769512
\(497\) 0 0
\(498\) 7467.96 0.671983
\(499\) −6222.30 −0.558213 −0.279107 0.960260i \(-0.590038\pi\)
−0.279107 + 0.960260i \(0.590038\pi\)
\(500\) 5551.15 0.496510
\(501\) −2022.01 −0.180313
\(502\) −9985.11 −0.887764
\(503\) 14068.1 1.24705 0.623524 0.781805i \(-0.285701\pi\)
0.623524 + 0.781805i \(0.285701\pi\)
\(504\) 0 0
\(505\) −1458.31 −0.128503
\(506\) −2944.46 −0.258691
\(507\) −5418.30 −0.474625
\(508\) −4411.62 −0.385303
\(509\) 11273.1 0.981671 0.490835 0.871252i \(-0.336692\pi\)
0.490835 + 0.871252i \(0.336692\pi\)
\(510\) 4545.77 0.394686
\(511\) 0 0
\(512\) −7194.61 −0.621015
\(513\) 18065.7 1.55481
\(514\) −6402.06 −0.549383
\(515\) 11725.4 1.00327
\(516\) −5419.80 −0.462390
\(517\) −17761.2 −1.51090
\(518\) 0 0
\(519\) −11308.2 −0.956405
\(520\) 12608.3 1.06329
\(521\) 8687.87 0.730561 0.365281 0.930897i \(-0.380973\pi\)
0.365281 + 0.930897i \(0.380973\pi\)
\(522\) −7689.57 −0.644758
\(523\) 19685.6 1.64587 0.822934 0.568137i \(-0.192336\pi\)
0.822934 + 0.568137i \(0.192336\pi\)
\(524\) −804.961 −0.0671085
\(525\) 0 0
\(526\) 2177.64 0.180513
\(527\) 336.889 0.0278465
\(528\) −4095.12 −0.337533
\(529\) 529.000 0.0434783
\(530\) −6068.89 −0.497388
\(531\) −2852.13 −0.233092
\(532\) 0 0
\(533\) −6888.22 −0.559779
\(534\) −112.285 −0.00909935
\(535\) −10264.3 −0.829467
\(536\) −17216.7 −1.38741
\(537\) −6648.07 −0.534237
\(538\) −2864.12 −0.229519
\(539\) 0 0
\(540\) −4288.96 −0.341792
\(541\) 10418.4 0.827951 0.413975 0.910288i \(-0.364140\pi\)
0.413975 + 0.910288i \(0.364140\pi\)
\(542\) −10197.1 −0.808122
\(543\) 6432.66 0.508383
\(544\) −12468.1 −0.982654
\(545\) −3914.57 −0.307673
\(546\) 0 0
\(547\) 3640.95 0.284600 0.142300 0.989824i \(-0.454550\pi\)
0.142300 + 0.989824i \(0.454550\pi\)
\(548\) −8340.41 −0.650154
\(549\) 5769.86 0.448546
\(550\) 7139.13 0.553479
\(551\) 28418.7 2.19724
\(552\) 1777.41 0.137050
\(553\) 0 0
\(554\) 3643.92 0.279450
\(555\) −1802.44 −0.137855
\(556\) −4919.42 −0.375233
\(557\) −5035.32 −0.383040 −0.191520 0.981489i \(-0.561342\pi\)
−0.191520 + 0.981489i \(0.561342\pi\)
\(558\) 142.668 0.0108237
\(559\) 28794.8 2.17870
\(560\) 0 0
\(561\) −16229.9 −1.22144
\(562\) −12205.9 −0.916145
\(563\) −10851.4 −0.812309 −0.406155 0.913804i \(-0.633131\pi\)
−0.406155 + 0.913804i \(0.633131\pi\)
\(564\) 3384.70 0.252697
\(565\) −3671.02 −0.273347
\(566\) 560.964 0.0416591
\(567\) 0 0
\(568\) −9038.98 −0.667724
\(569\) 1829.57 0.134797 0.0673987 0.997726i \(-0.478530\pi\)
0.0673987 + 0.997726i \(0.478530\pi\)
\(570\) −7114.58 −0.522802
\(571\) 1621.95 0.118873 0.0594365 0.998232i \(-0.481070\pi\)
0.0594365 + 0.998232i \(0.481070\pi\)
\(572\) −14211.3 −1.03882
\(573\) 7297.21 0.532016
\(574\) 0 0
\(575\) −1282.61 −0.0930236
\(576\) −8092.81 −0.585417
\(577\) 7394.69 0.533527 0.266763 0.963762i \(-0.414046\pi\)
0.266763 + 0.963762i \(0.414046\pi\)
\(578\) 3980.60 0.286455
\(579\) 14735.0 1.05763
\(580\) −6746.86 −0.483014
\(581\) 0 0
\(582\) −11525.8 −0.820895
\(583\) 21668.0 1.53927
\(584\) −8772.16 −0.621566
\(585\) 8759.43 0.619073
\(586\) 2722.54 0.191923
\(587\) −9876.78 −0.694478 −0.347239 0.937777i \(-0.612881\pi\)
−0.347239 + 0.937777i \(0.612881\pi\)
\(588\) 0 0
\(589\) −527.264 −0.0368855
\(590\) 2921.94 0.203889
\(591\) −10614.1 −0.738760
\(592\) −1418.61 −0.0984877
\(593\) 10088.3 0.698612 0.349306 0.937009i \(-0.386417\pi\)
0.349306 + 0.937009i \(0.386417\pi\)
\(594\) −17879.8 −1.23505
\(595\) 0 0
\(596\) 8496.59 0.583950
\(597\) −13380.2 −0.917277
\(598\) −2981.16 −0.203860
\(599\) 7199.57 0.491096 0.245548 0.969384i \(-0.421032\pi\)
0.245548 + 0.969384i \(0.421032\pi\)
\(600\) −4309.49 −0.293224
\(601\) 11500.4 0.780551 0.390275 0.920698i \(-0.372380\pi\)
0.390275 + 0.920698i \(0.372380\pi\)
\(602\) 0 0
\(603\) −11961.1 −0.807781
\(604\) 8338.92 0.561765
\(605\) 20570.4 1.38232
\(606\) 1158.54 0.0776606
\(607\) −28576.9 −1.91088 −0.955439 0.295190i \(-0.904617\pi\)
−0.955439 + 0.295190i \(0.904617\pi\)
\(608\) 19513.7 1.30162
\(609\) 0 0
\(610\) −5911.10 −0.392350
\(611\) −17982.5 −1.19066
\(612\) −5142.76 −0.339679
\(613\) −19708.3 −1.29855 −0.649276 0.760553i \(-0.724928\pi\)
−0.649276 + 0.760553i \(0.724928\pi\)
\(614\) 8858.20 0.582228
\(615\) −2923.01 −0.191654
\(616\) 0 0
\(617\) 10092.5 0.658520 0.329260 0.944239i \(-0.393201\pi\)
0.329260 + 0.944239i \(0.393201\pi\)
\(618\) −9315.10 −0.606324
\(619\) 10262.2 0.666353 0.333176 0.942864i \(-0.391880\pi\)
0.333176 + 0.942864i \(0.391880\pi\)
\(620\) 125.177 0.00810846
\(621\) 3212.28 0.207575
\(622\) −14458.1 −0.932021
\(623\) 0 0
\(624\) −4146.15 −0.265992
\(625\) −5544.48 −0.354847
\(626\) −6440.53 −0.411206
\(627\) 25401.4 1.61792
\(628\) −2579.48 −0.163905
\(629\) −5622.29 −0.356400
\(630\) 0 0
\(631\) −6672.46 −0.420961 −0.210480 0.977598i \(-0.567503\pi\)
−0.210480 + 0.977598i \(0.567503\pi\)
\(632\) 13933.8 0.876989
\(633\) −16421.7 −1.03113
\(634\) 8466.01 0.530328
\(635\) 9946.09 0.621572
\(636\) −4129.19 −0.257442
\(637\) 0 0
\(638\) −28126.4 −1.74535
\(639\) −6279.68 −0.388764
\(640\) −1751.14 −0.108156
\(641\) 1384.37 0.0853032 0.0426516 0.999090i \(-0.486419\pi\)
0.0426516 + 0.999090i \(0.486419\pi\)
\(642\) 8154.32 0.501286
\(643\) −8819.65 −0.540922 −0.270461 0.962731i \(-0.587176\pi\)
−0.270461 + 0.962731i \(0.587176\pi\)
\(644\) 0 0
\(645\) 12219.1 0.745930
\(646\) −22192.2 −1.35161
\(647\) −9653.15 −0.586560 −0.293280 0.956027i \(-0.594747\pi\)
−0.293280 + 0.956027i \(0.594747\pi\)
\(648\) −254.624 −0.0154361
\(649\) −10432.3 −0.630977
\(650\) 7228.09 0.436168
\(651\) 0 0
\(652\) 5854.77 0.351672
\(653\) −15167.6 −0.908963 −0.454481 0.890756i \(-0.650175\pi\)
−0.454481 + 0.890756i \(0.650175\pi\)
\(654\) 3109.87 0.185941
\(655\) 1814.80 0.108260
\(656\) −2300.56 −0.136923
\(657\) −6094.32 −0.361890
\(658\) 0 0
\(659\) −25102.5 −1.48385 −0.741924 0.670483i \(-0.766087\pi\)
−0.741924 + 0.670483i \(0.766087\pi\)
\(660\) −6030.53 −0.355664
\(661\) −773.543 −0.0455179 −0.0227590 0.999741i \(-0.507245\pi\)
−0.0227590 + 0.999741i \(0.507245\pi\)
\(662\) −6514.66 −0.382477
\(663\) −16432.2 −0.962552
\(664\) 27417.5 1.60241
\(665\) 0 0
\(666\) −2380.97 −0.138529
\(667\) 5053.16 0.293342
\(668\) −2343.56 −0.135741
\(669\) 13006.9 0.751685
\(670\) 12253.8 0.706577
\(671\) 21104.6 1.21421
\(672\) 0 0
\(673\) −15576.5 −0.892169 −0.446084 0.894991i \(-0.647182\pi\)
−0.446084 + 0.894991i \(0.647182\pi\)
\(674\) −5284.11 −0.301983
\(675\) −7788.47 −0.444116
\(676\) −6279.92 −0.357301
\(677\) 2931.31 0.166409 0.0832047 0.996532i \(-0.473484\pi\)
0.0832047 + 0.996532i \(0.473484\pi\)
\(678\) 2916.39 0.165197
\(679\) 0 0
\(680\) 16689.1 0.941172
\(681\) −15641.8 −0.880169
\(682\) 521.840 0.0292996
\(683\) −927.185 −0.0519440 −0.0259720 0.999663i \(-0.508268\pi\)
−0.0259720 + 0.999663i \(0.508268\pi\)
\(684\) 8048.93 0.449939
\(685\) 18803.6 1.04883
\(686\) 0 0
\(687\) −7094.75 −0.394005
\(688\) 9617.03 0.532915
\(689\) 21938.0 1.21302
\(690\) −1265.05 −0.0697966
\(691\) 9100.13 0.500991 0.250496 0.968118i \(-0.419406\pi\)
0.250496 + 0.968118i \(0.419406\pi\)
\(692\) −13106.4 −0.719988
\(693\) 0 0
\(694\) 12649.5 0.691885
\(695\) 11090.9 0.605328
\(696\) 16978.3 0.924655
\(697\) −9117.64 −0.495488
\(698\) 3153.40 0.171000
\(699\) −8571.44 −0.463808
\(700\) 0 0
\(701\) 35113.0 1.89187 0.945935 0.324356i \(-0.105148\pi\)
0.945935 + 0.324356i \(0.105148\pi\)
\(702\) −18102.6 −0.973277
\(703\) 8799.44 0.472087
\(704\) −29601.3 −1.58472
\(705\) −7630.87 −0.407653
\(706\) −15001.3 −0.799688
\(707\) 0 0
\(708\) 1988.05 0.105530
\(709\) 33963.4 1.79905 0.899523 0.436874i \(-0.143914\pi\)
0.899523 + 0.436874i \(0.143914\pi\)
\(710\) 6433.40 0.340058
\(711\) 9680.29 0.510604
\(712\) −412.238 −0.0216984
\(713\) −93.7534 −0.00492439
\(714\) 0 0
\(715\) 32039.6 1.67582
\(716\) −7705.26 −0.402177
\(717\) −19188.0 −0.999427
\(718\) −16671.8 −0.866553
\(719\) −31871.1 −1.65312 −0.826558 0.562852i \(-0.809704\pi\)
−0.826558 + 0.562852i \(0.809704\pi\)
\(720\) 2925.51 0.151427
\(721\) 0 0
\(722\) 20494.5 1.05641
\(723\) 9082.64 0.467202
\(724\) 7455.59 0.382714
\(725\) −12251.9 −0.627617
\(726\) −16341.8 −0.835403
\(727\) −4704.97 −0.240024 −0.120012 0.992772i \(-0.538293\pi\)
−0.120012 + 0.992772i \(0.538293\pi\)
\(728\) 0 0
\(729\) 11830.9 0.601072
\(730\) 6243.49 0.316551
\(731\) 38114.5 1.92847
\(732\) −4021.83 −0.203075
\(733\) 13887.8 0.699808 0.349904 0.936786i \(-0.386214\pi\)
0.349904 + 0.936786i \(0.386214\pi\)
\(734\) −11042.2 −0.555280
\(735\) 0 0
\(736\) 3469.76 0.173773
\(737\) −43750.3 −2.18665
\(738\) −3861.20 −0.192592
\(739\) −3740.36 −0.186186 −0.0930929 0.995657i \(-0.529675\pi\)
−0.0930929 + 0.995657i \(0.529675\pi\)
\(740\) −2089.07 −0.103778
\(741\) 25717.9 1.27500
\(742\) 0 0
\(743\) −9215.34 −0.455018 −0.227509 0.973776i \(-0.573058\pi\)
−0.227509 + 0.973776i \(0.573058\pi\)
\(744\) −315.005 −0.0155224
\(745\) −19155.8 −0.942031
\(746\) 18702.1 0.917874
\(747\) 19047.8 0.932964
\(748\) −18810.8 −0.919507
\(749\) 0 0
\(750\) 9942.51 0.484065
\(751\) 12001.6 0.583150 0.291575 0.956548i \(-0.405821\pi\)
0.291575 + 0.956548i \(0.405821\pi\)
\(752\) −6005.89 −0.291240
\(753\) 15316.6 0.741260
\(754\) −28476.8 −1.37542
\(755\) −18800.3 −0.906242
\(756\) 0 0
\(757\) −18753.4 −0.900400 −0.450200 0.892928i \(-0.648647\pi\)
−0.450200 + 0.892928i \(0.648647\pi\)
\(758\) −17960.1 −0.860606
\(759\) 4516.65 0.216000
\(760\) −26120.1 −1.24668
\(761\) −2081.91 −0.0991709 −0.0495855 0.998770i \(-0.515790\pi\)
−0.0495855 + 0.998770i \(0.515790\pi\)
\(762\) −7901.52 −0.375646
\(763\) 0 0
\(764\) 8457.62 0.400505
\(765\) 11594.5 0.547973
\(766\) 25368.1 1.19659
\(767\) −10562.3 −0.497239
\(768\) 13618.8 0.639876
\(769\) −10435.2 −0.489339 −0.244669 0.969607i \(-0.578679\pi\)
−0.244669 + 0.969607i \(0.578679\pi\)
\(770\) 0 0
\(771\) 9820.42 0.458721
\(772\) 17078.2 0.796191
\(773\) −2424.71 −0.112821 −0.0564107 0.998408i \(-0.517966\pi\)
−0.0564107 + 0.998408i \(0.517966\pi\)
\(774\) 16141.0 0.749580
\(775\) 227.314 0.0105359
\(776\) −42315.3 −1.95751
\(777\) 0 0
\(778\) 9772.71 0.450345
\(779\) 14270.0 0.656323
\(780\) −6105.68 −0.280280
\(781\) −22969.4 −1.05238
\(782\) −3946.03 −0.180447
\(783\) 30684.6 1.40048
\(784\) 0 0
\(785\) 5815.49 0.264413
\(786\) −1441.74 −0.0654265
\(787\) 463.211 0.0209806 0.0104903 0.999945i \(-0.496661\pi\)
0.0104903 + 0.999945i \(0.496661\pi\)
\(788\) −12302.0 −0.556143
\(789\) −3340.38 −0.150723
\(790\) −9917.24 −0.446632
\(791\) 0 0
\(792\) −25233.7 −1.13212
\(793\) 21367.6 0.956853
\(794\) 16604.3 0.742148
\(795\) 9309.35 0.415307
\(796\) −15507.9 −0.690532
\(797\) −8642.97 −0.384128 −0.192064 0.981382i \(-0.561518\pi\)
−0.192064 + 0.981382i \(0.561518\pi\)
\(798\) 0 0
\(799\) −23802.7 −1.05392
\(800\) −8412.76 −0.371795
\(801\) −286.395 −0.0126333
\(802\) 30660.9 1.34997
\(803\) −22291.3 −0.979632
\(804\) 8337.34 0.365715
\(805\) 0 0
\(806\) 528.343 0.0230894
\(807\) 4393.41 0.191642
\(808\) 4253.38 0.185190
\(809\) −34851.3 −1.51459 −0.757296 0.653071i \(-0.773480\pi\)
−0.757296 + 0.653071i \(0.773480\pi\)
\(810\) 181.226 0.00786128
\(811\) 21683.0 0.938831 0.469416 0.882977i \(-0.344465\pi\)
0.469416 + 0.882977i \(0.344465\pi\)
\(812\) 0 0
\(813\) 15641.8 0.674761
\(814\) −8708.92 −0.374997
\(815\) −13199.7 −0.567320
\(816\) −5488.08 −0.235443
\(817\) −59652.9 −2.55446
\(818\) 15122.0 0.646366
\(819\) 0 0
\(820\) −3387.83 −0.144278
\(821\) 24106.9 1.02477 0.512385 0.858756i \(-0.328762\pi\)
0.512385 + 0.858756i \(0.328762\pi\)
\(822\) −14938.3 −0.633859
\(823\) 40470.8 1.71412 0.857062 0.515213i \(-0.172287\pi\)
0.857062 + 0.515213i \(0.172287\pi\)
\(824\) −34198.9 −1.44585
\(825\) −10951.0 −0.462141
\(826\) 0 0
\(827\) −7861.00 −0.330537 −0.165268 0.986249i \(-0.552849\pi\)
−0.165268 + 0.986249i \(0.552849\pi\)
\(828\) 1431.19 0.0600691
\(829\) −21327.3 −0.893522 −0.446761 0.894653i \(-0.647423\pi\)
−0.446761 + 0.894653i \(0.647423\pi\)
\(830\) −19514.1 −0.816077
\(831\) −5589.58 −0.233334
\(832\) −29970.1 −1.24883
\(833\) 0 0
\(834\) −8811.03 −0.365829
\(835\) 5283.61 0.218978
\(836\) 29440.8 1.21798
\(837\) −569.304 −0.0235102
\(838\) −29989.2 −1.23623
\(839\) −5562.15 −0.228876 −0.114438 0.993430i \(-0.536507\pi\)
−0.114438 + 0.993430i \(0.536507\pi\)
\(840\) 0 0
\(841\) 23880.2 0.979137
\(842\) 8010.39 0.327858
\(843\) 18723.2 0.764958
\(844\) −19033.1 −0.776238
\(845\) 14158.2 0.576400
\(846\) −10080.1 −0.409648
\(847\) 0 0
\(848\) 7326.94 0.296708
\(849\) −860.488 −0.0347843
\(850\) 9567.51 0.386074
\(851\) 1564.64 0.0630259
\(852\) 4377.19 0.176010
\(853\) 2170.43 0.0871207 0.0435603 0.999051i \(-0.486130\pi\)
0.0435603 + 0.999051i \(0.486130\pi\)
\(854\) 0 0
\(855\) −18146.5 −0.725845
\(856\) 29937.3 1.19537
\(857\) 26643.0 1.06197 0.530985 0.847381i \(-0.321822\pi\)
0.530985 + 0.847381i \(0.321822\pi\)
\(858\) −25453.4 −1.01278
\(859\) 25875.8 1.02779 0.513895 0.857853i \(-0.328202\pi\)
0.513895 + 0.857853i \(0.328202\pi\)
\(860\) 14162.1 0.561541
\(861\) 0 0
\(862\) −11871.3 −0.469069
\(863\) −23408.2 −0.923320 −0.461660 0.887057i \(-0.652746\pi\)
−0.461660 + 0.887057i \(0.652746\pi\)
\(864\) 21069.6 0.829633
\(865\) 29548.7 1.16149
\(866\) 35032.2 1.37465
\(867\) −6106.03 −0.239183
\(868\) 0 0
\(869\) 35407.8 1.38220
\(870\) −12084.1 −0.470908
\(871\) −44295.4 −1.72318
\(872\) 11417.4 0.443397
\(873\) −29397.9 −1.13971
\(874\) 6175.92 0.239020
\(875\) 0 0
\(876\) 4247.99 0.163843
\(877\) 767.049 0.0295341 0.0147671 0.999891i \(-0.495299\pi\)
0.0147671 + 0.999891i \(0.495299\pi\)
\(878\) 24117.8 0.927034
\(879\) −4176.22 −0.160251
\(880\) 10700.7 0.409911
\(881\) −10365.6 −0.396396 −0.198198 0.980162i \(-0.563509\pi\)
−0.198198 + 0.980162i \(0.563509\pi\)
\(882\) 0 0
\(883\) −31628.8 −1.20543 −0.602714 0.797957i \(-0.705914\pi\)
−0.602714 + 0.797957i \(0.705914\pi\)
\(884\) −19045.2 −0.724615
\(885\) −4482.10 −0.170242
\(886\) 1645.27 0.0623860
\(887\) 4816.21 0.182314 0.0911571 0.995837i \(-0.470943\pi\)
0.0911571 + 0.995837i \(0.470943\pi\)
\(888\) 5257.08 0.198667
\(889\) 0 0
\(890\) 293.406 0.0110505
\(891\) −647.037 −0.0243284
\(892\) 15075.3 0.565874
\(893\) 37253.6 1.39602
\(894\) 15218.0 0.569314
\(895\) 17371.7 0.648795
\(896\) 0 0
\(897\) 4572.93 0.170218
\(898\) −25884.9 −0.961904
\(899\) −895.559 −0.0332242
\(900\) −3470.05 −0.128520
\(901\) 29038.3 1.07370
\(902\) −14123.2 −0.521343
\(903\) 0 0
\(904\) 10707.1 0.393929
\(905\) −16808.8 −0.617396
\(906\) 14935.6 0.547685
\(907\) −14685.0 −0.537605 −0.268803 0.963195i \(-0.586628\pi\)
−0.268803 + 0.963195i \(0.586628\pi\)
\(908\) −18129.2 −0.662597
\(909\) 2954.97 0.107822
\(910\) 0 0
\(911\) 9884.25 0.359473 0.179737 0.983715i \(-0.442475\pi\)
0.179737 + 0.983715i \(0.442475\pi\)
\(912\) 8589.39 0.311868
\(913\) 69671.8 2.52552
\(914\) 32391.9 1.17224
\(915\) 9067.30 0.327602
\(916\) −8222.96 −0.296610
\(917\) 0 0
\(918\) −23961.7 −0.861496
\(919\) −2164.32 −0.0776869 −0.0388434 0.999245i \(-0.512367\pi\)
−0.0388434 + 0.999245i \(0.512367\pi\)
\(920\) −4644.43 −0.166437
\(921\) −13588.0 −0.486145
\(922\) 28133.2 1.00490
\(923\) −23255.6 −0.829325
\(924\) 0 0
\(925\) −3793.61 −0.134847
\(926\) −8208.17 −0.291293
\(927\) −23759.2 −0.841805
\(928\) 33144.1 1.17242
\(929\) 52478.9 1.85336 0.926682 0.375845i \(-0.122648\pi\)
0.926682 + 0.375845i \(0.122648\pi\)
\(930\) 224.202 0.00790523
\(931\) 0 0
\(932\) −9934.48 −0.349157
\(933\) 22178.0 0.778214
\(934\) −14772.9 −0.517540
\(935\) 42409.4 1.48335
\(936\) −25548.1 −0.892166
\(937\) 53501.9 1.86535 0.932674 0.360720i \(-0.117469\pi\)
0.932674 + 0.360720i \(0.117469\pi\)
\(938\) 0 0
\(939\) 9879.42 0.343347
\(940\) −8844.34 −0.306884
\(941\) 32401.0 1.12247 0.561235 0.827657i \(-0.310327\pi\)
0.561235 + 0.827657i \(0.310327\pi\)
\(942\) −4620.03 −0.159797
\(943\) 2537.36 0.0876224
\(944\) −3527.65 −0.121626
\(945\) 0 0
\(946\) 59039.2 2.02910
\(947\) 26682.1 0.915577 0.457789 0.889061i \(-0.348642\pi\)
0.457789 + 0.889061i \(0.348642\pi\)
\(948\) −6747.55 −0.231171
\(949\) −22569.1 −0.771997
\(950\) −14974.1 −0.511394
\(951\) −12986.4 −0.442811
\(952\) 0 0
\(953\) −10364.6 −0.352300 −0.176150 0.984363i \(-0.556364\pi\)
−0.176150 + 0.984363i \(0.556364\pi\)
\(954\) 12297.3 0.417339
\(955\) −19067.9 −0.646097
\(956\) −22239.3 −0.752375
\(957\) 43144.3 1.45732
\(958\) −4280.31 −0.144353
\(959\) 0 0
\(960\) −12717.8 −0.427568
\(961\) −29774.4 −0.999442
\(962\) −8817.44 −0.295515
\(963\) 20798.5 0.695973
\(964\) 10527.0 0.351713
\(965\) −38503.3 −1.28442
\(966\) 0 0
\(967\) 41802.6 1.39016 0.695079 0.718933i \(-0.255369\pi\)
0.695079 + 0.718933i \(0.255369\pi\)
\(968\) −59996.5 −1.99211
\(969\) 34041.7 1.12856
\(970\) 30117.4 0.996920
\(971\) −13823.4 −0.456865 −0.228432 0.973560i \(-0.573360\pi\)
−0.228432 + 0.973560i \(0.573360\pi\)
\(972\) 14040.6 0.463326
\(973\) 0 0
\(974\) −41541.7 −1.36661
\(975\) −11087.5 −0.364189
\(976\) 7136.44 0.234049
\(977\) −851.189 −0.0278730 −0.0139365 0.999903i \(-0.504436\pi\)
−0.0139365 + 0.999903i \(0.504436\pi\)
\(978\) 10486.3 0.342858
\(979\) −1047.56 −0.0341982
\(980\) 0 0
\(981\) 7932.07 0.258156
\(982\) 22447.1 0.729444
\(983\) 38567.2 1.25138 0.625689 0.780073i \(-0.284818\pi\)
0.625689 + 0.780073i \(0.284818\pi\)
\(984\) 8525.38 0.276198
\(985\) 27735.2 0.897174
\(986\) −37693.5 −1.21745
\(987\) 0 0
\(988\) 29807.6 0.959825
\(989\) −10606.9 −0.341032
\(990\) 17959.8 0.576566
\(991\) −28327.4 −0.908023 −0.454012 0.890996i \(-0.650008\pi\)
−0.454012 + 0.890996i \(0.650008\pi\)
\(992\) −614.937 −0.0196817
\(993\) 9993.14 0.319358
\(994\) 0 0
\(995\) 34962.9 1.11397
\(996\) −13277.1 −0.422391
\(997\) −796.270 −0.0252940 −0.0126470 0.999920i \(-0.504026\pi\)
−0.0126470 + 0.999920i \(0.504026\pi\)
\(998\) −12916.8 −0.409694
\(999\) 9501.04 0.300900
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.4.a.e.1.5 8
7.6 odd 2 161.4.a.b.1.5 8
21.20 even 2 1449.4.a.i.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.b.1.5 8 7.6 odd 2
1127.4.a.e.1.5 8 1.1 even 1 trivial
1449.4.a.i.1.4 8 21.20 even 2