Properties

Label 1127.4.a.e
Level $1127$
Weight $4$
Character orbit 1127.a
Self dual yes
Analytic conductor $66.495$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1127,4,Mod(1,1127)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1127.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1127, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4951525765\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 44x^{6} - 23x^{5} + 587x^{4} + 594x^{3} - 2430x^{2} - 3403x + 110 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{4} q^{3} + ( - \beta_{4} + \beta_{3} + \beta_1 + 3) q^{4} + ( - \beta_{5} + \beta_{4} - \beta_1 + 3) q^{5} + (\beta_{5} - \beta_{4} + 2 \beta_{3} + \cdots + 6) q^{6} + ( - \beta_{7} + 2 \beta_{6} + \cdots - 11) q^{8}+ \cdots + ( - 46 \beta_{7} + 33 \beta_{6} + \cdots - 226) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{3} + 24 q^{4} + 24 q^{5} + 41 q^{6} - 69 q^{8} + 95 q^{9} + 30 q^{10} - 98 q^{11} + 131 q^{12} + 145 q^{13} - 232 q^{15} - 76 q^{16} + 96 q^{17} - 69 q^{18} + 226 q^{19} + 22 q^{20} - 98 q^{22}+ \cdots - 1676 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 44x^{6} - 23x^{5} + 587x^{4} + 594x^{3} - 2430x^{2} - 3403x + 110 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -10\nu^{7} + 18\nu^{6} + 433\nu^{5} - 524\nu^{4} - 5765\nu^{3} + 3040\nu^{2} + 24035\nu + 4483 ) / 381 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 55\nu^{7} - 99\nu^{6} - 2191\nu^{5} + 2882\nu^{4} + 25421\nu^{3} - 18625\nu^{2} - 88949\nu - 82 ) / 1524 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 55\nu^{7} - 99\nu^{6} - 2191\nu^{5} + 2882\nu^{4} + 25421\nu^{3} - 20149\nu^{2} - 87425\nu + 16682 ) / 1524 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -57\nu^{7} + 128\nu^{6} + 2303\nu^{5} - 3825\nu^{4} - 27590\nu^{3} + 25583\nu^{2} + 100614\nu - 8140 ) / 762 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -176\nu^{7} + 393\nu^{6} + 6935\nu^{5} - 11356\nu^{4} - 80509\nu^{3} + 71411\nu^{2} + 289666\nu - 12844 ) / 762 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 721 \nu^{7} + 1501 \nu^{6} + 28565 \nu^{5} - 42962 \nu^{4} - 332535 \nu^{3} + 266555 \nu^{2} + \cdots - 32998 ) / 1524 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{4} + \beta_{3} + \beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} - 2\beta_{6} + 2\beta_{5} + 2\beta_{4} + \beta_{3} - 2\beta_{2} + 17\beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3\beta_{7} - 4\beta_{6} - 17\beta_{4} + 30\beta_{3} - \beta_{2} + 24\beta _1 + 197 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 33\beta_{7} - 66\beta_{6} + 66\beta_{5} + 56\beta_{4} + 51\beta_{3} - 55\beta_{2} + 344\beta _1 + 344 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 106\beta_{7} - 146\beta_{6} + 44\beta_{5} - 287\beta_{4} + 789\beta_{3} - 61\beta_{2} + 608\beta _1 + 4206 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 886\beta_{7} - 1758\beta_{6} + 1784\beta_{5} + 1342\beta_{4} + 1784\beta_{3} - 1324\beta_{2} + 7639\beta _1 + 9594 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.10754
3.78325
2.91250
0.0316163
−2.07589
−2.14518
−3.02588
−4.58796
−5.10754 −4.52103 18.0870 −1.28161 23.0913 0 −51.5197 −6.56032 6.54585
1.2 −3.78325 9.05000 6.31297 4.56958 −34.2384 0 6.38246 54.9026 −17.2879
1.3 −2.91250 −3.10924 0.482647 −2.69280 9.05565 0 21.8943 −17.3326 7.84277
1.4 −0.0316163 −9.11982 −7.99900 18.5636 0.288335 0 0.505830 56.1711 −0.586913
1.5 2.07589 −3.18430 −3.69068 8.32072 −6.61027 0 −24.2686 −16.8602 17.2729
1.6 2.14518 0.0184068 −3.39821 −1.27994 0.0394858 0 −24.4512 −26.9997 −2.74571
1.7 3.02588 9.11775 1.15594 −18.5973 27.5892 0 −20.7093 56.1334 −56.2732
1.8 4.58796 4.74823 13.0493 16.3977 21.7847 0 23.1662 −4.45434 75.2321
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1127.4.a.e 8
7.b odd 2 1 161.4.a.b 8
21.c even 2 1 1449.4.a.i 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.4.a.b 8 7.b odd 2 1
1127.4.a.e 8 1.a even 1 1 trivial
1449.4.a.i 8 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1127))\):

\( T_{2}^{8} - 44T_{2}^{6} + 23T_{2}^{5} + 587T_{2}^{4} - 594T_{2}^{3} - 2430T_{2}^{2} + 3403T_{2} + 110 \) Copy content Toggle raw display
\( T_{3}^{8} - 3T_{3}^{7} - 151T_{3}^{6} + 231T_{3}^{5} + 6672T_{3}^{4} + 3444T_{3}^{3} - 85750T_{3}^{2} - 158364T_{3} + 2944 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 44 T^{6} + \cdots + 110 \) Copy content Toggle raw display
$3$ \( T^{8} - 3 T^{7} + \cdots + 2944 \) Copy content Toggle raw display
$5$ \( T^{8} - 24 T^{7} + \cdots + 950784 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} + 98 T^{7} + \cdots + 228169216 \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots - 45149692647552 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots - 999803228258304 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 59039918237696 \) Copy content Toggle raw display
$23$ \( (T - 23)^{8} \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots - 77\!\cdots\!32 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots - 98\!\cdots\!24 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 283373860839168 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 63\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots - 43\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots - 98\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 29\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots - 91\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 69\!\cdots\!20 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots - 56\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 49\!\cdots\!60 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots - 26\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots - 48\!\cdots\!20 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots - 36\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 43\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots - 22\!\cdots\!52 \) Copy content Toggle raw display
show more
show less