Properties

Label 112.6.p.c.31.3
Level $112$
Weight $6$
Character 112.31
Analytic conductor $17.963$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,6,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.9629878191\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} + 691 x^{12} - 8602 x^{11} + 416261 x^{10} - 3521447 x^{9} + 66162087 x^{8} + \cdots + 17213603549184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{6}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.3
Root \(-2.79973 - 4.84928i\) of defining polynomial
Character \(\chi\) \(=\) 112.31
Dual form 112.6.p.c.47.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.77385 + 8.26855i) q^{3} +(88.0882 - 50.8577i) q^{5} +(-12.6490 - 129.023i) q^{7} +(75.9208 + 131.499i) q^{9} +(-496.703 - 286.771i) q^{11} +25.1634i q^{13} +971.148i q^{15} +(-1129.13 - 651.905i) q^{17} +(-425.421 - 736.851i) q^{19} +(1127.22 + 511.349i) q^{21} +(1903.24 - 1098.84i) q^{23} +(3610.52 - 6253.60i) q^{25} -3769.83 q^{27} +7137.60 q^{29} +(1633.03 - 2828.49i) q^{31} +(4742.36 - 2738.01i) q^{33} +(-7676.05 - 10722.1i) q^{35} +(-6764.09 - 11715.7i) q^{37} +(-208.065 - 120.126i) q^{39} +169.841i q^{41} +17478.2i q^{43} +(13375.4 + 7722.31i) q^{45} +(325.545 + 563.860i) q^{47} +(-16487.0 + 3264.02i) q^{49} +(10780.6 - 6224.19i) q^{51} +(4905.03 - 8495.76i) q^{53} -58338.1 q^{55} +8123.59 q^{57} +(20726.3 - 35899.1i) q^{59} +(10084.1 - 5822.05i) q^{61} +(16006.1 - 11458.9i) q^{63} +(1279.75 + 2216.60i) q^{65} +(26548.8 + 15328.0i) q^{67} +20982.7i q^{69} +32773.7i q^{71} +(-18007.7 - 10396.7i) q^{73} +(34472.1 + 59707.4i) q^{75} +(-30717.4 + 67713.5i) q^{77} +(-11149.2 + 6437.02i) q^{79} +(-452.167 + 783.177i) q^{81} +120956. q^{83} -132618. q^{85} +(-34073.8 + 59017.6i) q^{87} +(-86406.2 + 49886.6i) q^{89} +(3246.67 - 318.291i) q^{91} +(15591.7 + 27005.6i) q^{93} +(-74949.2 - 43271.9i) q^{95} +46717.2i q^{97} -87087.6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 9 q^{3} + 33 q^{5} + 28 q^{7} - 538 q^{9} - 333 q^{11} + 801 q^{17} + 2135 q^{19} + 2017 q^{21} - 2667 q^{23} + 5434 q^{25} - 17910 q^{27} + 684 q^{29} - 3119 q^{31} + 29013 q^{33} + 2247 q^{35}+ \cdots + 124833 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.77385 + 8.26855i −0.306242 + 0.530428i −0.977537 0.210763i \(-0.932405\pi\)
0.671295 + 0.741191i \(0.265738\pi\)
\(4\) 0 0
\(5\) 88.0882 50.8577i 1.57577 0.909771i 0.580329 0.814382i \(-0.302924\pi\)
0.995440 0.0953882i \(-0.0304092\pi\)
\(6\) 0 0
\(7\) −12.6490 129.023i −0.0975685 0.995229i
\(8\) 0 0
\(9\) 75.9208 + 131.499i 0.312431 + 0.541147i
\(10\) 0 0
\(11\) −496.703 286.771i −1.23770 0.714585i −0.269075 0.963119i \(-0.586718\pi\)
−0.968623 + 0.248534i \(0.920051\pi\)
\(12\) 0 0
\(13\) 25.1634i 0.0412963i 0.999787 + 0.0206482i \(0.00657298\pi\)
−0.999787 + 0.0206482i \(0.993427\pi\)
\(14\) 0 0
\(15\) 971.148i 1.11444i
\(16\) 0 0
\(17\) −1129.13 651.905i −0.947594 0.547094i −0.0552616 0.998472i \(-0.517599\pi\)
−0.892333 + 0.451378i \(0.850933\pi\)
\(18\) 0 0
\(19\) −425.421 736.851i −0.270356 0.468270i 0.698597 0.715515i \(-0.253808\pi\)
−0.968953 + 0.247246i \(0.920475\pi\)
\(20\) 0 0
\(21\) 1127.22 + 511.349i 0.557776 + 0.253028i
\(22\) 0 0
\(23\) 1903.24 1098.84i 0.750195 0.433125i −0.0755694 0.997141i \(-0.524077\pi\)
0.825764 + 0.564015i \(0.190744\pi\)
\(24\) 0 0
\(25\) 3610.52 6253.60i 1.15536 2.00115i
\(26\) 0 0
\(27\) −3769.83 −0.995204
\(28\) 0 0
\(29\) 7137.60 1.57600 0.788002 0.615673i \(-0.211116\pi\)
0.788002 + 0.615673i \(0.211116\pi\)
\(30\) 0 0
\(31\) 1633.03 2828.49i 0.305204 0.528628i −0.672103 0.740458i \(-0.734609\pi\)
0.977307 + 0.211829i \(0.0679421\pi\)
\(32\) 0 0
\(33\) 4742.36 2738.01i 0.758071 0.437673i
\(34\) 0 0
\(35\) −7676.05 10722.1i −1.05918 1.47949i
\(36\) 0 0
\(37\) −6764.09 11715.7i −0.812278 1.40691i −0.911266 0.411818i \(-0.864894\pi\)
0.0989877 0.995089i \(-0.468440\pi\)
\(38\) 0 0
\(39\) −208.065 120.126i −0.0219047 0.0126467i
\(40\) 0 0
\(41\) 169.841i 0.0157791i 0.999969 + 0.00788957i \(0.00251135\pi\)
−0.999969 + 0.00788957i \(0.997489\pi\)
\(42\) 0 0
\(43\) 17478.2i 1.44154i 0.693175 + 0.720770i \(0.256211\pi\)
−0.693175 + 0.720770i \(0.743789\pi\)
\(44\) 0 0
\(45\) 13375.4 + 7722.31i 0.984638 + 0.568481i
\(46\) 0 0
\(47\) 325.545 + 563.860i 0.0214964 + 0.0372329i 0.876573 0.481268i \(-0.159824\pi\)
−0.855077 + 0.518501i \(0.826490\pi\)
\(48\) 0 0
\(49\) −16487.0 + 3264.02i −0.980961 + 0.194206i
\(50\) 0 0
\(51\) 10780.6 6224.19i 0.580387 0.335087i
\(52\) 0 0
\(53\) 4905.03 8495.76i 0.239857 0.415444i −0.720816 0.693126i \(-0.756233\pi\)
0.960673 + 0.277682i \(0.0895662\pi\)
\(54\) 0 0
\(55\) −58338.1 −2.60043
\(56\) 0 0
\(57\) 8123.59 0.331177
\(58\) 0 0
\(59\) 20726.3 35899.1i 0.775162 1.34262i −0.159542 0.987191i \(-0.551002\pi\)
0.934703 0.355429i \(-0.115665\pi\)
\(60\) 0 0
\(61\) 10084.1 5822.05i 0.346986 0.200332i −0.316371 0.948636i \(-0.602464\pi\)
0.663357 + 0.748303i \(0.269131\pi\)
\(62\) 0 0
\(63\) 16006.1 11458.9i 0.508081 0.363739i
\(64\) 0 0
\(65\) 1279.75 + 2216.60i 0.0375702 + 0.0650734i
\(66\) 0 0
\(67\) 26548.8 + 15328.0i 0.722534 + 0.417155i 0.815685 0.578497i \(-0.196361\pi\)
−0.0931507 + 0.995652i \(0.529694\pi\)
\(68\) 0 0
\(69\) 20982.7i 0.530565i
\(70\) 0 0
\(71\) 32773.7i 0.771578i 0.922587 + 0.385789i \(0.126071\pi\)
−0.922587 + 0.385789i \(0.873929\pi\)
\(72\) 0 0
\(73\) −18007.7 10396.7i −0.395504 0.228344i 0.289038 0.957318i \(-0.406664\pi\)
−0.684542 + 0.728973i \(0.739998\pi\)
\(74\) 0 0
\(75\) 34472.1 + 59707.4i 0.707644 + 1.22567i
\(76\) 0 0
\(77\) −30717.4 + 67713.5i −0.590416 + 1.30151i
\(78\) 0 0
\(79\) −11149.2 + 6437.02i −0.200991 + 0.116042i −0.597118 0.802154i \(-0.703688\pi\)
0.396126 + 0.918196i \(0.370354\pi\)
\(80\) 0 0
\(81\) −452.167 + 783.177i −0.00765749 + 0.0132632i
\(82\) 0 0
\(83\) 120956. 1.92723 0.963614 0.267297i \(-0.0861303\pi\)
0.963614 + 0.267297i \(0.0861303\pi\)
\(84\) 0 0
\(85\) −132618. −1.99092
\(86\) 0 0
\(87\) −34073.8 + 59017.6i −0.482639 + 0.835956i
\(88\) 0 0
\(89\) −86406.2 + 49886.6i −1.15630 + 0.667589i −0.950414 0.310987i \(-0.899340\pi\)
−0.205884 + 0.978576i \(0.566007\pi\)
\(90\) 0 0
\(91\) 3246.67 318.291i 0.0410993 0.00402922i
\(92\) 0 0
\(93\) 15591.7 + 27005.6i 0.186933 + 0.323777i
\(94\) 0 0
\(95\) −74949.2 43271.9i −0.852036 0.491923i
\(96\) 0 0
\(97\) 46717.2i 0.504136i 0.967710 + 0.252068i \(0.0811106\pi\)
−0.967710 + 0.252068i \(0.918889\pi\)
\(98\) 0 0
\(99\) 87087.6i 0.893035i
\(100\) 0 0
\(101\) 65121.0 + 37597.6i 0.635210 + 0.366739i 0.782767 0.622315i \(-0.213808\pi\)
−0.147557 + 0.989054i \(0.547141\pi\)
\(102\) 0 0
\(103\) 6802.39 + 11782.1i 0.0631783 + 0.109428i 0.895884 0.444287i \(-0.146543\pi\)
−0.832706 + 0.553715i \(0.813210\pi\)
\(104\) 0 0
\(105\) 125301. 12284.0i 1.10912 0.108734i
\(106\) 0 0
\(107\) −171323. + 98913.6i −1.44663 + 0.835212i −0.998279 0.0586455i \(-0.981322\pi\)
−0.448351 + 0.893858i \(0.647988\pi\)
\(108\) 0 0
\(109\) 31302.3 54217.2i 0.252354 0.437090i −0.711820 0.702362i \(-0.752129\pi\)
0.964173 + 0.265273i \(0.0854620\pi\)
\(110\) 0 0
\(111\) 129163. 0.995016
\(112\) 0 0
\(113\) −21630.5 −0.159357 −0.0796783 0.996821i \(-0.525389\pi\)
−0.0796783 + 0.996821i \(0.525389\pi\)
\(114\) 0 0
\(115\) 111769. 193589.i 0.788089 1.36501i
\(116\) 0 0
\(117\) −3308.95 + 1910.43i −0.0223474 + 0.0129023i
\(118\) 0 0
\(119\) −69828.5 + 153930.i −0.452028 + 0.996452i
\(120\) 0 0
\(121\) 83950.1 + 145406.i 0.521264 + 0.902856i
\(122\) 0 0
\(123\) −1404.34 810.796i −0.00836969 0.00483224i
\(124\) 0 0
\(125\) 416630.i 2.38493i
\(126\) 0 0
\(127\) 162179.i 0.892245i −0.894972 0.446123i \(-0.852805\pi\)
0.894972 0.446123i \(-0.147195\pi\)
\(128\) 0 0
\(129\) −144520. 83438.4i −0.764632 0.441461i
\(130\) 0 0
\(131\) 23348.6 + 40440.9i 0.118873 + 0.205894i 0.919321 0.393508i \(-0.128739\pi\)
−0.800448 + 0.599402i \(0.795405\pi\)
\(132\) 0 0
\(133\) −89689.8 + 64209.6i −0.439657 + 0.314754i
\(134\) 0 0
\(135\) −332077. + 191725.i −1.56821 + 0.905407i
\(136\) 0 0
\(137\) −92841.2 + 160806.i −0.422610 + 0.731981i −0.996194 0.0871652i \(-0.972219\pi\)
0.573584 + 0.819147i \(0.305553\pi\)
\(138\) 0 0
\(139\) 233047. 1.02307 0.511536 0.859262i \(-0.329077\pi\)
0.511536 + 0.859262i \(0.329077\pi\)
\(140\) 0 0
\(141\) −6216.40 −0.0263324
\(142\) 0 0
\(143\) 7216.15 12498.7i 0.0295097 0.0511124i
\(144\) 0 0
\(145\) 628738. 363002.i 2.48342 1.43380i
\(146\) 0 0
\(147\) 51717.8 151906.i 0.197400 0.579803i
\(148\) 0 0
\(149\) −5242.93 9081.01i −0.0193468 0.0335096i 0.856190 0.516661i \(-0.172825\pi\)
−0.875537 + 0.483152i \(0.839492\pi\)
\(150\) 0 0
\(151\) −168952. 97544.7i −0.603007 0.348146i 0.167217 0.985920i \(-0.446522\pi\)
−0.770223 + 0.637774i \(0.779855\pi\)
\(152\) 0 0
\(153\) 197972.i 0.683717i
\(154\) 0 0
\(155\) 332209.i 1.11066i
\(156\) 0 0
\(157\) 310448. + 179237.i 1.00517 + 0.580335i 0.909774 0.415105i \(-0.136255\pi\)
0.0953958 + 0.995439i \(0.469588\pi\)
\(158\) 0 0
\(159\) 46831.7 + 81114.9i 0.146909 + 0.254453i
\(160\) 0 0
\(161\) −165849. 231663.i −0.504254 0.704356i
\(162\) 0 0
\(163\) 93743.9 54123.1i 0.276359 0.159556i −0.355415 0.934709i \(-0.615660\pi\)
0.631774 + 0.775153i \(0.282327\pi\)
\(164\) 0 0
\(165\) 278497. 482372.i 0.796363 1.37934i
\(166\) 0 0
\(167\) −419205. −1.16315 −0.581574 0.813493i \(-0.697563\pi\)
−0.581574 + 0.813493i \(0.697563\pi\)
\(168\) 0 0
\(169\) 370660. 0.998295
\(170\) 0 0
\(171\) 64596.6 111885.i 0.168935 0.292604i
\(172\) 0 0
\(173\) −26114.7 + 15077.3i −0.0663392 + 0.0383009i −0.532803 0.846239i \(-0.678861\pi\)
0.466464 + 0.884540i \(0.345528\pi\)
\(174\) 0 0
\(175\) −852529. 386739.i −2.10433 0.954603i
\(176\) 0 0
\(177\) 197889. + 342753.i 0.474775 + 0.822334i
\(178\) 0 0
\(179\) 667579. + 385427.i 1.55729 + 0.899103i 0.997515 + 0.0704593i \(0.0224465\pi\)
0.559777 + 0.828643i \(0.310887\pi\)
\(180\) 0 0
\(181\) 664929.i 1.50862i 0.656520 + 0.754308i \(0.272028\pi\)
−0.656520 + 0.754308i \(0.727972\pi\)
\(182\) 0 0
\(183\) 111174.i 0.245401i
\(184\) 0 0
\(185\) −1.19167e6 688012.i −2.55993 1.47797i
\(186\) 0 0
\(187\) 373895. + 647605.i 0.781890 + 1.35427i
\(188\) 0 0
\(189\) 47684.4 + 486395.i 0.0971005 + 0.990455i
\(190\) 0 0
\(191\) −488504. + 282038.i −0.968912 + 0.559402i −0.898904 0.438145i \(-0.855636\pi\)
−0.0700078 + 0.997546i \(0.522302\pi\)
\(192\) 0 0
\(193\) −286373. + 496013.i −0.553400 + 0.958516i 0.444627 + 0.895716i \(0.353336\pi\)
−0.998026 + 0.0628001i \(0.979997\pi\)
\(194\) 0 0
\(195\) −24437.4 −0.0460223
\(196\) 0 0
\(197\) −436595. −0.801517 −0.400759 0.916184i \(-0.631253\pi\)
−0.400759 + 0.916184i \(0.631253\pi\)
\(198\) 0 0
\(199\) 380385. 658847.i 0.680912 1.17937i −0.293790 0.955870i \(-0.594917\pi\)
0.974703 0.223505i \(-0.0717499\pi\)
\(200\) 0 0
\(201\) −253480. + 146347.i −0.442541 + 0.255501i
\(202\) 0 0
\(203\) −90283.2 920917.i −0.153768 1.56848i
\(204\) 0 0
\(205\) 8637.73 + 14961.0i 0.0143554 + 0.0248643i
\(206\) 0 0
\(207\) 288991. + 166849.i 0.468768 + 0.270644i
\(208\) 0 0
\(209\) 487995.i 0.772768i
\(210\) 0 0
\(211\) 790222.i 1.22192i 0.791661 + 0.610961i \(0.209217\pi\)
−0.791661 + 0.610961i \(0.790783\pi\)
\(212\) 0 0
\(213\) −270991. 156457.i −0.409266 0.236290i
\(214\) 0 0
\(215\) 888903. + 1.53963e6i 1.31147 + 2.27153i
\(216\) 0 0
\(217\) −385597. 174921.i −0.555884 0.252170i
\(218\) 0 0
\(219\) 171932. 99264.9i 0.242240 0.139857i
\(220\) 0 0
\(221\) 16404.2 28412.8i 0.0225930 0.0391322i
\(222\) 0 0
\(223\) 583111. 0.785216 0.392608 0.919706i \(-0.371573\pi\)
0.392608 + 0.919706i \(0.371573\pi\)
\(224\) 0 0
\(225\) 1.09645e6 1.44389
\(226\) 0 0
\(227\) 36799.4 63738.4i 0.0473998 0.0820988i −0.841352 0.540487i \(-0.818240\pi\)
0.888752 + 0.458389i \(0.151573\pi\)
\(228\) 0 0
\(229\) 766067. 442289.i 0.965335 0.557336i 0.0675238 0.997718i \(-0.478490\pi\)
0.897811 + 0.440381i \(0.145157\pi\)
\(230\) 0 0
\(231\) −413252. 577242.i −0.509548 0.711751i
\(232\) 0 0
\(233\) 333981. + 578472.i 0.403025 + 0.698059i 0.994089 0.108565i \(-0.0346255\pi\)
−0.591065 + 0.806624i \(0.701292\pi\)
\(234\) 0 0
\(235\) 57353.2 + 33112.9i 0.0677467 + 0.0391136i
\(236\) 0 0
\(237\) 122917.i 0.142149i
\(238\) 0 0
\(239\) 320522.i 0.362963i 0.983394 + 0.181482i \(0.0580893\pi\)
−0.983394 + 0.181482i \(0.941911\pi\)
\(240\) 0 0
\(241\) −534192. 308416.i −0.592455 0.342054i 0.173613 0.984814i \(-0.444456\pi\)
−0.766067 + 0.642760i \(0.777789\pi\)
\(242\) 0 0
\(243\) −462351. 800816.i −0.502292 0.869995i
\(244\) 0 0
\(245\) −1.28631e6 + 1.12601e6i −1.36908 + 1.19847i
\(246\) 0 0
\(247\) 18541.7 10705.1i 0.0193378 0.0111647i
\(248\) 0 0
\(249\) −577427. + 1.00013e6i −0.590199 + 1.02226i
\(250\) 0 0
\(251\) 349034. 0.349691 0.174845 0.984596i \(-0.444057\pi\)
0.174845 + 0.984596i \(0.444057\pi\)
\(252\) 0 0
\(253\) −1.26046e6 −1.23802
\(254\) 0 0
\(255\) 633096. 1.09655e6i 0.609704 1.05604i
\(256\) 0 0
\(257\) 144724. 83556.6i 0.136681 0.0789129i −0.430100 0.902781i \(-0.641522\pi\)
0.566781 + 0.823868i \(0.308188\pi\)
\(258\) 0 0
\(259\) −1.42604e6 + 1.02092e6i −1.32094 + 0.945672i
\(260\) 0 0
\(261\) 541892. + 938585.i 0.492393 + 0.852849i
\(262\) 0 0
\(263\) 948936. + 547868.i 0.845956 + 0.488413i 0.859284 0.511498i \(-0.170909\pi\)
−0.0133286 + 0.999911i \(0.504243\pi\)
\(264\) 0 0
\(265\) 997834.i 0.872858i
\(266\) 0 0
\(267\) 952605.i 0.817776i
\(268\) 0 0
\(269\) −228858. 132131.i −0.192834 0.111333i 0.400474 0.916308i \(-0.368845\pi\)
−0.593309 + 0.804975i \(0.702179\pi\)
\(270\) 0 0
\(271\) 860139. + 1.48980e6i 0.711452 + 1.23227i 0.964312 + 0.264767i \(0.0852952\pi\)
−0.252861 + 0.967503i \(0.581371\pi\)
\(272\) 0 0
\(273\) −12867.3 + 28364.7i −0.0104491 + 0.0230341i
\(274\) 0 0
\(275\) −3.58670e6 + 2.07078e6i −2.85999 + 1.65121i
\(276\) 0 0
\(277\) 512463. 887613.i 0.401295 0.695063i −0.592588 0.805506i \(-0.701894\pi\)
0.993882 + 0.110443i \(0.0352270\pi\)
\(278\) 0 0
\(279\) 495923. 0.381420
\(280\) 0 0
\(281\) −520974. −0.393595 −0.196798 0.980444i \(-0.563054\pi\)
−0.196798 + 0.980444i \(0.563054\pi\)
\(282\) 0 0
\(283\) 517444. 896240.i 0.384059 0.665209i −0.607580 0.794259i \(-0.707859\pi\)
0.991638 + 0.129050i \(0.0411927\pi\)
\(284\) 0 0
\(285\) 715592. 413147.i 0.521859 0.301295i
\(286\) 0 0
\(287\) 21913.5 2148.31i 0.0157039 0.00153955i
\(288\) 0 0
\(289\) 140031. + 242541.i 0.0986234 + 0.170821i
\(290\) 0 0
\(291\) −386283. 223021.i −0.267407 0.154388i
\(292\) 0 0
\(293\) 2.08248e6i 1.41714i −0.705643 0.708568i \(-0.749342\pi\)
0.705643 0.708568i \(-0.250658\pi\)
\(294\) 0 0
\(295\) 4.21638e6i 2.82088i
\(296\) 0 0
\(297\) 1.87248e6 + 1.08108e6i 1.23176 + 0.711158i
\(298\) 0 0
\(299\) 27650.5 + 47892.0i 0.0178865 + 0.0309803i
\(300\) 0 0
\(301\) 2.25510e6 221081.i 1.43466 0.140649i
\(302\) 0 0
\(303\) −621755. + 358971.i −0.389057 + 0.224622i
\(304\) 0 0
\(305\) 592192. 1.02571e6i 0.364513 0.631355i
\(306\) 0 0
\(307\) 1.31236e6 0.794709 0.397354 0.917665i \(-0.369928\pi\)
0.397354 + 0.917665i \(0.369928\pi\)
\(308\) 0 0
\(309\) −129894. −0.0773916
\(310\) 0 0
\(311\) −133380. + 231020.i −0.0781967 + 0.135441i −0.902472 0.430749i \(-0.858250\pi\)
0.824275 + 0.566189i \(0.191583\pi\)
\(312\) 0 0
\(313\) 2.04046e6 1.17806e6i 1.17725 0.679683i 0.221870 0.975076i \(-0.428784\pi\)
0.955376 + 0.295393i \(0.0954505\pi\)
\(314\) 0 0
\(315\) 827173. 1.82342e6i 0.469699 1.03541i
\(316\) 0 0
\(317\) −336374. 582616.i −0.188007 0.325637i 0.756579 0.653903i \(-0.226869\pi\)
−0.944586 + 0.328265i \(0.893536\pi\)
\(318\) 0 0
\(319\) −3.54527e6 2.04686e6i −1.95062 1.12619i
\(320\) 0 0
\(321\) 1.88879e6i 1.02311i
\(322\) 0 0
\(323\) 1.10934e6i 0.591639i
\(324\) 0 0
\(325\) 157362. + 90852.9i 0.0826401 + 0.0477123i
\(326\) 0 0
\(327\) 298865. + 517649.i 0.154563 + 0.267711i
\(328\) 0 0
\(329\) 68633.2 49135.1i 0.0349578 0.0250266i
\(330\) 0 0
\(331\) −1.94594e6 + 1.12349e6i −0.976247 + 0.563636i −0.901135 0.433539i \(-0.857265\pi\)
−0.0751118 + 0.997175i \(0.523931\pi\)
\(332\) 0 0
\(333\) 1.02707e6 1.77894e6i 0.507562 0.879123i
\(334\) 0 0
\(335\) 3.11818e6 1.51806
\(336\) 0 0
\(337\) −1.09294e6 −0.524231 −0.262116 0.965036i \(-0.584420\pi\)
−0.262116 + 0.965036i \(0.584420\pi\)
\(338\) 0 0
\(339\) 103261. 178853.i 0.0488017 0.0845271i
\(340\) 0 0
\(341\) −1.62226e6 + 936612.i −0.755500 + 0.436188i
\(342\) 0 0
\(343\) 629678. + 2.08592e6i 0.288990 + 0.957332i
\(344\) 0 0
\(345\) 1.06713e6 + 1.84833e6i 0.482693 + 0.836048i
\(346\) 0 0
\(347\) −718007. 414541.i −0.320114 0.184818i 0.331329 0.943515i \(-0.392503\pi\)
−0.651443 + 0.758697i \(0.725836\pi\)
\(348\) 0 0
\(349\) 2.59286e6i 1.13950i 0.821817 + 0.569752i \(0.192961\pi\)
−0.821817 + 0.569752i \(0.807039\pi\)
\(350\) 0 0
\(351\) 94861.7i 0.0410982i
\(352\) 0 0
\(353\) −2.90101e6 1.67490e6i −1.23912 0.715404i −0.270202 0.962804i \(-0.587091\pi\)
−0.968913 + 0.247400i \(0.920424\pi\)
\(354\) 0 0
\(355\) 1.66680e6 + 2.88698e6i 0.701959 + 1.21583i
\(356\) 0 0
\(357\) −939429. 1.31222e6i −0.390115 0.544924i
\(358\) 0 0
\(359\) −137056. + 79129.5i −0.0561258 + 0.0324043i −0.527800 0.849368i \(-0.676983\pi\)
0.471675 + 0.881773i \(0.343650\pi\)
\(360\) 0 0
\(361\) 876083. 1.51742e6i 0.353816 0.612827i
\(362\) 0 0
\(363\) −1.60306e6 −0.638533
\(364\) 0 0
\(365\) −2.11502e6 −0.830963
\(366\) 0 0
\(367\) 1.20482e6 2.08681e6i 0.466935 0.808755i −0.532351 0.846523i \(-0.678692\pi\)
0.999287 + 0.0377682i \(0.0120248\pi\)
\(368\) 0 0
\(369\) −22333.9 + 12894.5i −0.00853882 + 0.00492989i
\(370\) 0 0
\(371\) −1.15819e6 525400.i −0.436864 0.198178i
\(372\) 0 0
\(373\) 904919. + 1.56736e6i 0.336773 + 0.583308i 0.983824 0.179139i \(-0.0573311\pi\)
−0.647051 + 0.762447i \(0.723998\pi\)
\(374\) 0 0
\(375\) 3.44492e6 + 1.98893e6i 1.26503 + 0.730366i
\(376\) 0 0
\(377\) 179606.i 0.0650832i
\(378\) 0 0
\(379\) 2.34965e6i 0.840243i −0.907468 0.420121i \(-0.861988\pi\)
0.907468 0.420121i \(-0.138012\pi\)
\(380\) 0 0
\(381\) 1.34098e6 + 774216.i 0.473271 + 0.273243i
\(382\) 0 0
\(383\) −1.71619e6 2.97252e6i −0.597816 1.03545i −0.993143 0.116907i \(-0.962702\pi\)
0.395327 0.918540i \(-0.370631\pi\)
\(384\) 0 0
\(385\) 737916. + 7.52698e6i 0.253720 + 2.58803i
\(386\) 0 0
\(387\) −2.29836e6 + 1.32696e6i −0.780084 + 0.450382i
\(388\) 0 0
\(389\) −1.02780e6 + 1.78019e6i −0.344376 + 0.596476i −0.985240 0.171178i \(-0.945243\pi\)
0.640864 + 0.767654i \(0.278576\pi\)
\(390\) 0 0
\(391\) −2.86535e6 −0.947841
\(392\) 0 0
\(393\) −445850. −0.145616
\(394\) 0 0
\(395\) −654744. + 1.13405e6i −0.211144 + 0.365712i
\(396\) 0 0
\(397\) 2.39567e6 1.38314e6i 0.762870 0.440443i −0.0674553 0.997722i \(-0.521488\pi\)
0.830325 + 0.557279i \(0.188155\pi\)
\(398\) 0 0
\(399\) −102755. 1.04813e6i −0.0323125 0.329597i
\(400\) 0 0
\(401\) −2.23802e6 3.87636e6i −0.695029 1.20383i −0.970171 0.242422i \(-0.922058\pi\)
0.275142 0.961404i \(-0.411275\pi\)
\(402\) 0 0
\(403\) 71174.5 + 41092.6i 0.0218304 + 0.0126038i
\(404\) 0 0
\(405\) 91984.8i 0.0278662i
\(406\) 0 0
\(407\) 7.75898e6i 2.32177i
\(408\) 0 0
\(409\) 2.56874e6 + 1.48306e6i 0.759297 + 0.438380i 0.829043 0.559184i \(-0.188886\pi\)
−0.0697463 + 0.997565i \(0.522219\pi\)
\(410\) 0 0
\(411\) −886420. 1.53532e6i −0.258842 0.448328i
\(412\) 0 0
\(413\) −4.89398e6 2.22009e6i −1.41185 0.640466i
\(414\) 0 0
\(415\) 1.06548e7 6.15156e6i 3.03687 1.75334i
\(416\) 0 0
\(417\) −1.11253e6 + 1.92696e6i −0.313308 + 0.542665i
\(418\) 0 0
\(419\) −842398. −0.234413 −0.117207 0.993108i \(-0.537394\pi\)
−0.117207 + 0.993108i \(0.537394\pi\)
\(420\) 0 0
\(421\) 5.02112e6 1.38069 0.690344 0.723482i \(-0.257459\pi\)
0.690344 + 0.723482i \(0.257459\pi\)
\(422\) 0 0
\(423\) −49431.2 + 85617.3i −0.0134323 + 0.0232654i
\(424\) 0 0
\(425\) −8.15350e6 + 4.70742e6i −2.18963 + 1.26419i
\(426\) 0 0
\(427\) −878732. 1.22744e6i −0.233231 0.325784i
\(428\) 0 0
\(429\) 68897.6 + 119334.i 0.0180743 + 0.0313055i
\(430\) 0 0
\(431\) 2.67724e6 + 1.54570e6i 0.694214 + 0.400805i 0.805189 0.593019i \(-0.202064\pi\)
−0.110975 + 0.993823i \(0.535397\pi\)
\(432\) 0 0
\(433\) 185156.i 0.0474591i 0.999718 + 0.0237295i \(0.00755405\pi\)
−0.999718 + 0.0237295i \(0.992446\pi\)
\(434\) 0 0
\(435\) 6.93167e6i 1.75636i
\(436\) 0 0
\(437\) −1.61936e6 934937.i −0.405639 0.234196i
\(438\) 0 0
\(439\) 3.59737e6 + 6.23083e6i 0.890890 + 1.54307i 0.838811 + 0.544423i \(0.183252\pi\)
0.0520793 + 0.998643i \(0.483415\pi\)
\(440\) 0 0
\(441\) −1.68092e6 1.92021e6i −0.411577 0.470168i
\(442\) 0 0
\(443\) 924451. 533732.i 0.223807 0.129215i −0.383905 0.923373i \(-0.625421\pi\)
0.607712 + 0.794158i \(0.292088\pi\)
\(444\) 0 0
\(445\) −5.07424e6 + 8.78884e6i −1.21471 + 2.10393i
\(446\) 0 0
\(447\) 100116. 0.0236992
\(448\) 0 0
\(449\) −419650. −0.0982361 −0.0491181 0.998793i \(-0.515641\pi\)
−0.0491181 + 0.998793i \(0.515641\pi\)
\(450\) 0 0
\(451\) 48705.6 84360.5i 0.0112755 0.0195298i
\(452\) 0 0
\(453\) 1.61311e6 931327.i 0.369332 0.213234i
\(454\) 0 0
\(455\) 269805. 193156.i 0.0610973 0.0437400i
\(456\) 0 0
\(457\) −3.79912e6 6.58026e6i −0.850927 1.47385i −0.880373 0.474282i \(-0.842708\pi\)
0.0294463 0.999566i \(-0.490626\pi\)
\(458\) 0 0
\(459\) 4.25663e6 + 2.45757e6i 0.943049 + 0.544470i
\(460\) 0 0
\(461\) 7.75232e6i 1.69895i 0.527633 + 0.849473i \(0.323080\pi\)
−0.527633 + 0.849473i \(0.676920\pi\)
\(462\) 0 0
\(463\) 1.43184e6i 0.310414i −0.987882 0.155207i \(-0.950396\pi\)
0.987882 0.155207i \(-0.0496044\pi\)
\(464\) 0 0
\(465\) 2.74688e6 + 1.58591e6i 0.589125 + 0.340132i
\(466\) 0 0
\(467\) −1.77394e6 3.07256e6i −0.376398 0.651940i 0.614137 0.789199i \(-0.289504\pi\)
−0.990535 + 0.137259i \(0.956171\pi\)
\(468\) 0 0
\(469\) 1.64185e6 3.61930e6i 0.344668 0.759788i
\(470\) 0 0
\(471\) −2.96406e6 + 1.71130e6i −0.615651 + 0.355446i
\(472\) 0 0
\(473\) 5.01226e6 8.68148e6i 1.03010 1.78419i
\(474\) 0 0
\(475\) −6.14396e6 −1.24944
\(476\) 0 0
\(477\) 1.48957e6 0.299755
\(478\) 0 0
\(479\) 618914. 1.07199e6i 0.123251 0.213477i −0.797797 0.602926i \(-0.794001\pi\)
0.921048 + 0.389449i \(0.127335\pi\)
\(480\) 0 0
\(481\) 294808. 170208.i 0.0581001 0.0335441i
\(482\) 0 0
\(483\) 2.70726e6 265409.i 0.528034 0.0517664i
\(484\) 0 0
\(485\) 2.37593e6 + 4.11523e6i 0.458648 + 0.794401i
\(486\) 0 0
\(487\) −7.44646e6 4.29922e6i −1.42275 0.821423i −0.426213 0.904623i \(-0.640153\pi\)
−0.996533 + 0.0831997i \(0.973486\pi\)
\(488\) 0 0
\(489\) 1.03350e6i 0.195451i
\(490\) 0 0
\(491\) 3.98380e6i 0.745750i −0.927882 0.372875i \(-0.878372\pi\)
0.927882 0.372875i \(-0.121628\pi\)
\(492\) 0 0
\(493\) −8.05930e6 4.65304e6i −1.49341 0.862222i
\(494\) 0 0
\(495\) −4.42908e6 7.67139e6i −0.812457 1.40722i
\(496\) 0 0
\(497\) 4.22857e6 414553.i 0.767896 0.0752816i
\(498\) 0 0
\(499\) 9.18700e6 5.30412e6i 1.65167 0.953590i 0.675279 0.737562i \(-0.264023\pi\)
0.976387 0.216028i \(-0.0693103\pi\)
\(500\) 0 0
\(501\) 2.00122e6 3.46622e6i 0.356205 0.616966i
\(502\) 0 0
\(503\) −6.21943e6 −1.09605 −0.548026 0.836462i \(-0.684620\pi\)
−0.548026 + 0.836462i \(0.684620\pi\)
\(504\) 0 0
\(505\) 7.64852e6 1.33459
\(506\) 0 0
\(507\) −1.76947e6 + 3.06482e6i −0.305720 + 0.529523i
\(508\) 0 0
\(509\) 6.18513e6 3.57098e6i 1.05817 0.610933i 0.133242 0.991084i \(-0.457461\pi\)
0.924925 + 0.380151i \(0.124128\pi\)
\(510\) 0 0
\(511\) −1.11364e6 + 2.45492e6i −0.188666 + 0.415896i
\(512\) 0 0
\(513\) 1.60376e6 + 2.77780e6i 0.269059 + 0.466024i
\(514\) 0 0
\(515\) 1.19842e6 + 691908.i 0.199109 + 0.114956i
\(516\) 0 0
\(517\) 373427.i 0.0614440i
\(518\) 0 0
\(519\) 287908.i 0.0469175i
\(520\) 0 0
\(521\) 2.98507e6 + 1.72343e6i 0.481793 + 0.278164i 0.721164 0.692765i \(-0.243608\pi\)
−0.239370 + 0.970928i \(0.576941\pi\)
\(522\) 0 0
\(523\) −3.15469e6 5.46408e6i −0.504315 0.873499i −0.999988 0.00498978i \(-0.998412\pi\)
0.495672 0.868510i \(-0.334922\pi\)
\(524\) 0 0
\(525\) 7.26761e6 5.20294e6i 1.15078 0.823854i
\(526\) 0 0
\(527\) −3.68781e6 + 2.12916e6i −0.578419 + 0.333950i
\(528\) 0 0
\(529\) −803288. + 1.39134e6i −0.124805 + 0.216169i
\(530\) 0 0
\(531\) 6.29423e6 0.968739
\(532\) 0 0
\(533\) −4273.78 −0.000651620
\(534\) 0 0
\(535\) −1.00610e7 + 1.74262e7i −1.51970 + 2.63220i
\(536\) 0 0
\(537\) −6.37384e6 + 3.67994e6i −0.953818 + 0.550687i
\(538\) 0 0
\(539\) 9.12517e6 + 3.10676e6i 1.35291 + 0.460612i
\(540\) 0 0
\(541\) −6.57619e6 1.13903e7i −0.966009 1.67318i −0.706880 0.707333i \(-0.749898\pi\)
−0.259128 0.965843i \(-0.583435\pi\)
\(542\) 0 0
\(543\) −5.49800e6 3.17427e6i −0.800212 0.462002i
\(544\) 0 0
\(545\) 6.36785e6i 0.918336i
\(546\) 0 0
\(547\) 3.69831e6i 0.528488i −0.964456 0.264244i \(-0.914878\pi\)
0.964456 0.264244i \(-0.0851224\pi\)
\(548\) 0 0
\(549\) 1.53118e6 + 884028.i 0.216818 + 0.125180i
\(550\) 0 0
\(551\) −3.03649e6 5.25935e6i −0.426081 0.737995i
\(552\) 0 0
\(553\) 971551. + 1.35709e6i 0.135099 + 0.188710i
\(554\) 0 0
\(555\) 1.13777e7 6.56893e6i 1.56792 0.905237i
\(556\) 0 0
\(557\) −2.09933e6 + 3.63615e6i −0.286710 + 0.496596i −0.973022 0.230710i \(-0.925895\pi\)
0.686312 + 0.727307i \(0.259228\pi\)
\(558\) 0 0
\(559\) −439812. −0.0595303
\(560\) 0 0
\(561\) −7.13967e6 −0.957792
\(562\) 0 0
\(563\) −5.17170e6 + 8.95765e6i −0.687642 + 1.19103i 0.284956 + 0.958540i \(0.408021\pi\)
−0.972599 + 0.232491i \(0.925312\pi\)
\(564\) 0 0
\(565\) −1.90539e6 + 1.10008e6i −0.251109 + 0.144978i
\(566\) 0 0
\(567\) 106767. + 48433.7i 0.0139470 + 0.00632689i
\(568\) 0 0
\(569\) 4.38456e6 + 7.59428e6i 0.567735 + 0.983345i 0.996790 + 0.0800668i \(0.0255134\pi\)
−0.429055 + 0.903278i \(0.641153\pi\)
\(570\) 0 0
\(571\) −4.23028e6 2.44235e6i −0.542974 0.313486i 0.203309 0.979115i \(-0.434830\pi\)
−0.746283 + 0.665628i \(0.768164\pi\)
\(572\) 0 0
\(573\) 5.38562e6i 0.685250i
\(574\) 0 0
\(575\) 1.58695e7i 2.00167i
\(576\) 0 0
\(577\) 2.82195e6 + 1.62925e6i 0.352866 + 0.203727i 0.665947 0.745999i \(-0.268028\pi\)
−0.313081 + 0.949726i \(0.601361\pi\)
\(578\) 0 0
\(579\) −2.73420e6 4.73578e6i −0.338949 0.587077i
\(580\) 0 0
\(581\) −1.52997e6 1.56062e7i −0.188037 1.91803i
\(582\) 0 0
\(583\) −4.87268e6 + 2.81324e6i −0.593740 + 0.342796i
\(584\) 0 0
\(585\) −194320. + 336572.i −0.0234762 + 0.0406619i
\(586\) 0 0
\(587\) 1.00160e7 1.19977 0.599887 0.800085i \(-0.295212\pi\)
0.599887 + 0.800085i \(0.295212\pi\)
\(588\) 0 0
\(589\) −2.77890e6 −0.330054
\(590\) 0 0
\(591\) 2.08424e6 3.61000e6i 0.245459 0.425147i
\(592\) 0 0
\(593\) 4.78049e6 2.76001e6i 0.558258 0.322311i −0.194188 0.980964i \(-0.562207\pi\)
0.752446 + 0.658654i \(0.228874\pi\)
\(594\) 0 0
\(595\) 1.67747e6 + 1.71108e7i 0.194251 + 1.98142i
\(596\) 0 0
\(597\) 3.63180e6 + 6.29047e6i 0.417049 + 0.722349i
\(598\) 0 0
\(599\) 5.65557e6 + 3.26525e6i 0.644035 + 0.371834i 0.786167 0.618014i \(-0.212062\pi\)
−0.142132 + 0.989848i \(0.545396\pi\)
\(600\) 0 0
\(601\) 8.65166e6i 0.977042i −0.872552 0.488521i \(-0.837536\pi\)
0.872552 0.488521i \(-0.162464\pi\)
\(602\) 0 0
\(603\) 4.65484e6i 0.521329i
\(604\) 0 0
\(605\) 1.47900e7 + 8.53902e6i 1.64278 + 0.948461i
\(606\) 0 0
\(607\) −1.00608e6 1.74259e6i −0.110831 0.191965i 0.805274 0.592902i \(-0.202018\pi\)
−0.916106 + 0.400937i \(0.868685\pi\)
\(608\) 0 0
\(609\) 8.04564e6 + 3.64981e6i 0.879058 + 0.398774i
\(610\) 0 0
\(611\) −14188.6 + 8191.81i −0.00153758 + 0.000887722i
\(612\) 0 0
\(613\) −1.25217e6 + 2.16883e6i −0.134590 + 0.233117i −0.925441 0.378892i \(-0.876305\pi\)
0.790851 + 0.612009i \(0.209638\pi\)
\(614\) 0 0
\(615\) −164941. −0.0175849
\(616\) 0 0
\(617\) 1.60855e7 1.70107 0.850533 0.525922i \(-0.176280\pi\)
0.850533 + 0.525922i \(0.176280\pi\)
\(618\) 0 0
\(619\) 8.43650e6 1.46124e7i 0.884984 1.53284i 0.0392524 0.999229i \(-0.487502\pi\)
0.845732 0.533608i \(-0.179164\pi\)
\(620\) 0 0
\(621\) −7.17489e6 + 4.14242e6i −0.746597 + 0.431048i
\(622\) 0 0
\(623\) 7.52948e6 + 1.05174e7i 0.777222 + 1.08565i
\(624\) 0 0
\(625\) −9.90597e6 1.71576e7i −1.01437 1.75694i
\(626\) 0 0
\(627\) −4.03501e6 2.32961e6i −0.409898 0.236654i
\(628\) 0 0
\(629\) 1.76382e7i 1.77757i
\(630\) 0 0
\(631\) 1.33841e7i 1.33818i 0.743182 + 0.669090i \(0.233316\pi\)
−0.743182 + 0.669090i \(0.766684\pi\)
\(632\) 0 0
\(633\) −6.53399e6 3.77240e6i −0.648141 0.374204i
\(634\) 0 0
\(635\) −8.24803e6 1.42860e7i −0.811738 1.40597i
\(636\) 0 0
\(637\) −82133.9 414869.i −0.00801999 0.0405101i
\(638\) 0 0
\(639\) −4.30970e6 + 2.48820e6i −0.417537 + 0.241065i
\(640\) 0 0
\(641\) −9.50750e6 + 1.64675e7i −0.913947 + 1.58300i −0.105511 + 0.994418i \(0.533648\pi\)
−0.808436 + 0.588585i \(0.799685\pi\)
\(642\) 0 0
\(643\) −2.38882e6 −0.227853 −0.113927 0.993489i \(-0.536343\pi\)
−0.113927 + 0.993489i \(0.536343\pi\)
\(644\) 0 0
\(645\) −1.69740e7 −1.60651
\(646\) 0 0
\(647\) −1.85327e6 + 3.20996e6i −0.174052 + 0.301467i −0.939833 0.341635i \(-0.889019\pi\)
0.765781 + 0.643102i \(0.222353\pi\)
\(648\) 0 0
\(649\) −2.05896e7 + 1.18874e7i −1.91883 + 1.10784i
\(650\) 0 0
\(651\) 3.28713e6 2.35328e6i 0.303993 0.217631i
\(652\) 0 0
\(653\) −4.67699e6 8.10078e6i −0.429223 0.743437i 0.567581 0.823318i \(-0.307879\pi\)
−0.996804 + 0.0798808i \(0.974546\pi\)
\(654\) 0 0
\(655\) 4.11347e6 + 2.37491e6i 0.374632 + 0.216294i
\(656\) 0 0
\(657\) 3.15731e6i 0.285367i
\(658\) 0 0
\(659\) 5.20973e6i 0.467306i 0.972320 + 0.233653i \(0.0750680\pi\)
−0.972320 + 0.233653i \(0.924932\pi\)
\(660\) 0 0
\(661\) 6.33410e6 + 3.65700e6i 0.563873 + 0.325552i 0.754699 0.656072i \(-0.227783\pi\)
−0.190825 + 0.981624i \(0.561116\pi\)
\(662\) 0 0
\(663\) 156622. + 271277.i 0.0138378 + 0.0239679i
\(664\) 0 0
\(665\) −4.63506e6 + 1.02175e7i −0.406444 + 0.895967i
\(666\) 0 0
\(667\) 1.35846e7 7.84306e6i 1.18231 0.682607i
\(668\) 0 0
\(669\) −2.78369e6 + 4.82148e6i −0.240467 + 0.416500i
\(670\) 0 0
\(671\) −6.67838e6 −0.572618
\(672\) 0 0
\(673\) −1.26836e6 −0.107945 −0.0539727 0.998542i \(-0.517188\pi\)
−0.0539727 + 0.998542i \(0.517188\pi\)
\(674\) 0 0
\(675\) −1.36110e7 + 2.35750e7i −1.14982 + 1.99155i
\(676\) 0 0
\(677\) −7.69422e6 + 4.44226e6i −0.645198 + 0.372505i −0.786614 0.617445i \(-0.788168\pi\)
0.141416 + 0.989950i \(0.454834\pi\)
\(678\) 0 0
\(679\) 6.02761e6 590924.i 0.501730 0.0491877i
\(680\) 0 0
\(681\) 351349. + 608555.i 0.0290316 + 0.0502843i
\(682\) 0 0
\(683\) −5.34750e6 3.08738e6i −0.438631 0.253243i 0.264386 0.964417i \(-0.414831\pi\)
−0.703017 + 0.711173i \(0.748164\pi\)
\(684\) 0 0
\(685\) 1.88868e7i 1.53791i
\(686\) 0 0
\(687\) 8.44568e6i 0.682720i
\(688\) 0 0
\(689\) 213782. + 123427.i 0.0171563 + 0.00990520i
\(690\) 0 0
\(691\) 8.60051e6 + 1.48965e7i 0.685218 + 1.18683i 0.973368 + 0.229248i \(0.0736266\pi\)
−0.288150 + 0.957585i \(0.593040\pi\)
\(692\) 0 0
\(693\) −1.12363e7 + 1.10157e6i −0.888774 + 0.0871320i
\(694\) 0 0
\(695\) 2.05287e7 1.18522e7i 1.61212 0.930761i
\(696\) 0 0
\(697\) 110720. 191773.i 0.00863267 0.0149522i
\(698\) 0 0
\(699\) −6.37749e6 −0.493693
\(700\) 0 0
\(701\) −1.36656e6 −0.105035 −0.0525174 0.998620i \(-0.516724\pi\)
−0.0525174 + 0.998620i \(0.516724\pi\)
\(702\) 0 0
\(703\) −5.75517e6 + 9.96825e6i −0.439208 + 0.760730i
\(704\) 0 0
\(705\) −547591. + 316152.i −0.0414938 + 0.0239565i
\(706\) 0 0
\(707\) 4.02726e6 8.87769e6i 0.303013 0.667962i
\(708\) 0 0
\(709\) 1.04862e7 + 1.81626e7i 0.783432 + 1.35694i 0.929931 + 0.367734i \(0.119866\pi\)
−0.146499 + 0.989211i \(0.546800\pi\)
\(710\) 0 0
\(711\) −1.69292e6 977407.i −0.125592 0.0725106i
\(712\) 0 0
\(713\) 7.17773e6i 0.528766i
\(714\) 0 0
\(715\) 1.46799e6i 0.107388i
\(716\) 0 0
\(717\) −2.65025e6 1.53012e6i −0.192526 0.111155i
\(718\) 0 0
\(719\) −6.61367e6 1.14552e7i −0.477112 0.826382i 0.522544 0.852612i \(-0.324983\pi\)
−0.999656 + 0.0262303i \(0.991650\pi\)
\(720\) 0 0
\(721\) 1.43412e6 1.02670e6i 0.102742 0.0735536i
\(722\) 0 0
\(723\) 5.10031e6 2.94466e6i 0.362870 0.209503i
\(724\) 0 0
\(725\) 2.57704e7 4.46357e7i 1.82086 3.15382i
\(726\) 0 0
\(727\) 318178. 0.0223272 0.0111636 0.999938i \(-0.496446\pi\)
0.0111636 + 0.999938i \(0.496446\pi\)
\(728\) 0 0
\(729\) 8.60902e6 0.599977
\(730\) 0 0
\(731\) 1.13941e7 1.97352e7i 0.788657 1.36599i
\(732\) 0 0
\(733\) 2.24269e7 1.29482e7i 1.54173 0.890119i 0.543002 0.839732i \(-0.317288\pi\)
0.998730 0.0503874i \(-0.0160456\pi\)
\(734\) 0 0
\(735\) −3.16984e6 1.60113e7i −0.216431 1.09322i
\(736\) 0 0
\(737\) −8.79124e6 1.52269e7i −0.596186 1.03262i
\(738\) 0 0
\(739\) 8.04318e6 + 4.64373e6i 0.541772 + 0.312792i 0.745797 0.666174i \(-0.232069\pi\)
−0.204025 + 0.978966i \(0.565402\pi\)
\(740\) 0 0
\(741\) 204417.i 0.0136764i
\(742\) 0 0
\(743\) 2.54773e7i 1.69310i 0.532311 + 0.846549i \(0.321324\pi\)
−0.532311 + 0.846549i \(0.678676\pi\)
\(744\) 0 0
\(745\) −923679. 533287.i −0.0609720 0.0352022i
\(746\) 0 0
\(747\) 9.18309e6 + 1.59056e7i 0.602126 + 1.04291i
\(748\) 0 0
\(749\) 1.49292e7 + 2.08536e7i 0.972373 + 1.35824i
\(750\) 0 0
\(751\) 2.09711e6 1.21077e6i 0.135682 0.0783359i −0.430623 0.902532i \(-0.641706\pi\)
0.566304 + 0.824196i \(0.308373\pi\)
\(752\) 0 0
\(753\) −1.66624e6 + 2.88601e6i −0.107090 + 0.185486i
\(754\) 0 0
\(755\) −1.98436e7 −1.26693
\(756\) 0 0
\(757\) −2.09049e7 −1.32589 −0.662946 0.748667i \(-0.730694\pi\)
−0.662946 + 0.748667i \(0.730694\pi\)
\(758\) 0 0
\(759\) 6.01724e6 1.04222e7i 0.379134 0.656680i
\(760\) 0 0
\(761\) −5.14517e6 + 2.97057e6i −0.322061 + 0.185942i −0.652311 0.757952i \(-0.726200\pi\)
0.330250 + 0.943894i \(0.392867\pi\)
\(762\) 0 0
\(763\) −7.39122e6 3.35293e6i −0.459626 0.208504i
\(764\) 0 0
\(765\) −1.00684e7 1.74390e7i −0.622025 1.07738i
\(766\) 0 0
\(767\) 903343. + 521545.i 0.0554452 + 0.0320113i
\(768\) 0 0
\(769\) 2.31406e7i 1.41110i 0.708660 + 0.705550i \(0.249300\pi\)
−0.708660 + 0.705550i \(0.750700\pi\)
\(770\) 0 0
\(771\) 1.59555e6i 0.0966659i
\(772\) 0 0
\(773\) 8.01543e6 + 4.62771e6i 0.482479 + 0.278559i 0.721449 0.692468i \(-0.243477\pi\)
−0.238970 + 0.971027i \(0.576810\pi\)
\(774\) 0 0
\(775\) −1.17922e7 2.04246e7i −0.705243 1.22152i
\(776\) 0 0
\(777\) −1.63377e6 1.66650e7i −0.0970822 0.990269i
\(778\) 0 0
\(779\) 125148. 72254.0i 0.00738889 0.00426598i
\(780\) 0 0
\(781\) 9.39856e6 1.62788e7i 0.551358 0.954980i
\(782\) 0 0
\(783\) −2.69075e7 −1.56845
\(784\) 0 0
\(785\) 3.64624e7 2.11189
\(786\) 0 0
\(787\) −923817. + 1.60010e6i −0.0531679 + 0.0920894i −0.891384 0.453248i \(-0.850265\pi\)
0.838217 + 0.545338i \(0.183599\pi\)
\(788\) 0 0
\(789\) −9.06015e6 + 5.23088e6i −0.518135 + 0.299145i
\(790\) 0 0
\(791\) 273603. + 2.79083e6i 0.0155482 + 0.158596i
\(792\) 0 0
\(793\) 146503. + 253750.i 0.00827299 + 0.0143292i
\(794\) 0 0
\(795\) 8.25064e6 + 4.76351e6i 0.462988 + 0.267306i
\(796\) 0 0
\(797\) 1.08580e7i 0.605484i 0.953072 + 0.302742i \(0.0979021\pi\)
−0.953072 + 0.302742i \(0.902098\pi\)
\(798\) 0 0
\(799\) 848896.i 0.0470422i
\(800\) 0 0
\(801\) −1.31200e7 7.57486e6i −0.722527 0.417151i
\(802\) 0 0
\(803\) 5.96297e6 + 1.03282e7i 0.326343 + 0.565242i
\(804\) 0 0
\(805\) −2.63912e7 1.19721e7i −1.43539 0.651147i
\(806\) 0 0
\(807\) 2.18506e6 1.26155e6i 0.118108 0.0681898i
\(808\) 0 0
\(809\) −7.89239e6 + 1.36700e7i −0.423972 + 0.734341i −0.996324 0.0856672i \(-0.972698\pi\)
0.572352 + 0.820008i \(0.306031\pi\)
\(810\) 0 0
\(811\) −7.17944e6 −0.383300 −0.191650 0.981463i \(-0.561384\pi\)
−0.191650 + 0.981463i \(0.561384\pi\)
\(812\) 0 0
\(813\) −1.64247e7 −0.871507
\(814\) 0 0
\(815\) 5.50515e6 9.53520e6i 0.290319 0.502847i
\(816\) 0 0
\(817\) 1.28789e7 7.43561e6i 0.675029 0.389728i
\(818\) 0 0
\(819\) 288344. + 402767.i 0.0150211 + 0.0209819i
\(820\) 0 0
\(821\) −5.24040e6 9.07664e6i −0.271336 0.469967i 0.697868 0.716226i \(-0.254132\pi\)
−0.969204 + 0.246259i \(0.920799\pi\)
\(822\) 0 0
\(823\) −1.78207e7 1.02888e7i −0.917116 0.529497i −0.0344021 0.999408i \(-0.510953\pi\)
−0.882714 + 0.469911i \(0.844286\pi\)
\(824\) 0 0
\(825\) 3.95424e7i 2.02269i
\(826\) 0 0
\(827\) 1.47778e7i 0.751358i −0.926750 0.375679i \(-0.877410\pi\)
0.926750 0.375679i \(-0.122590\pi\)
\(828\) 0 0
\(829\) 2.67357e7 + 1.54359e7i 1.35116 + 0.780091i 0.988412 0.151798i \(-0.0485063\pi\)
0.362745 + 0.931888i \(0.381840\pi\)
\(830\) 0 0
\(831\) 4.89284e6 + 8.47465e6i 0.245787 + 0.425715i
\(832\) 0 0
\(833\) 2.07438e7 + 7.06245e6i 1.03580 + 0.352649i
\(834\) 0 0
\(835\) −3.69270e7 + 2.13198e7i −1.83285 + 1.05820i
\(836\) 0 0
\(837\) −6.15624e6 + 1.06629e7i −0.303740 + 0.526093i
\(838\) 0 0
\(839\) 2.42355e7 1.18863 0.594317 0.804231i \(-0.297423\pi\)
0.594317 + 0.804231i \(0.297423\pi\)
\(840\) 0 0
\(841\) 3.04342e7 1.48379
\(842\) 0 0
\(843\) 2.48705e6 4.30770e6i 0.120536 0.208774i
\(844\) 0 0
\(845\) 3.26507e7 1.88509e7i 1.57308 0.908219i
\(846\) 0 0
\(847\) 1.76989e7 1.26707e7i 0.847689 0.606867i
\(848\) 0 0
\(849\) 4.94040e6 + 8.55702e6i 0.235230 + 0.407430i
\(850\) 0 0
\(851\) −2.57474e7 1.48652e7i −1.21873 0.703636i
\(852\) 0 0
\(853\) 2.37458e7i 1.11741i −0.829365 0.558707i \(-0.811297\pi\)
0.829365 0.558707i \(-0.188703\pi\)
\(854\) 0 0
\(855\) 1.31409e7i 0.614768i
\(856\) 0 0
\(857\) −1.12671e7 6.50508e6i −0.524036 0.302552i 0.214548 0.976713i \(-0.431172\pi\)
−0.738584 + 0.674161i \(0.764505\pi\)
\(858\) 0 0
\(859\) −5.43583e6 9.41513e6i −0.251352 0.435355i 0.712546 0.701625i \(-0.247542\pi\)
−0.963898 + 0.266270i \(0.914209\pi\)
\(860\) 0 0
\(861\) −86848.1 + 191448.i −0.00399257 + 0.00880123i
\(862\) 0 0
\(863\) −8.59795e6 + 4.96403e6i −0.392978 + 0.226886i −0.683450 0.729998i \(-0.739521\pi\)
0.290472 + 0.956884i \(0.406188\pi\)
\(864\) 0 0
\(865\) −1.53360e6 + 2.65627e6i −0.0696901 + 0.120707i
\(866\) 0 0
\(867\) −2.67395e6 −0.120811
\(868\) 0 0
\(869\) 7.38381e6 0.331689
\(870\) 0 0
\(871\) −385704. + 668059.i −0.0172270 + 0.0298380i
\(872\) 0 0
\(873\) −6.14325e6 + 3.54681e6i −0.272811 + 0.157508i
\(874\) 0 0
\(875\) −5.37549e7 + 5.26993e6i −2.37355 + 0.232694i
\(876\) 0 0
\(877\) 1.61498e6 + 2.79722e6i 0.0709035 + 0.122808i 0.899298 0.437337i \(-0.144078\pi\)
−0.828394 + 0.560146i \(0.810745\pi\)
\(878\) 0 0
\(879\) 1.72191e7 + 9.94143e6i 0.751688 + 0.433987i
\(880\) 0 0
\(881\) 2.54588e7i 1.10509i −0.833483 0.552545i \(-0.813657\pi\)
0.833483 0.552545i \(-0.186343\pi\)
\(882\) 0 0
\(883\) 6.82420e6i 0.294544i −0.989096 0.147272i \(-0.952951\pi\)
0.989096 0.147272i \(-0.0470492\pi\)
\(884\) 0 0
\(885\) 3.48633e7 + 2.01283e7i 1.49627 + 0.863873i
\(886\) 0 0
\(887\) 5.76990e6 + 9.99375e6i 0.246240 + 0.426500i 0.962480 0.271354i \(-0.0874715\pi\)
−0.716239 + 0.697855i \(0.754138\pi\)
\(888\) 0 0
\(889\) −2.09248e7 + 2.05139e6i −0.887988 + 0.0870550i
\(890\) 0 0
\(891\) 449185. 259337.i 0.0189553 0.0109439i
\(892\) 0 0
\(893\) 276987. 479756.i 0.0116233 0.0201322i
\(894\) 0 0
\(895\) 7.84077e7 3.27191
\(896\) 0 0
\(897\) −527997. −0.0219104
\(898\) 0 0
\(899\) 1.16559e7 2.01886e7i 0.481002 0.833120i
\(900\) 0 0
\(901\) −1.10769e7 + 6.39522e6i −0.454574 + 0.262448i
\(902\) 0 0
\(903\) −8.93748e6 + 1.97018e7i −0.364750 + 0.804056i
\(904\) 0 0
\(905\) 3.38168e7 + 5.85724e7i 1.37249 + 2.37723i
\(906\) 0 0
\(907\) 1.71118e6 + 987951.i 0.0690681 + 0.0398765i 0.534136 0.845398i \(-0.320637\pi\)
−0.465068 + 0.885275i \(0.653970\pi\)
\(908\) 0 0
\(909\) 1.14178e7i 0.458323i
\(910\) 0 0
\(911\) 4.33544e7i 1.73076i −0.501114 0.865381i \(-0.667076\pi\)
0.501114 0.865381i \(-0.332924\pi\)
\(912\) 0 0
\(913\) −6.00793e7 3.46868e7i −2.38533 1.37717i
\(914\) 0 0
\(915\) 5.65407e6 + 9.79313e6i 0.223259 + 0.386695i
\(916\) 0 0
\(917\) 4.92249e6 3.52405e6i 0.193313 0.138394i
\(918\) 0 0
\(919\) −2.04463e7 + 1.18047e7i −0.798596 + 0.461069i −0.842980 0.537945i \(-0.819201\pi\)
0.0443842 + 0.999015i \(0.485867\pi\)
\(920\) 0 0
\(921\) −6.26502e6 + 1.08513e7i −0.243374 + 0.421535i
\(922\) 0 0
\(923\) −824699. −0.0318633
\(924\) 0 0
\(925\) −9.76873e7 −3.75391
\(926\) 0 0
\(927\) −1.03288e6 + 1.78901e6i −0.0394778 + 0.0683775i
\(928\) 0 0
\(929\) −4.52471e6 + 2.61234e6i −0.172009 + 0.0993096i −0.583533 0.812089i \(-0.698330\pi\)
0.411524 + 0.911399i \(0.364997\pi\)
\(930\) 0 0
\(931\) 9.41902e6 + 1.07599e7i 0.356149 + 0.406849i
\(932\) 0 0
\(933\) −1.27347e6 2.20571e6i −0.0478943 0.0829554i
\(934\) 0 0
\(935\) 6.58715e7 + 3.80309e7i 2.46416 + 1.42268i
\(936\) 0 0
\(937\) 9.61409e6i 0.357733i −0.983873 0.178867i \(-0.942757\pi\)
0.983873 0.178867i \(-0.0572431\pi\)
\(938\) 0 0
\(939\) 2.24955e7i 0.832592i
\(940\) 0 0
\(941\) −3.53014e7 2.03813e7i −1.29963 0.750339i −0.319287 0.947658i \(-0.603443\pi\)
−0.980339 + 0.197319i \(0.936777\pi\)
\(942\) 0 0
\(943\) 186628. + 323249.i 0.00683434 + 0.0118374i
\(944\) 0 0
\(945\) 2.89374e7 + 4.04206e7i 1.05409 + 1.47239i
\(946\) 0 0
\(947\) −2.10338e7 + 1.21439e7i −0.762156 + 0.440031i −0.830069 0.557660i \(-0.811699\pi\)
0.0679135 + 0.997691i \(0.478366\pi\)
\(948\) 0 0
\(949\) 261617. 453135.i 0.00942977 0.0163328i
\(950\) 0 0
\(951\) 6.42318e6 0.230303
\(952\) 0 0
\(953\) −6.10576e6 −0.217775 −0.108887 0.994054i \(-0.534729\pi\)
−0.108887 + 0.994054i \(0.534729\pi\)
\(954\) 0 0
\(955\) −2.86876e7 + 4.96884e7i −1.01785 + 1.76298i
\(956\) 0 0
\(957\) 3.38491e7 1.95428e7i 1.19472 0.689774i
\(958\) 0 0
\(959\) 2.19220e7 + 9.94465e6i 0.769722 + 0.349175i
\(960\) 0 0
\(961\) 8.98101e6 + 1.55556e7i 0.313701 + 0.543347i
\(962\) 0 0
\(963\) −2.60140e7 1.50192e7i −0.903944 0.521892i
\(964\) 0 0
\(965\) 5.82571e7i 2.01387i
\(966\) 0 0
\(967\) 2.26687e6i 0.0779580i 0.999240 + 0.0389790i \(0.0124105\pi\)
−0.999240 + 0.0389790i \(0.987589\pi\)
\(968\) 0 0
\(969\) −9.17260e6 5.29580e6i −0.313822 0.181185i
\(970\) 0 0
\(971\) 1.29166e7 + 2.23722e7i 0.439643 + 0.761484i 0.997662 0.0683443i \(-0.0217716\pi\)
−0.558019 + 0.829828i \(0.688438\pi\)
\(972\) 0 0
\(973\) −2.94780e6 3.00685e7i −0.0998195 1.01819i
\(974\) 0 0
\(975\) −1.50244e6 + 867436.i −0.0506158 + 0.0292231i
\(976\) 0 0
\(977\) −1.54991e7 + 2.68451e7i −0.519480 + 0.899766i 0.480264 + 0.877124i \(0.340541\pi\)
−0.999744 + 0.0226415i \(0.992792\pi\)
\(978\) 0 0
\(979\) 5.72242e7 1.90820
\(980\) 0 0
\(981\) 9.50598e6 0.315373
\(982\) 0 0
\(983\) 1.68211e7 2.91350e7i 0.555228 0.961683i −0.442658 0.896691i \(-0.645964\pi\)
0.997886 0.0649924i \(-0.0207023\pi\)
\(984\) 0 0
\(985\) −3.84588e7 + 2.22042e7i −1.26301 + 0.729197i
\(986\) 0 0
\(987\) 78630.9 + 802060.i 0.00256922 + 0.0262068i
\(988\) 0 0
\(989\) 1.92057e7 + 3.32653e7i 0.624367 + 1.08144i
\(990\) 0 0
\(991\) −1.72121e7 9.93742e6i −0.556737 0.321432i 0.195098 0.980784i \(-0.437498\pi\)
−0.751835 + 0.659352i \(0.770831\pi\)
\(992\) 0 0
\(993\) 2.14535e7i 0.690437i
\(994\) 0 0
\(995\) 7.73822e7i 2.47790i
\(996\) 0 0
\(997\) −1.08439e7 6.26072e6i −0.345499 0.199474i 0.317202 0.948358i \(-0.397257\pi\)
−0.662701 + 0.748884i \(0.730590\pi\)
\(998\) 0 0
\(999\) 2.54994e7 + 4.41663e7i 0.808382 + 1.40016i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.6.p.c.31.3 yes 14
4.3 odd 2 112.6.p.b.31.5 14
7.3 odd 6 784.6.f.d.783.5 14
7.4 even 3 784.6.f.c.783.10 14
7.5 odd 6 112.6.p.b.47.5 yes 14
28.3 even 6 784.6.f.c.783.9 14
28.11 odd 6 784.6.f.d.783.6 14
28.19 even 6 inner 112.6.p.c.47.3 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.6.p.b.31.5 14 4.3 odd 2
112.6.p.b.47.5 yes 14 7.5 odd 6
112.6.p.c.31.3 yes 14 1.1 even 1 trivial
112.6.p.c.47.3 yes 14 28.19 even 6 inner
784.6.f.c.783.9 14 28.3 even 6
784.6.f.c.783.10 14 7.4 even 3
784.6.f.d.783.5 14 7.3 odd 6
784.6.f.d.783.6 14 28.11 odd 6