Properties

Label 112.3.d.b.15.1
Level $112$
Weight $3$
Character 112.15
Analytic conductor $3.052$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,3,Mod(15,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.15"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 112.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.05177896084\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 15.1
Root \(-0.895644 - 1.09445i\) of defining polynomial
Character \(\chi\) \(=\) 112.15
Dual form 112.3.d.b.15.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.37780i q^{3} -5.58258 q^{5} -2.64575i q^{7} -10.1652 q^{9} -1.82740i q^{11} -20.7477 q^{13} +24.4394i q^{15} +25.1652 q^{17} -30.6446i q^{19} -11.5826 q^{21} -3.27340i q^{23} +6.16515 q^{25} +5.10080i q^{27} +53.8258 q^{29} -29.1588i q^{31} -8.00000 q^{33} +14.7701i q^{35} +17.1652 q^{37} +90.8294i q^{39} +7.49545 q^{41} +57.2530i q^{43} +56.7477 q^{45} +37.2312i q^{47} -7.00000 q^{49} -110.168i q^{51} -46.0000 q^{53} +10.2016i q^{55} -134.156 q^{57} -75.1058i q^{59} +28.0871 q^{61} +26.8945i q^{63} +115.826 q^{65} -81.3906i q^{67} -14.3303 q^{69} -32.1304i q^{71} -45.6515 q^{73} -26.9898i q^{75} -4.83485 q^{77} +10.9644i q^{79} -69.1561 q^{81} +143.705i q^{83} -140.486 q^{85} -235.639i q^{87} +59.3212 q^{89} +54.8933i q^{91} -127.652 q^{93} +171.076i q^{95} +17.1652 q^{97} +18.5758i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 4 q^{9} - 28 q^{13} + 64 q^{17} - 28 q^{21} - 12 q^{25} + 32 q^{29} - 32 q^{33} + 32 q^{37} - 80 q^{41} + 172 q^{45} - 28 q^{49} - 184 q^{53} - 280 q^{57} + 204 q^{61} + 280 q^{65} + 16 q^{69}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 4.37780i − 1.45927i −0.683838 0.729634i \(-0.739691\pi\)
0.683838 0.729634i \(-0.260309\pi\)
\(4\) 0 0
\(5\) −5.58258 −1.11652 −0.558258 0.829668i \(-0.688530\pi\)
−0.558258 + 0.829668i \(0.688530\pi\)
\(6\) 0 0
\(7\) − 2.64575i − 0.377964i
\(8\) 0 0
\(9\) −10.1652 −1.12946
\(10\) 0 0
\(11\) − 1.82740i − 0.166127i −0.996544 0.0830637i \(-0.973530\pi\)
0.996544 0.0830637i \(-0.0264705\pi\)
\(12\) 0 0
\(13\) −20.7477 −1.59598 −0.797990 0.602671i \(-0.794103\pi\)
−0.797990 + 0.602671i \(0.794103\pi\)
\(14\) 0 0
\(15\) 24.4394i 1.62929i
\(16\) 0 0
\(17\) 25.1652 1.48030 0.740152 0.672440i \(-0.234754\pi\)
0.740152 + 0.672440i \(0.234754\pi\)
\(18\) 0 0
\(19\) − 30.6446i − 1.61287i −0.591320 0.806437i \(-0.701393\pi\)
0.591320 0.806437i \(-0.298607\pi\)
\(20\) 0 0
\(21\) −11.5826 −0.551551
\(22\) 0 0
\(23\) − 3.27340i − 0.142322i −0.997465 0.0711609i \(-0.977330\pi\)
0.997465 0.0711609i \(-0.0226704\pi\)
\(24\) 0 0
\(25\) 6.16515 0.246606
\(26\) 0 0
\(27\) 5.10080i 0.188919i
\(28\) 0 0
\(29\) 53.8258 1.85606 0.928030 0.372505i \(-0.121501\pi\)
0.928030 + 0.372505i \(0.121501\pi\)
\(30\) 0 0
\(31\) − 29.1588i − 0.940607i −0.882505 0.470303i \(-0.844144\pi\)
0.882505 0.470303i \(-0.155856\pi\)
\(32\) 0 0
\(33\) −8.00000 −0.242424
\(34\) 0 0
\(35\) 14.7701i 0.422003i
\(36\) 0 0
\(37\) 17.1652 0.463923 0.231962 0.972725i \(-0.425486\pi\)
0.231962 + 0.972725i \(0.425486\pi\)
\(38\) 0 0
\(39\) 90.8294i 2.32896i
\(40\) 0 0
\(41\) 7.49545 0.182816 0.0914080 0.995814i \(-0.470863\pi\)
0.0914080 + 0.995814i \(0.470863\pi\)
\(42\) 0 0
\(43\) 57.2530i 1.33147i 0.746190 + 0.665733i \(0.231881\pi\)
−0.746190 + 0.665733i \(0.768119\pi\)
\(44\) 0 0
\(45\) 56.7477 1.26106
\(46\) 0 0
\(47\) 37.2312i 0.792154i 0.918217 + 0.396077i \(0.129629\pi\)
−0.918217 + 0.396077i \(0.870371\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) − 110.168i − 2.16016i
\(52\) 0 0
\(53\) −46.0000 −0.867925 −0.433962 0.900931i \(-0.642885\pi\)
−0.433962 + 0.900931i \(0.642885\pi\)
\(54\) 0 0
\(55\) 10.2016i 0.185484i
\(56\) 0 0
\(57\) −134.156 −2.35362
\(58\) 0 0
\(59\) − 75.1058i − 1.27298i −0.771285 0.636490i \(-0.780386\pi\)
0.771285 0.636490i \(-0.219614\pi\)
\(60\) 0 0
\(61\) 28.0871 0.460445 0.230222 0.973138i \(-0.426055\pi\)
0.230222 + 0.973138i \(0.426055\pi\)
\(62\) 0 0
\(63\) 26.8945i 0.426896i
\(64\) 0 0
\(65\) 115.826 1.78193
\(66\) 0 0
\(67\) − 81.3906i − 1.21479i −0.794402 0.607393i \(-0.792215\pi\)
0.794402 0.607393i \(-0.207785\pi\)
\(68\) 0 0
\(69\) −14.3303 −0.207686
\(70\) 0 0
\(71\) − 32.1304i − 0.452541i −0.974064 0.226271i \(-0.927347\pi\)
0.974064 0.226271i \(-0.0726533\pi\)
\(72\) 0 0
\(73\) −45.6515 −0.625363 −0.312682 0.949858i \(-0.601227\pi\)
−0.312682 + 0.949858i \(0.601227\pi\)
\(74\) 0 0
\(75\) − 26.9898i − 0.359864i
\(76\) 0 0
\(77\) −4.83485 −0.0627902
\(78\) 0 0
\(79\) 10.9644i 0.138790i 0.997589 + 0.0693950i \(0.0221069\pi\)
−0.997589 + 0.0693950i \(0.977893\pi\)
\(80\) 0 0
\(81\) −69.1561 −0.853779
\(82\) 0 0
\(83\) 143.705i 1.73138i 0.500579 + 0.865691i \(0.333120\pi\)
−0.500579 + 0.865691i \(0.666880\pi\)
\(84\) 0 0
\(85\) −140.486 −1.65278
\(86\) 0 0
\(87\) − 235.639i − 2.70849i
\(88\) 0 0
\(89\) 59.3212 0.666530 0.333265 0.942833i \(-0.391850\pi\)
0.333265 + 0.942833i \(0.391850\pi\)
\(90\) 0 0
\(91\) 54.8933i 0.603223i
\(92\) 0 0
\(93\) −127.652 −1.37260
\(94\) 0 0
\(95\) 171.076i 1.80080i
\(96\) 0 0
\(97\) 17.1652 0.176960 0.0884802 0.996078i \(-0.471799\pi\)
0.0884802 + 0.996078i \(0.471799\pi\)
\(98\) 0 0
\(99\) 18.5758i 0.187634i
\(100\) 0 0
\(101\) 8.74773 0.0866112 0.0433056 0.999062i \(-0.486211\pi\)
0.0433056 + 0.999062i \(0.486211\pi\)
\(102\) 0 0
\(103\) − 54.7424i − 0.531480i −0.964045 0.265740i \(-0.914384\pi\)
0.964045 0.265740i \(-0.0856162\pi\)
\(104\) 0 0
\(105\) 64.6606 0.615815
\(106\) 0 0
\(107\) 127.377i 1.19044i 0.803561 + 0.595222i \(0.202936\pi\)
−0.803561 + 0.595222i \(0.797064\pi\)
\(108\) 0 0
\(109\) −48.5045 −0.444996 −0.222498 0.974933i \(-0.571421\pi\)
−0.222498 + 0.974933i \(0.571421\pi\)
\(110\) 0 0
\(111\) − 75.1456i − 0.676988i
\(112\) 0 0
\(113\) −36.5045 −0.323049 −0.161525 0.986869i \(-0.551641\pi\)
−0.161525 + 0.986869i \(0.551641\pi\)
\(114\) 0 0
\(115\) 18.2740i 0.158904i
\(116\) 0 0
\(117\) 210.904 1.80260
\(118\) 0 0
\(119\) − 66.5807i − 0.559502i
\(120\) 0 0
\(121\) 117.661 0.972402
\(122\) 0 0
\(123\) − 32.8136i − 0.266777i
\(124\) 0 0
\(125\) 105.147 0.841176
\(126\) 0 0
\(127\) 41.9506i 0.330320i 0.986267 + 0.165160i \(0.0528140\pi\)
−0.986267 + 0.165160i \(0.947186\pi\)
\(128\) 0 0
\(129\) 250.642 1.94296
\(130\) 0 0
\(131\) − 47.3930i − 0.361779i −0.983503 0.180889i \(-0.942102\pi\)
0.983503 0.180889i \(-0.0578976\pi\)
\(132\) 0 0
\(133\) −81.0780 −0.609609
\(134\) 0 0
\(135\) − 28.4756i − 0.210930i
\(136\) 0 0
\(137\) 153.652 1.12154 0.560772 0.827970i \(-0.310504\pi\)
0.560772 + 0.827970i \(0.310504\pi\)
\(138\) 0 0
\(139\) 147.439i 1.06071i 0.847775 + 0.530356i \(0.177942\pi\)
−0.847775 + 0.530356i \(0.822058\pi\)
\(140\) 0 0
\(141\) 162.991 1.15596
\(142\) 0 0
\(143\) 37.9144i 0.265136i
\(144\) 0 0
\(145\) −300.486 −2.07232
\(146\) 0 0
\(147\) 30.6446i 0.208467i
\(148\) 0 0
\(149\) 78.3121 0.525585 0.262792 0.964852i \(-0.415357\pi\)
0.262792 + 0.964852i \(0.415357\pi\)
\(150\) 0 0
\(151\) − 154.327i − 1.02204i −0.859570 0.511018i \(-0.829268\pi\)
0.859570 0.511018i \(-0.170732\pi\)
\(152\) 0 0
\(153\) −255.808 −1.67194
\(154\) 0 0
\(155\) 162.781i 1.05020i
\(156\) 0 0
\(157\) −161.408 −1.02808 −0.514039 0.857767i \(-0.671851\pi\)
−0.514039 + 0.857767i \(0.671851\pi\)
\(158\) 0 0
\(159\) 201.379i 1.26653i
\(160\) 0 0
\(161\) −8.66061 −0.0537926
\(162\) 0 0
\(163\) − 139.788i − 0.857594i −0.903401 0.428797i \(-0.858938\pi\)
0.903401 0.428797i \(-0.141062\pi\)
\(164\) 0 0
\(165\) 44.6606 0.270670
\(166\) 0 0
\(167\) − 115.348i − 0.690709i −0.938472 0.345355i \(-0.887759\pi\)
0.938472 0.345355i \(-0.112241\pi\)
\(168\) 0 0
\(169\) 261.468 1.54715
\(170\) 0 0
\(171\) 311.507i 1.82168i
\(172\) 0 0
\(173\) −85.7205 −0.495494 −0.247747 0.968825i \(-0.579690\pi\)
−0.247747 + 0.968825i \(0.579690\pi\)
\(174\) 0 0
\(175\) − 16.3115i − 0.0932083i
\(176\) 0 0
\(177\) −328.798 −1.85762
\(178\) 0 0
\(179\) 112.758i 0.629934i 0.949103 + 0.314967i \(0.101994\pi\)
−0.949103 + 0.314967i \(0.898006\pi\)
\(180\) 0 0
\(181\) 65.9311 0.364260 0.182130 0.983274i \(-0.441701\pi\)
0.182130 + 0.983274i \(0.441701\pi\)
\(182\) 0 0
\(183\) − 122.960i − 0.671912i
\(184\) 0 0
\(185\) −95.8258 −0.517977
\(186\) 0 0
\(187\) − 45.9868i − 0.245919i
\(188\) 0 0
\(189\) 13.4955 0.0714045
\(190\) 0 0
\(191\) − 207.243i − 1.08504i −0.840043 0.542520i \(-0.817470\pi\)
0.840043 0.542520i \(-0.182530\pi\)
\(192\) 0 0
\(193\) 127.183 0.658981 0.329491 0.944159i \(-0.393123\pi\)
0.329491 + 0.944159i \(0.393123\pi\)
\(194\) 0 0
\(195\) − 507.062i − 2.60032i
\(196\) 0 0
\(197\) 227.670 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(198\) 0 0
\(199\) 171.378i 0.861194i 0.902544 + 0.430597i \(0.141697\pi\)
−0.902544 + 0.430597i \(0.858303\pi\)
\(200\) 0 0
\(201\) −356.312 −1.77270
\(202\) 0 0
\(203\) − 142.410i − 0.701525i
\(204\) 0 0
\(205\) −41.8439 −0.204117
\(206\) 0 0
\(207\) 33.2746i 0.160747i
\(208\) 0 0
\(209\) −56.0000 −0.267943
\(210\) 0 0
\(211\) − 149.910i − 0.710473i −0.934776 0.355237i \(-0.884400\pi\)
0.934776 0.355237i \(-0.115600\pi\)
\(212\) 0 0
\(213\) −140.661 −0.660378
\(214\) 0 0
\(215\) − 319.619i − 1.48660i
\(216\) 0 0
\(217\) −77.1470 −0.355516
\(218\) 0 0
\(219\) 199.853i 0.912572i
\(220\) 0 0
\(221\) −522.120 −2.36253
\(222\) 0 0
\(223\) − 85.2676i − 0.382366i −0.981554 0.191183i \(-0.938768\pi\)
0.981554 0.191183i \(-0.0612324\pi\)
\(224\) 0 0
\(225\) −62.6697 −0.278532
\(226\) 0 0
\(227\) 154.510i 0.680660i 0.940306 + 0.340330i \(0.110539\pi\)
−0.940306 + 0.340330i \(0.889461\pi\)
\(228\) 0 0
\(229\) 330.555 1.44347 0.721736 0.692168i \(-0.243344\pi\)
0.721736 + 0.692168i \(0.243344\pi\)
\(230\) 0 0
\(231\) 21.1660i 0.0916278i
\(232\) 0 0
\(233\) 213.339 0.915620 0.457810 0.889050i \(-0.348634\pi\)
0.457810 + 0.889050i \(0.348634\pi\)
\(234\) 0 0
\(235\) − 207.846i − 0.884451i
\(236\) 0 0
\(237\) 48.0000 0.202532
\(238\) 0 0
\(239\) − 266.545i − 1.11525i −0.830092 0.557626i \(-0.811712\pi\)
0.830092 0.557626i \(-0.188288\pi\)
\(240\) 0 0
\(241\) 26.4864 0.109902 0.0549510 0.998489i \(-0.482500\pi\)
0.0549510 + 0.998489i \(0.482500\pi\)
\(242\) 0 0
\(243\) 348.659i 1.43481i
\(244\) 0 0
\(245\) 39.0780 0.159502
\(246\) 0 0
\(247\) 635.806i 2.57411i
\(248\) 0 0
\(249\) 629.111 2.52655
\(250\) 0 0
\(251\) 372.796i 1.48524i 0.669711 + 0.742622i \(0.266418\pi\)
−0.669711 + 0.742622i \(0.733582\pi\)
\(252\) 0 0
\(253\) −5.98182 −0.0236435
\(254\) 0 0
\(255\) 615.021i 2.41185i
\(256\) 0 0
\(257\) −206.000 −0.801556 −0.400778 0.916175i \(-0.631260\pi\)
−0.400778 + 0.916175i \(0.631260\pi\)
\(258\) 0 0
\(259\) − 45.4147i − 0.175346i
\(260\) 0 0
\(261\) −547.147 −2.09635
\(262\) 0 0
\(263\) − 465.493i − 1.76994i −0.465652 0.884968i \(-0.654180\pi\)
0.465652 0.884968i \(-0.345820\pi\)
\(264\) 0 0
\(265\) 256.798 0.969051
\(266\) 0 0
\(267\) − 259.697i − 0.972646i
\(268\) 0 0
\(269\) −390.417 −1.45137 −0.725683 0.688029i \(-0.758476\pi\)
−0.725683 + 0.688029i \(0.758476\pi\)
\(270\) 0 0
\(271\) 133.543i 0.492778i 0.969171 + 0.246389i \(0.0792441\pi\)
−0.969171 + 0.246389i \(0.920756\pi\)
\(272\) 0 0
\(273\) 240.312 0.880264
\(274\) 0 0
\(275\) − 11.2662i − 0.0409680i
\(276\) 0 0
\(277\) 306.624 1.10695 0.553473 0.832867i \(-0.313302\pi\)
0.553473 + 0.832867i \(0.313302\pi\)
\(278\) 0 0
\(279\) 296.404i 1.06238i
\(280\) 0 0
\(281\) −112.642 −0.400863 −0.200431 0.979708i \(-0.564234\pi\)
−0.200431 + 0.979708i \(0.564234\pi\)
\(282\) 0 0
\(283\) − 474.368i − 1.67621i −0.545507 0.838106i \(-0.683663\pi\)
0.545507 0.838106i \(-0.316337\pi\)
\(284\) 0 0
\(285\) 748.936 2.62785
\(286\) 0 0
\(287\) − 19.8311i − 0.0690979i
\(288\) 0 0
\(289\) 344.285 1.19130
\(290\) 0 0
\(291\) − 75.1456i − 0.258232i
\(292\) 0 0
\(293\) 17.0962 0.0583489 0.0291744 0.999574i \(-0.490712\pi\)
0.0291744 + 0.999574i \(0.490712\pi\)
\(294\) 0 0
\(295\) 419.284i 1.42130i
\(296\) 0 0
\(297\) 9.32121 0.0313845
\(298\) 0 0
\(299\) 67.9156i 0.227143i
\(300\) 0 0
\(301\) 151.477 0.503247
\(302\) 0 0
\(303\) − 38.2958i − 0.126389i
\(304\) 0 0
\(305\) −156.798 −0.514093
\(306\) 0 0
\(307\) − 508.468i − 1.65625i −0.560544 0.828124i \(-0.689408\pi\)
0.560544 0.828124i \(-0.310592\pi\)
\(308\) 0 0
\(309\) −239.652 −0.775571
\(310\) 0 0
\(311\) 31.2084i 0.100349i 0.998740 + 0.0501743i \(0.0159777\pi\)
−0.998740 + 0.0501743i \(0.984022\pi\)
\(312\) 0 0
\(313\) −175.183 −0.559691 −0.279846 0.960045i \(-0.590283\pi\)
−0.279846 + 0.960045i \(0.590283\pi\)
\(314\) 0 0
\(315\) − 150.140i − 0.476636i
\(316\) 0 0
\(317\) 217.652 0.686598 0.343299 0.939226i \(-0.388456\pi\)
0.343299 + 0.939226i \(0.388456\pi\)
\(318\) 0 0
\(319\) − 98.3612i − 0.308342i
\(320\) 0 0
\(321\) 557.633 1.73718
\(322\) 0 0
\(323\) − 771.176i − 2.38754i
\(324\) 0 0
\(325\) −127.913 −0.393578
\(326\) 0 0
\(327\) 212.343i 0.649368i
\(328\) 0 0
\(329\) 98.5045 0.299406
\(330\) 0 0
\(331\) 601.467i 1.81712i 0.417754 + 0.908560i \(0.362817\pi\)
−0.417754 + 0.908560i \(0.637183\pi\)
\(332\) 0 0
\(333\) −174.486 −0.523983
\(334\) 0 0
\(335\) 454.369i 1.35633i
\(336\) 0 0
\(337\) −445.477 −1.32189 −0.660946 0.750434i \(-0.729845\pi\)
−0.660946 + 0.750434i \(0.729845\pi\)
\(338\) 0 0
\(339\) 159.810i 0.471415i
\(340\) 0 0
\(341\) −53.2848 −0.156261
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 0 0
\(345\) 80.0000 0.231884
\(346\) 0 0
\(347\) 404.426i 1.16549i 0.812654 + 0.582746i \(0.198022\pi\)
−0.812654 + 0.582746i \(0.801978\pi\)
\(348\) 0 0
\(349\) 157.895 0.452420 0.226210 0.974079i \(-0.427366\pi\)
0.226210 + 0.974079i \(0.427366\pi\)
\(350\) 0 0
\(351\) − 105.830i − 0.301510i
\(352\) 0 0
\(353\) −321.267 −0.910104 −0.455052 0.890465i \(-0.650379\pi\)
−0.455052 + 0.890465i \(0.650379\pi\)
\(354\) 0 0
\(355\) 179.370i 0.505269i
\(356\) 0 0
\(357\) −291.477 −0.816463
\(358\) 0 0
\(359\) − 173.968i − 0.484590i −0.970203 0.242295i \(-0.922100\pi\)
0.970203 0.242295i \(-0.0779002\pi\)
\(360\) 0 0
\(361\) −578.092 −1.60136
\(362\) 0 0
\(363\) − 515.095i − 1.41899i
\(364\) 0 0
\(365\) 254.853 0.698227
\(366\) 0 0
\(367\) 278.050i 0.757630i 0.925472 + 0.378815i \(0.123668\pi\)
−0.925472 + 0.378815i \(0.876332\pi\)
\(368\) 0 0
\(369\) −76.1924 −0.206484
\(370\) 0 0
\(371\) 121.705i 0.328045i
\(372\) 0 0
\(373\) −342.973 −0.919498 −0.459749 0.888049i \(-0.652061\pi\)
−0.459749 + 0.888049i \(0.652061\pi\)
\(374\) 0 0
\(375\) − 460.313i − 1.22750i
\(376\) 0 0
\(377\) −1116.76 −2.96223
\(378\) 0 0
\(379\) − 145.731i − 0.384515i −0.981345 0.192257i \(-0.938419\pi\)
0.981345 0.192257i \(-0.0615808\pi\)
\(380\) 0 0
\(381\) 183.652 0.482025
\(382\) 0 0
\(383\) − 224.071i − 0.585040i −0.956259 0.292520i \(-0.905506\pi\)
0.956259 0.292520i \(-0.0944939\pi\)
\(384\) 0 0
\(385\) 26.9909 0.0701063
\(386\) 0 0
\(387\) − 581.986i − 1.50384i
\(388\) 0 0
\(389\) 99.8076 0.256575 0.128287 0.991737i \(-0.459052\pi\)
0.128287 + 0.991737i \(0.459052\pi\)
\(390\) 0 0
\(391\) − 82.3756i − 0.210679i
\(392\) 0 0
\(393\) −207.477 −0.527932
\(394\) 0 0
\(395\) − 61.2096i − 0.154961i
\(396\) 0 0
\(397\) −163.354 −0.411470 −0.205735 0.978608i \(-0.565959\pi\)
−0.205735 + 0.978608i \(0.565959\pi\)
\(398\) 0 0
\(399\) 354.944i 0.889583i
\(400\) 0 0
\(401\) −123.459 −0.307878 −0.153939 0.988080i \(-0.549196\pi\)
−0.153939 + 0.988080i \(0.549196\pi\)
\(402\) 0 0
\(403\) 604.979i 1.50119i
\(404\) 0 0
\(405\) 386.069 0.953257
\(406\) 0 0
\(407\) − 31.3676i − 0.0770703i
\(408\) 0 0
\(409\) 7.84394 0.0191783 0.00958917 0.999954i \(-0.496948\pi\)
0.00958917 + 0.999954i \(0.496948\pi\)
\(410\) 0 0
\(411\) − 672.656i − 1.63663i
\(412\) 0 0
\(413\) −198.711 −0.481141
\(414\) 0 0
\(415\) − 802.242i − 1.93311i
\(416\) 0 0
\(417\) 645.459 1.54786
\(418\) 0 0
\(419\) 364.565i 0.870083i 0.900410 + 0.435041i \(0.143266\pi\)
−0.900410 + 0.435041i \(0.856734\pi\)
\(420\) 0 0
\(421\) 708.570 1.68306 0.841532 0.540208i \(-0.181654\pi\)
0.841532 + 0.540208i \(0.181654\pi\)
\(422\) 0 0
\(423\) − 378.461i − 0.894707i
\(424\) 0 0
\(425\) 155.147 0.365052
\(426\) 0 0
\(427\) − 74.3115i − 0.174032i
\(428\) 0 0
\(429\) 165.982 0.386904
\(430\) 0 0
\(431\) − 80.9463i − 0.187810i −0.995581 0.0939052i \(-0.970065\pi\)
0.995581 0.0939052i \(-0.0299350\pi\)
\(432\) 0 0
\(433\) 295.495 0.682438 0.341219 0.939984i \(-0.389160\pi\)
0.341219 + 0.939984i \(0.389160\pi\)
\(434\) 0 0
\(435\) 1315.47i 3.02407i
\(436\) 0 0
\(437\) −100.312 −0.229547
\(438\) 0 0
\(439\) − 11.5680i − 0.0263508i −0.999913 0.0131754i \(-0.995806\pi\)
0.999913 0.0131754i \(-0.00419398\pi\)
\(440\) 0 0
\(441\) 71.1561 0.161352
\(442\) 0 0
\(443\) − 284.660i − 0.642573i −0.946982 0.321287i \(-0.895885\pi\)
0.946982 0.321287i \(-0.104115\pi\)
\(444\) 0 0
\(445\) −331.165 −0.744191
\(446\) 0 0
\(447\) − 342.835i − 0.766969i
\(448\) 0 0
\(449\) 154.624 0.344375 0.172187 0.985064i \(-0.444917\pi\)
0.172187 + 0.985064i \(0.444917\pi\)
\(450\) 0 0
\(451\) − 13.6972i − 0.0303707i
\(452\) 0 0
\(453\) −675.615 −1.49142
\(454\) 0 0
\(455\) − 306.446i − 0.673508i
\(456\) 0 0
\(457\) 410.450 0.898140 0.449070 0.893497i \(-0.351755\pi\)
0.449070 + 0.893497i \(0.351755\pi\)
\(458\) 0 0
\(459\) 128.362i 0.279657i
\(460\) 0 0
\(461\) −595.078 −1.29084 −0.645421 0.763827i \(-0.723318\pi\)
−0.645421 + 0.763827i \(0.723318\pi\)
\(462\) 0 0
\(463\) 511.924i 1.10567i 0.833291 + 0.552834i \(0.186454\pi\)
−0.833291 + 0.552834i \(0.813546\pi\)
\(464\) 0 0
\(465\) 712.624 1.53253
\(466\) 0 0
\(467\) 365.122i 0.781846i 0.920423 + 0.390923i \(0.127844\pi\)
−0.920423 + 0.390923i \(0.872156\pi\)
\(468\) 0 0
\(469\) −215.339 −0.459146
\(470\) 0 0
\(471\) 706.614i 1.50024i
\(472\) 0 0
\(473\) 104.624 0.221193
\(474\) 0 0
\(475\) − 188.929i − 0.397745i
\(476\) 0 0
\(477\) 467.597 0.980287
\(478\) 0 0
\(479\) − 202.745i − 0.423268i −0.977349 0.211634i \(-0.932122\pi\)
0.977349 0.211634i \(-0.0678785\pi\)
\(480\) 0 0
\(481\) −356.138 −0.740411
\(482\) 0 0
\(483\) 37.9144i 0.0784978i
\(484\) 0 0
\(485\) −95.8258 −0.197579
\(486\) 0 0
\(487\) 821.120i 1.68608i 0.537853 + 0.843039i \(0.319236\pi\)
−0.537853 + 0.843039i \(0.680764\pi\)
\(488\) 0 0
\(489\) −611.964 −1.25146
\(490\) 0 0
\(491\) 316.505i 0.644613i 0.946635 + 0.322307i \(0.104458\pi\)
−0.946635 + 0.322307i \(0.895542\pi\)
\(492\) 0 0
\(493\) 1354.53 2.74753
\(494\) 0 0
\(495\) − 103.701i − 0.209497i
\(496\) 0 0
\(497\) −85.0091 −0.171044
\(498\) 0 0
\(499\) 176.415i 0.353538i 0.984252 + 0.176769i \(0.0565646\pi\)
−0.984252 + 0.176769i \(0.943435\pi\)
\(500\) 0 0
\(501\) −504.973 −1.00793
\(502\) 0 0
\(503\) 883.918i 1.75729i 0.477474 + 0.878646i \(0.341553\pi\)
−0.477474 + 0.878646i \(0.658447\pi\)
\(504\) 0 0
\(505\) −48.8348 −0.0967027
\(506\) 0 0
\(507\) − 1144.66i − 2.25770i
\(508\) 0 0
\(509\) 519.216 1.02007 0.510035 0.860153i \(-0.329632\pi\)
0.510035 + 0.860153i \(0.329632\pi\)
\(510\) 0 0
\(511\) 120.783i 0.236365i
\(512\) 0 0
\(513\) 156.312 0.304702
\(514\) 0 0
\(515\) 305.604i 0.593405i
\(516\) 0 0
\(517\) 68.0364 0.131598
\(518\) 0 0
\(519\) 375.267i 0.723058i
\(520\) 0 0
\(521\) 1037.40 1.99118 0.995590 0.0938137i \(-0.0299058\pi\)
0.995590 + 0.0938137i \(0.0299058\pi\)
\(522\) 0 0
\(523\) 525.900i 1.00555i 0.864419 + 0.502773i \(0.167687\pi\)
−0.864419 + 0.502773i \(0.832313\pi\)
\(524\) 0 0
\(525\) −71.4083 −0.136016
\(526\) 0 0
\(527\) − 733.786i − 1.39238i
\(528\) 0 0
\(529\) 518.285 0.979745
\(530\) 0 0
\(531\) 763.462i 1.43778i
\(532\) 0 0
\(533\) −155.514 −0.291770
\(534\) 0 0
\(535\) − 711.094i − 1.32915i
\(536\) 0 0
\(537\) 493.633 0.919243
\(538\) 0 0
\(539\) 12.7918i 0.0237325i
\(540\) 0 0
\(541\) −776.221 −1.43479 −0.717395 0.696667i \(-0.754666\pi\)
−0.717395 + 0.696667i \(0.754666\pi\)
\(542\) 0 0
\(543\) − 288.633i − 0.531553i
\(544\) 0 0
\(545\) 270.780 0.496845
\(546\) 0 0
\(547\) − 153.041i − 0.279782i −0.990167 0.139891i \(-0.955325\pi\)
0.990167 0.139891i \(-0.0446752\pi\)
\(548\) 0 0
\(549\) −285.510 −0.520054
\(550\) 0 0
\(551\) − 1649.47i − 2.99359i
\(552\) 0 0
\(553\) 29.0091 0.0524577
\(554\) 0 0
\(555\) 419.506i 0.755867i
\(556\) 0 0
\(557\) 481.579 0.864594 0.432297 0.901731i \(-0.357703\pi\)
0.432297 + 0.901731i \(0.357703\pi\)
\(558\) 0 0
\(559\) − 1187.87i − 2.12499i
\(560\) 0 0
\(561\) −201.321 −0.358861
\(562\) 0 0
\(563\) 489.909i 0.870176i 0.900388 + 0.435088i \(0.143283\pi\)
−0.900388 + 0.435088i \(0.856717\pi\)
\(564\) 0 0
\(565\) 203.789 0.360689
\(566\) 0 0
\(567\) 182.970i 0.322698i
\(568\) 0 0
\(569\) 97.8985 0.172054 0.0860268 0.996293i \(-0.472583\pi\)
0.0860268 + 0.996293i \(0.472583\pi\)
\(570\) 0 0
\(571\) − 752.680i − 1.31818i −0.752065 0.659089i \(-0.770942\pi\)
0.752065 0.659089i \(-0.229058\pi\)
\(572\) 0 0
\(573\) −907.267 −1.58336
\(574\) 0 0
\(575\) − 20.1810i − 0.0350974i
\(576\) 0 0
\(577\) −924.533 −1.60231 −0.801155 0.598456i \(-0.795781\pi\)
−0.801155 + 0.598456i \(0.795781\pi\)
\(578\) 0 0
\(579\) − 556.783i − 0.961629i
\(580\) 0 0
\(581\) 380.207 0.654401
\(582\) 0 0
\(583\) 84.0604i 0.144186i
\(584\) 0 0
\(585\) −1177.39 −2.01263
\(586\) 0 0
\(587\) 1110.24i 1.89138i 0.325077 + 0.945688i \(0.394610\pi\)
−0.325077 + 0.945688i \(0.605390\pi\)
\(588\) 0 0
\(589\) −893.561 −1.51708
\(590\) 0 0
\(591\) − 996.693i − 1.68645i
\(592\) 0 0
\(593\) 44.9909 0.0758700 0.0379350 0.999280i \(-0.487922\pi\)
0.0379350 + 0.999280i \(0.487922\pi\)
\(594\) 0 0
\(595\) 371.692i 0.624692i
\(596\) 0 0
\(597\) 750.258 1.25671
\(598\) 0 0
\(599\) 988.382i 1.65005i 0.565094 + 0.825026i \(0.308840\pi\)
−0.565094 + 0.825026i \(0.691160\pi\)
\(600\) 0 0
\(601\) 732.570 1.21892 0.609459 0.792818i \(-0.291387\pi\)
0.609459 + 0.792818i \(0.291387\pi\)
\(602\) 0 0
\(603\) 827.348i 1.37205i
\(604\) 0 0
\(605\) −656.849 −1.08570
\(606\) 0 0
\(607\) 145.874i 0.240319i 0.992755 + 0.120160i \(0.0383406\pi\)
−0.992755 + 0.120160i \(0.961659\pi\)
\(608\) 0 0
\(609\) −623.441 −1.02371
\(610\) 0 0
\(611\) − 772.463i − 1.26426i
\(612\) 0 0
\(613\) 100.577 0.164074 0.0820369 0.996629i \(-0.473857\pi\)
0.0820369 + 0.996629i \(0.473857\pi\)
\(614\) 0 0
\(615\) 183.184i 0.297861i
\(616\) 0 0
\(617\) −342.102 −0.554459 −0.277230 0.960804i \(-0.589416\pi\)
−0.277230 + 0.960804i \(0.589416\pi\)
\(618\) 0 0
\(619\) − 512.123i − 0.827340i −0.910427 0.413670i \(-0.864247\pi\)
0.910427 0.413670i \(-0.135753\pi\)
\(620\) 0 0
\(621\) 16.6970 0.0268872
\(622\) 0 0
\(623\) − 156.949i − 0.251925i
\(624\) 0 0
\(625\) −741.120 −1.18579
\(626\) 0 0
\(627\) 245.157i 0.391000i
\(628\) 0 0
\(629\) 431.964 0.686747
\(630\) 0 0
\(631\) − 530.517i − 0.840755i −0.907349 0.420378i \(-0.861898\pi\)
0.907349 0.420378i \(-0.138102\pi\)
\(632\) 0 0
\(633\) −656.276 −1.03677
\(634\) 0 0
\(635\) − 234.193i − 0.368807i
\(636\) 0 0
\(637\) 145.234 0.227997
\(638\) 0 0
\(639\) 326.611i 0.511128i
\(640\) 0 0
\(641\) −1054.80 −1.64555 −0.822776 0.568366i \(-0.807576\pi\)
−0.822776 + 0.568366i \(0.807576\pi\)
\(642\) 0 0
\(643\) − 107.316i − 0.166899i −0.996512 0.0834493i \(-0.973406\pi\)
0.996512 0.0834493i \(-0.0265937\pi\)
\(644\) 0 0
\(645\) −1399.23 −2.16935
\(646\) 0 0
\(647\) 202.142i 0.312429i 0.987723 + 0.156215i \(0.0499291\pi\)
−0.987723 + 0.156215i \(0.950071\pi\)
\(648\) 0 0
\(649\) −137.248 −0.211477
\(650\) 0 0
\(651\) 337.734i 0.518793i
\(652\) 0 0
\(653\) 1278.73 1.95823 0.979116 0.203301i \(-0.0651671\pi\)
0.979116 + 0.203301i \(0.0651671\pi\)
\(654\) 0 0
\(655\) 264.575i 0.403931i
\(656\) 0 0
\(657\) 464.055 0.706324
\(658\) 0 0
\(659\) − 835.500i − 1.26783i −0.773403 0.633915i \(-0.781447\pi\)
0.773403 0.633915i \(-0.218553\pi\)
\(660\) 0 0
\(661\) 998.381 1.51041 0.755205 0.655489i \(-0.227537\pi\)
0.755205 + 0.655489i \(0.227537\pi\)
\(662\) 0 0
\(663\) 2285.74i 3.44757i
\(664\) 0 0
\(665\) 452.624 0.680638
\(666\) 0 0
\(667\) − 176.193i − 0.264158i
\(668\) 0 0
\(669\) −373.285 −0.557974
\(670\) 0 0
\(671\) − 51.3264i − 0.0764925i
\(672\) 0 0
\(673\) −572.330 −0.850416 −0.425208 0.905096i \(-0.639799\pi\)
−0.425208 + 0.905096i \(0.639799\pi\)
\(674\) 0 0
\(675\) 31.4472i 0.0465885i
\(676\) 0 0
\(677\) 1079.77 1.59493 0.797465 0.603365i \(-0.206174\pi\)
0.797465 + 0.603365i \(0.206174\pi\)
\(678\) 0 0
\(679\) − 45.4147i − 0.0668847i
\(680\) 0 0
\(681\) 676.414 0.993265
\(682\) 0 0
\(683\) − 444.708i − 0.651110i −0.945523 0.325555i \(-0.894449\pi\)
0.945523 0.325555i \(-0.105551\pi\)
\(684\) 0 0
\(685\) −857.771 −1.25222
\(686\) 0 0
\(687\) − 1447.11i − 2.10641i
\(688\) 0 0
\(689\) 954.395 1.38519
\(690\) 0 0
\(691\) 214.227i 0.310025i 0.987913 + 0.155012i \(0.0495417\pi\)
−0.987913 + 0.155012i \(0.950458\pi\)
\(692\) 0 0
\(693\) 49.1470 0.0709191
\(694\) 0 0
\(695\) − 823.090i − 1.18430i
\(696\) 0 0
\(697\) 188.624 0.270623
\(698\) 0 0
\(699\) − 933.958i − 1.33613i
\(700\) 0 0
\(701\) 573.477 0.818085 0.409042 0.912515i \(-0.365863\pi\)
0.409042 + 0.912515i \(0.365863\pi\)
\(702\) 0 0
\(703\) − 526.019i − 0.748250i
\(704\) 0 0
\(705\) −909.909 −1.29065
\(706\) 0 0
\(707\) − 23.1443i − 0.0327359i
\(708\) 0 0
\(709\) −436.817 −0.616102 −0.308051 0.951370i \(-0.599677\pi\)
−0.308051 + 0.951370i \(0.599677\pi\)
\(710\) 0 0
\(711\) − 111.455i − 0.156758i
\(712\) 0 0
\(713\) −95.4485 −0.133869
\(714\) 0 0
\(715\) − 211.660i − 0.296028i
\(716\) 0 0
\(717\) −1166.88 −1.62745
\(718\) 0 0
\(719\) 1279.32i 1.77930i 0.456639 + 0.889652i \(0.349053\pi\)
−0.456639 + 0.889652i \(0.650947\pi\)
\(720\) 0 0
\(721\) −144.835 −0.200881
\(722\) 0 0
\(723\) − 115.952i − 0.160376i
\(724\) 0 0
\(725\) 331.844 0.457716
\(726\) 0 0
\(727\) 166.834i 0.229483i 0.993395 + 0.114741i \(0.0366040\pi\)
−0.993395 + 0.114741i \(0.963396\pi\)
\(728\) 0 0
\(729\) 903.955 1.23999
\(730\) 0 0
\(731\) 1440.78i 1.97097i
\(732\) 0 0
\(733\) 105.299 0.143655 0.0718276 0.997417i \(-0.477117\pi\)
0.0718276 + 0.997417i \(0.477117\pi\)
\(734\) 0 0
\(735\) − 171.076i − 0.232756i
\(736\) 0 0
\(737\) −148.733 −0.201809
\(738\) 0 0
\(739\) − 898.713i − 1.21612i −0.793891 0.608060i \(-0.791948\pi\)
0.793891 0.608060i \(-0.208052\pi\)
\(740\) 0 0
\(741\) 2783.43 3.75632
\(742\) 0 0
\(743\) 1154.15i 1.55337i 0.629891 + 0.776683i \(0.283099\pi\)
−0.629891 + 0.776683i \(0.716901\pi\)
\(744\) 0 0
\(745\) −437.183 −0.586823
\(746\) 0 0
\(747\) − 1460.78i − 1.95553i
\(748\) 0 0
\(749\) 337.009 0.449945
\(750\) 0 0
\(751\) 561.025i 0.747038i 0.927623 + 0.373519i \(0.121849\pi\)
−0.927623 + 0.373519i \(0.878151\pi\)
\(752\) 0 0
\(753\) 1632.03 2.16737
\(754\) 0 0
\(755\) 861.545i 1.14112i
\(756\) 0 0
\(757\) −860.120 −1.13622 −0.568111 0.822952i \(-0.692325\pi\)
−0.568111 + 0.822952i \(0.692325\pi\)
\(758\) 0 0
\(759\) 26.1872i 0.0345023i
\(760\) 0 0
\(761\) 1336.47 1.75620 0.878100 0.478477i \(-0.158811\pi\)
0.878100 + 0.478477i \(0.158811\pi\)
\(762\) 0 0
\(763\) 128.331i 0.168193i
\(764\) 0 0
\(765\) 1428.07 1.86675
\(766\) 0 0
\(767\) 1558.28i 2.03165i
\(768\) 0 0
\(769\) −716.323 −0.931499 −0.465749 0.884917i \(-0.654215\pi\)
−0.465749 + 0.884917i \(0.654215\pi\)
\(770\) 0 0
\(771\) 901.827i 1.16969i
\(772\) 0 0
\(773\) −98.6644 −0.127638 −0.0638191 0.997961i \(-0.520328\pi\)
−0.0638191 + 0.997961i \(0.520328\pi\)
\(774\) 0 0
\(775\) − 179.768i − 0.231959i
\(776\) 0 0
\(777\) −198.817 −0.255877
\(778\) 0 0
\(779\) − 229.695i − 0.294859i
\(780\) 0 0
\(781\) −58.7152 −0.0751795
\(782\) 0 0
\(783\) 274.555i 0.350644i
\(784\) 0 0
\(785\) 901.074 1.14787
\(786\) 0 0
\(787\) 673.903i 0.856293i 0.903709 + 0.428147i \(0.140833\pi\)
−0.903709 + 0.428147i \(0.859167\pi\)
\(788\) 0 0
\(789\) −2037.84 −2.58281
\(790\) 0 0
\(791\) 96.5819i 0.122101i
\(792\) 0 0
\(793\) −582.744 −0.734860
\(794\) 0 0
\(795\) − 1124.21i − 1.41410i
\(796\) 0 0
\(797\) −1097.76 −1.37736 −0.688681 0.725065i \(-0.741810\pi\)
−0.688681 + 0.725065i \(0.741810\pi\)
\(798\) 0 0
\(799\) 936.929i 1.17263i
\(800\) 0 0
\(801\) −603.009 −0.752820
\(802\) 0 0
\(803\) 83.4236i 0.103890i
\(804\) 0 0
\(805\) 48.3485 0.0600602
\(806\) 0 0
\(807\) 1709.17i 2.11793i
\(808\) 0 0
\(809\) −340.853 −0.421326 −0.210663 0.977559i \(-0.567562\pi\)
−0.210663 + 0.977559i \(0.567562\pi\)
\(810\) 0 0
\(811\) 112.655i 0.138909i 0.997585 + 0.0694547i \(0.0221259\pi\)
−0.997585 + 0.0694547i \(0.977874\pi\)
\(812\) 0 0
\(813\) 584.624 0.719095
\(814\) 0 0
\(815\) 780.376i 0.957517i
\(816\) 0 0
\(817\) 1754.50 2.14749
\(818\) 0 0
\(819\) − 557.999i − 0.681317i
\(820\) 0 0
\(821\) −1267.91 −1.54435 −0.772174 0.635412i \(-0.780830\pi\)
−0.772174 + 0.635412i \(0.780830\pi\)
\(822\) 0 0
\(823\) − 743.669i − 0.903608i −0.892117 0.451804i \(-0.850781\pi\)
0.892117 0.451804i \(-0.149219\pi\)
\(824\) 0 0
\(825\) −49.3212 −0.0597833
\(826\) 0 0
\(827\) − 1473.29i − 1.78149i −0.454503 0.890745i \(-0.650183\pi\)
0.454503 0.890745i \(-0.349817\pi\)
\(828\) 0 0
\(829\) −379.840 −0.458191 −0.229095 0.973404i \(-0.573577\pi\)
−0.229095 + 0.973404i \(0.573577\pi\)
\(830\) 0 0
\(831\) − 1342.34i − 1.61533i
\(832\) 0 0
\(833\) −176.156 −0.211472
\(834\) 0 0
\(835\) 643.941i 0.771187i
\(836\) 0 0
\(837\) 148.733 0.177698
\(838\) 0 0
\(839\) − 1080.75i − 1.28814i −0.764965 0.644072i \(-0.777244\pi\)
0.764965 0.644072i \(-0.222756\pi\)
\(840\) 0 0
\(841\) 2056.21 2.44496
\(842\) 0 0
\(843\) 493.126i 0.584966i
\(844\) 0 0
\(845\) −1459.67 −1.72742
\(846\) 0 0
\(847\) − 311.301i − 0.367533i
\(848\) 0 0
\(849\) −2076.69 −2.44604
\(850\) 0 0
\(851\) − 56.1884i − 0.0660264i
\(852\) 0 0
\(853\) −125.372 −0.146978 −0.0734888 0.997296i \(-0.523413\pi\)
−0.0734888 + 0.997296i \(0.523413\pi\)
\(854\) 0 0
\(855\) − 1739.01i − 2.03393i
\(856\) 0 0
\(857\) 721.717 0.842143 0.421072 0.907027i \(-0.361654\pi\)
0.421072 + 0.907027i \(0.361654\pi\)
\(858\) 0 0
\(859\) − 104.742i − 0.121935i −0.998140 0.0609676i \(-0.980581\pi\)
0.998140 0.0609676i \(-0.0194186\pi\)
\(860\) 0 0
\(861\) −86.8167 −0.100832
\(862\) 0 0
\(863\) 425.005i 0.492474i 0.969210 + 0.246237i \(0.0791941\pi\)
−0.969210 + 0.246237i \(0.920806\pi\)
\(864\) 0 0
\(865\) 478.541 0.553226
\(866\) 0 0
\(867\) − 1507.21i − 1.73842i
\(868\) 0 0
\(869\) 20.0364 0.0230568
\(870\) 0 0
\(871\) 1688.67i 1.93877i
\(872\) 0 0
\(873\) −174.486 −0.199870
\(874\) 0 0
\(875\) − 278.193i − 0.317935i
\(876\) 0 0
\(877\) −469.368 −0.535197 −0.267599 0.963530i \(-0.586230\pi\)
−0.267599 + 0.963530i \(0.586230\pi\)
\(878\) 0 0
\(879\) − 74.8438i − 0.0851466i
\(880\) 0 0
\(881\) −1116.11 −1.26687 −0.633435 0.773796i \(-0.718356\pi\)
−0.633435 + 0.773796i \(0.718356\pi\)
\(882\) 0 0
\(883\) 271.281i 0.307227i 0.988131 + 0.153613i \(0.0490910\pi\)
−0.988131 + 0.153613i \(0.950909\pi\)
\(884\) 0 0
\(885\) 1835.54 2.07406
\(886\) 0 0
\(887\) − 211.421i − 0.238355i −0.992873 0.119178i \(-0.961974\pi\)
0.992873 0.119178i \(-0.0380258\pi\)
\(888\) 0 0
\(889\) 110.991 0.124849
\(890\) 0 0
\(891\) 126.376i 0.141836i
\(892\) 0 0
\(893\) 1140.94 1.27764
\(894\) 0 0
\(895\) − 629.481i − 0.703331i
\(896\) 0 0
\(897\) 297.321 0.331462
\(898\) 0 0
\(899\) − 1569.50i − 1.74582i
\(900\) 0 0
\(901\) −1157.60 −1.28479
\(902\) 0 0
\(903\) − 663.138i − 0.734372i
\(904\) 0 0
\(905\) −368.065 −0.406702
\(906\) 0 0
\(907\) − 410.290i − 0.452359i −0.974086 0.226179i \(-0.927376\pi\)
0.974086 0.226179i \(-0.0726236\pi\)
\(908\) 0 0
\(909\) −88.9220 −0.0978239
\(910\) 0 0
\(911\) − 608.982i − 0.668476i −0.942489 0.334238i \(-0.891521\pi\)
0.942489 0.334238i \(-0.108479\pi\)
\(912\) 0 0
\(913\) 262.606 0.287630
\(914\) 0 0
\(915\) 686.433i 0.750200i
\(916\) 0 0
\(917\) −125.390 −0.136740
\(918\) 0 0
\(919\) − 497.942i − 0.541830i −0.962603 0.270915i \(-0.912674\pi\)
0.962603 0.270915i \(-0.0873262\pi\)
\(920\) 0 0
\(921\) −2225.97 −2.41691
\(922\) 0 0
\(923\) 666.633i 0.722246i
\(924\) 0 0
\(925\) 105.826 0.114406
\(926\) 0 0
\(927\) 556.465i 0.600286i
\(928\) 0 0
\(929\) −65.4045 −0.0704032 −0.0352016 0.999380i \(-0.511207\pi\)
−0.0352016 + 0.999380i \(0.511207\pi\)
\(930\) 0 0
\(931\) 214.512i 0.230411i
\(932\) 0 0
\(933\) 136.624 0.146435
\(934\) 0 0
\(935\) 256.725i 0.274572i
\(936\) 0 0
\(937\) −600.918 −0.641321 −0.320661 0.947194i \(-0.603905\pi\)
−0.320661 + 0.947194i \(0.603905\pi\)
\(938\) 0 0
\(939\) 766.918i 0.816739i
\(940\) 0 0
\(941\) −1482.87 −1.57584 −0.787921 0.615776i \(-0.788843\pi\)
−0.787921 + 0.615776i \(0.788843\pi\)
\(942\) 0 0
\(943\) − 24.5356i − 0.0260187i
\(944\) 0 0
\(945\) −75.3394 −0.0797242
\(946\) 0 0
\(947\) 806.865i 0.852023i 0.904718 + 0.426011i \(0.140082\pi\)
−0.904718 + 0.426011i \(0.859918\pi\)
\(948\) 0 0
\(949\) 947.165 0.998067
\(950\) 0 0
\(951\) − 952.835i − 1.00193i
\(952\) 0 0
\(953\) 899.945 0.944329 0.472164 0.881510i \(-0.343473\pi\)
0.472164 + 0.881510i \(0.343473\pi\)
\(954\) 0 0
\(955\) 1156.95i 1.21146i
\(956\) 0 0
\(957\) −430.606 −0.449954
\(958\) 0 0
\(959\) − 406.524i − 0.423904i
\(960\) 0 0
\(961\) 110.764 0.115259
\(962\) 0 0
\(963\) − 1294.81i − 1.34456i
\(964\) 0 0
\(965\) −710.011 −0.735762
\(966\) 0 0
\(967\) 1725.92i 1.78482i 0.451228 + 0.892409i \(0.350986\pi\)
−0.451228 + 0.892409i \(0.649014\pi\)
\(968\) 0 0
\(969\) −3376.06 −3.48406
\(970\) 0 0
\(971\) 657.951i 0.677601i 0.940858 + 0.338800i \(0.110021\pi\)
−0.940858 + 0.338800i \(0.889979\pi\)
\(972\) 0 0
\(973\) 390.087 0.400912
\(974\) 0 0
\(975\) 559.977i 0.574336i
\(976\) 0 0
\(977\) 46.9364 0.0480413 0.0240207 0.999711i \(-0.492353\pi\)
0.0240207 + 0.999711i \(0.492353\pi\)
\(978\) 0 0
\(979\) − 108.404i − 0.110729i
\(980\) 0 0
\(981\) 493.056 0.502606
\(982\) 0 0
\(983\) 377.095i 0.383616i 0.981432 + 0.191808i \(0.0614351\pi\)
−0.981432 + 0.191808i \(0.938565\pi\)
\(984\) 0 0
\(985\) −1270.98 −1.29034
\(986\) 0 0
\(987\) − 431.233i − 0.436913i
\(988\) 0 0
\(989\) 187.412 0.189497
\(990\) 0 0
\(991\) − 926.283i − 0.934696i −0.884074 0.467348i \(-0.845210\pi\)
0.884074 0.467348i \(-0.154790\pi\)
\(992\) 0 0
\(993\) 2633.10 2.65166
\(994\) 0 0
\(995\) − 956.729i − 0.961537i
\(996\) 0 0
\(997\) −56.6462 −0.0568167 −0.0284083 0.999596i \(-0.509044\pi\)
−0.0284083 + 0.999596i \(0.509044\pi\)
\(998\) 0 0
\(999\) 87.5560i 0.0876437i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.3.d.b.15.1 4
3.2 odd 2 1008.3.m.d.127.3 4
4.3 odd 2 inner 112.3.d.b.15.4 yes 4
7.2 even 3 784.3.r.o.655.2 4
7.3 odd 6 784.3.r.n.79.2 4
7.4 even 3 784.3.r.j.79.1 4
7.5 odd 6 784.3.r.i.655.1 4
7.6 odd 2 784.3.d.j.687.4 4
8.3 odd 2 448.3.d.b.127.1 4
8.5 even 2 448.3.d.b.127.4 4
12.11 even 2 1008.3.m.d.127.4 4
16.3 odd 4 1792.3.g.e.127.2 8
16.5 even 4 1792.3.g.e.127.1 8
16.11 odd 4 1792.3.g.e.127.7 8
16.13 even 4 1792.3.g.e.127.8 8
28.3 even 6 784.3.r.i.79.1 4
28.11 odd 6 784.3.r.o.79.2 4
28.19 even 6 784.3.r.n.655.2 4
28.23 odd 6 784.3.r.j.655.1 4
28.27 even 2 784.3.d.j.687.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.3.d.b.15.1 4 1.1 even 1 trivial
112.3.d.b.15.4 yes 4 4.3 odd 2 inner
448.3.d.b.127.1 4 8.3 odd 2
448.3.d.b.127.4 4 8.5 even 2
784.3.d.j.687.1 4 28.27 even 2
784.3.d.j.687.4 4 7.6 odd 2
784.3.r.i.79.1 4 28.3 even 6
784.3.r.i.655.1 4 7.5 odd 6
784.3.r.j.79.1 4 7.4 even 3
784.3.r.j.655.1 4 28.23 odd 6
784.3.r.n.79.2 4 7.3 odd 6
784.3.r.n.655.2 4 28.19 even 6
784.3.r.o.79.2 4 28.11 odd 6
784.3.r.o.655.2 4 7.2 even 3
1008.3.m.d.127.3 4 3.2 odd 2
1008.3.m.d.127.4 4 12.11 even 2
1792.3.g.e.127.1 8 16.5 even 4
1792.3.g.e.127.2 8 16.3 odd 4
1792.3.g.e.127.7 8 16.11 odd 4
1792.3.g.e.127.8 8 16.13 even 4